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Abstract In recent years, significant advances have been made in intelligent tutoring
systems, and these advances hold great promise for adaptively supporting computer
science (CS) learning. In particular, tutorial dialogue systems that engage students in
natural language dialogue can create rich, adaptive interactions. A promising approach
to increasing the effectiveness of these systems is to adapt not only to problem-solving
performance, but also to a student’s characteristics. Self-efficacy refers to a student’s
view of her ability to complete learning objectives and to achieve goals; this charac-
teristic may be particularly influential during tutorial dialogue for computer science
education. This article examines a corpus of effective human tutoring for computer
science to discover the extent to which considering self-efficacy as measured within a
pre-survey, coupled with dialogue and task events during tutoring, improves models
that predict the student’s self-reported frustration and learning gains after tutoring. The
analysis reveals that students with high and low self-efficacy benefit differently from
tutorial dialogue. Student control, social dialogue, and tutor moves to increase efficien-
cy, may be particularly helpful for high self-efficacy students, while for low self-
efficacy students, guided experimentation may foster greater learning while at the same
time potentially increasing frustration. It is hoped that this line of research will enable
tutoring systems for computer science to tailor their tutorial interactions more
effectively.
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Introduction

One-on-one tutoring has been shown to be more effective than conventional classroom
settings (Bloom 1984). Due to the disparity between individualized tutoring and
conventional classrooms, human tutoring has been the subject of considerable investi-
gation (Chi et al. 2001; McKendree 1990; VanLehn 2011). Studies have examined the
interaction between students and tutors from multiple standpoints: cognitive and
affective outcomes (Boyer et al. 2008), the adaptive presentation of instructional
material (D’Mello et al. 2009), motivational strategies (Lepper et al. 1993), and the
exchange of rich natural language dialogue (Litman et al. 2009).

Development of tutorial dialogue systems presents many challenges, but these
systems can currently engage with students in topic areas such as physics (Chi. M et
al. 2010), electricity and electronics (Dzikovska et al. 2010), logic (Croy et al. 2007),
and, as is the focus of this paper, computer science (Chen et al. 2011; Ezen-Can and
Boyer 2015; Gerdes et al. 2012; Lane and VanLehn 2005; Lane et al. 2013; Vail et al.
2015).

It is generally acknowledged that students do not benefit uniformly from learning
interactions with intelligent tutoring systems (VanLehn et al. 2007). While tutoring has
a negligible impact on some students, others thrive and experience significant learning.
Some disparity can be explained by modeling the student’s interest in the subject,
memory capacity, and attention abilities (D’Mello et al. 2009), but these differences do
not capture all the variance. There has been a movement in the ITS community to
approach the learning process from a more holistic standpoint. In addition to the
cognitive aspects of learners, these systems consider learner characteristics such as
motivation, metacognition and affect (du Boulay et al. 2010; Narciss 2013). In this
article we examine one such characteristic, self-efficacy. There is evidence that self-
efficacy is highly indicative of a student’s self-regulatory abilities; the higher a student’s
self-efficacy, the better her self-regulatory abilities (Wang and Wu 2008). Adapting to
learners’ self-efficacy may be especially beneficial to students in fields in which there
are well-documented social stigmas, such as computer science (DiSalvo et al. 2011;
Koch 1994; Sadker 1999). In these situations, members of underrepresented groups can
feel as though they do not belong (Anderson-Rowland et al. 2007) or that they have
fixed aptitude that cannot be improved through study and practice (Dweck 2002).
Students experiencing these feelings may easily become bored or disengaged—states
that are associated with negative effects on learning (Pekrun et al. 2010).

This article examines the hypothesis that students with high or low self-efficacy
benefit from different tutorial strategies to promote positive learning outcomes in the
computer science domain. Models of tutorial interaction were built for students with
high or low self-efficacy and compared to one another. The results reveal that learning
and frustration are predicted by substantially different sets of tutorial interactions
depending on students’ incoming self-efficacy.

Background

A number of tutorial dialogue research projects have focused on computer science. An
early system, ProPL, focused on planning in pseudocode (Lane and VanLehn 2005);
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AutoTutor uses spoken dialogue to tutor basic computer literacy (Graesser et al. 1999);
JavaTutor uses cognitive and affective dialogue, machine learned from human-human
tutorial interactions, to interact with the student during the programming task (Vail et al.
2015; Ezen-Can and Boyer 2015); iList provides feedback as students learn about
linked lists (Fossati et al. 2009).

Developing an effective intelligent tutoring system is a complex task, especially
within a discipline that is dynamically changing such as computer science. There is
debate regarding which programming languages are best to learn first; therefore, to be
applicable to the variety of different forms computer science education can take,
research must also make language-independent strides forward to stay relevant in the
constantly evolving landscape (Rivers and Koedinger 2012). There is also the difficulty
of assessing student programs for correctness, which is a serious challenge considering
the variety of ways an answer could be wrong and the number of possible solutions to
any given programming problem (Xu and Chee 2003).

In light of these challenges, research on AI systems for teaching computer science
has made great progress facilitating learning. However, these systems have much room
for improvement in adapting to individual differences. Self-efficacy is a particularly
important characteristic, as it shapes students’ beliefs in their ability to reach their
learning goals. Self-efficacy influences not only how students approach problems, but
also their coping behaviors during learning (Bandura 1977; Bernacki et al. 2015). There
is also strong evidence that self-efficacy is highly indicative of a student’s self-
regulatory abilities (Wang and Wu 2008). Due to these factors, self-efficacy should
be considered when students are facing difficult tasks, such as learning computer
programming languages.

Some empirical work has begun to establish ways in which self-efficacy is influen-
tial in, and influenced by, tutoring for computer science. In an exploratory experiment
on computer-mediated computer science tutoring for undergraduates, students with
high self-efficacy made more declarative statements, or assertions, than students with
low self-efficacy. Tutors paired with low self-efficacy students gave more negative
feedback and made fewer acknowledgements than tutors paired with high self-efficacy
students (Boyer et al. 2007). In a different study in the same domain (and on a subset of
the corpus examined in this article), it was observed that self-efficacy for computer
science (or CS-specific self-efficacy) and pre-test scores contributed highly to predic-
tive models of normalized learning gain (Mitchell et al. 2013). It has also been
discovered that tutors attempting to motivate students to increase their participation
may have negative effects on those students, especially for students with low self-
efficacy (Howley et al. 2012). Self-efficacy also appears to exhibit important relation-
ships with nonverbal expressions of affect: students with low self-efficacy may use
two-hands-to-face gestures significantly more frequently, which may indicate reduced
focus on the task (Grafsgaard et al. 2013). There are also different facial expression
predictors for self-efficacy between middle school and college-age students (Grafsgaard
et al. 2015).

The study reported in this article builds upon this body of prior research in order to
better understand the role that student self-efficacy has on cognitive and affective
learning outcomes. The resulting models have important implications for how intelli-
gent tutoring systems should choose to interact with students based on those students’
incoming self-efficacy.
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Tutorial Dialogue Corpus

The corpus consists of human-human computer-mediated tutorial dialogue for intro-
ductory computer science collected during the 2011–2012 academic year. The corpus
was collected as part of the larger JavaTutor project, which aims to create a tutorial
dialogue system that learns its behavior by modeling the strategies of human tutors.

In the human-human study under investigation, students (N=67) and human tutors
interacted through a web-based integrated development environment (Mitchell et al.
2013). This environment presented a series of learning tasks to students, which led the
students through the process of creating a text-based adventure game. Successful
completion of the learning tasks required students to learn about and use variables,
console I/O, conditionals including nested conditionals, and for loops. Students and
tutors communicated through textual dialogue (Fig. 1). The tutors were experienced
graduate (and in one case undergraduate) student teaching assistants. Of the 67 students
who participated in the study, one is omitted from further analysis due to a missing
post-test score.

The participants were university students in the United States with an average age of
18.6 years (SD=1.3). They voluntarily participated in the study in exchange for course
credit on a lab assignment in an introductory engineering course. No computer science
knowledge was required for participants, and students with substantial self-reported
prior programming experience were excluded from the study since its target audience
was novices. Each student was paired with a tutor for a total of six sessions on different
days, limited to forty minutes per session. This analysis focuses on the student-tutor

Fig. 1 The JavaTutor tutorial dialogue interface for introductory Java programming
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dialogue and coding events, however, recordings of the sessions also included webcam
video, skin conductance recordings, and Kinect depth video (Grafsgaard et al. 2013,
2015; Hardy et al. 2013). There were a total of 29,840 task actions and dialogue moves
corresponding to Session 1, which is the only session considered in this article. The set
of possible interaction events, including student dialogue messages, tutor dialogue
messages, and task actions are shown in Table 1.

Programming Task

The programming task that the student and the tutor were working on collaboratively is
the development of a text-based interactive adventure game in Java. Students were
guided through the basics of compiling and running, commenting, printing, declaring
variables and gathering and storing input from the user. A sample student program is
shown in Fig. 2. This student code will compile, but it displays the common error of
forgetting to print an input prompt before reading from console input. The student,
upon testing her code, will encounter this logic error.

Self-Efficacy Measures

Before any tutoring and before the pre-test, a pre-survey was administered containing
two questionnaires for self-efficacy: general and CS-specific. General self-efficacy is a

Table 1 List of task actions and dialogue moves

Task action Description Avg. instances
per session

SESSIONPROGRESS Tutor moved the session forward to the next task 16.03

TUTORMSG Tutor sent a dialogue message to the student 88.21

STUDENTMSG Student sent a dialogue message to the tutor 36.04

CODE+ Student has written code that is closer in terms of edit
distance to the correct solution* than the prior code

60.63

CODE- Student has written code that is farther in terms of edit
distance from the correct solution* than the prior code

12.57

CODE0 Student has written code that is neither closer nor farther
from the correct solution* in terms of edit distance than
the prior code (e.g., changing string literals)

167.97

COMPILEBEGIN Student clicked the COMPILE button 15.67

COMPILESUCCESS Student’s code had no syntax errors and compiled successfully 12.06

COMPILEERROR Student’s code had syntax errors and could not compile
successfully

3.61

RUNCODE Student clicked the RUN button 10.99

RUNSUCCESS Student finished running the code with no errors 10.06

RUNTIMEERROR Student encountered a runtime error while running the program 0.03

RUNSTOP Student halted the currently active program by clicking STOP 0.76

INPUTSENT Student entered console input to test program 10.73

* A correct solution is any code that a tutor deemed correct enough to move the session to the next task
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measure of how students view their own ability to complete tasks and reach their goals.
The higher a student’s general self-efficacy is, the more a student believes in her ability
to learn and grow academically. To measure student general self-efficacy, a scale
developed by Chen et al. (2001) was used, which can be seen in Table 2.

CS-specific self-efficacy is the student’s belief in her ability to learn and solve
problems in the particular domain of computer science. To measure student self-
efficacy for CS, a previously developed scale was modified for this use as part of the
JavaTutor project was used (Wiebe et al. 2003) which can be seen in Table 3. Both
measures of self-efficacy were calculated by taking the average of the student’s
responses (1: Strongly disagree; 2: Disagree; 3: Neutral; 4: Agree; 5: Strongly Agree).
For reasons that will be described below, we utilize general self-efficacy for the analysis
presented in this article.

Cognitive and Affective Outcome Measures

After Session 1, a post-session survey was administered to the students. This survey
included questions to determine the affective outcomes of the lesson, including student
frustration. The item being considered in the present study is Frustration Level (Hart
and Staveland 1988), which was measured on a scale from 0 to 100 using the validated
item, BHow insecure, discouraged, irritated, stressed, and annoyed were you?^

To measure learning gain, an identical pre/post-test with 17 items was administered
before and after the session. An example from the pre/post test for Session 1 is shown

Fig. 2 Sample (buggy) student code. This program awaits input before prompting the user for that input

Table 2 General self-efficacy questions

Student pre-survey general self-efficacy questions

1: I will be able to achieve most of the goals that I have set for myself.

2: When facing difficult tasks, I am certain that I will accomplish them.

3: In general, I think that I can obtain outcomes that are important to me.

4: I believe I can succeed at most any endeavor to which I set my mind.

5: I will be able to successfully overcome many challenges.

6: I am confident that I can perform effectively on many different tasks.

7: Compared to other people, I can do most tasks very well.

8: Even when things are tough, I can perform quite well.
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Table 4. No feedback was given to the students about how they performed on the pre/
post-tests. Normalized learning gain was computed using the following formula if the
posttest score was greater than the pretest score:

Normalized Learning Gain ¼ Posttest−Pretest
1−Pretest

Otherwise, normalized learning gain was computed as follows (pretest> posttest):

Normalized Learning Gain ¼ Posttest−Pretest
Pretest

The formula was derived from the work of Marx and Cummings (2007). This
normalized learning gain calculations includes an adjustment to avoid division by zero,
appearing in cases in which the student has a perfect pretest score. The items on the pre/
post-test involved matching definitions, ordering code statements, and explaining what
code fragments do. All of these were presented within multiple-choice formats.

Code Quality Measure

The computer science task focused on students developing a piece of code and
evaluating it with their tutor. Therefore, it is important to analyse the students’ code
progress throughout the lesson. To measure a student’s code quality as the session
unfolded, the student’s code was tokenized after any 1.5 seconds of code inactivity.
Then, the tokenized code was compared to the code that the student had written at the

Table 3 CS-specific self-efficacy questions

Student pre-survey CS-specific self-efficacy questions

1: Generally I have felt secure about attempting computer programming problems.

2: I am sure I could do advanced work in computer science.

3: I am sure that I can learn programming.

4: I think I could handle more difficult programming problems.

5: I can get good grades in computer science.

6: I have a lot of self-confidence when it comes to programming.

Table 4 Portion of a matching question from the pre/post-test administered to students

Next to each phrase in the right column, type the letter of the matching phrase from the left column that
completes the sentence

A) Makes space in the computer to store a value Compiling a program __________

B) Translates human-readable code into machine language A comment __________

C) gets information from the user to the program An output statement __________

[remaining items omitted for brevity] [remaining items omitted for brevity]
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end of the lesson. By using the Levenshtein Distance formula, a token-level minimum
edit distance algorithm, we produced the high-level tags of CODE+, CODE-, and
CODE0 as described in Table 1.

Investigating Self-Efficacy

This study aims to identify differences in effective tutor interactions with students of
high versus low self-efficacy. However, the two measures of self-efficacy have different
theoretical underpinnings: for example, CS-specific self-efficacy, at first blush, might
seem to be more strongly associated with outcomes of tutoring for computer science
than general self-efficacy. On the other hand, general self-efficacy may be more stable
over time than CS-specific self-efficacy (or any domain-specific self-efficacy; Chen et
al. 2001). To investigate this, the measures of general self-efficacy and CS-specific self-
efficacy were analysed in our corpus. Not surprisingly, across the students in this study,
general self-efficacy and CS-specific self-efficacy were positively correlated (r=0.33;
p=0.0062). On average, students reported a general self-efficacy of 4.139 out of a
possible 5, with a standard deviation of 0.407. For CS-specific self-efficacy, the average
was 3.240 out of a possible 5, with a standard deviation of 0.697. Figure 3 displays the
spread of data for the self-efficacies.

It should be noted that the general self-efficacy reported was high on average
compared to the range of its scale (1–5). This high self-efficacy across the sample of
students under consideration here is likely due to the fact that the sample consists of
college-level students enrolled at a large research university, and we would expect them
to report higher self-efficacy measures than the general population. Although a further
discussion of gender differences is beyond the scope of this article, Fig. 4 shows the
breakdown between female and male general self-efficacy scores. The results on self-
efficacy should be interpreted in light of the fact that gender (and likely many other

Fig. 3 Histograms of General Self-Efficacy (left) and CS-Specific Self-Efficacy (right)
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student characteristics) can significantly influence the structure and content of tutorial
dialogue.

Correlations with Learning Outcomes

Because general self-efficacy and CS-specific self-efficacy were correlated with one
another, to proceed in the analyses we selected one measure of self-efficacy. To select
between the two we computed their correlation with the outcomes of interest. As shown
in Table 5, general self-efficacy was significantly correlated with Normalized Learning
Gain (r=0.34; p=0.006) and Frustration (r=−0.33; p=0.005). The mean Normalized
Learning Gain for students in the low general self-efficacy group is 0.34 (st.
dev.= 0.33), while the mean among students in the high general self-efficacy group is
0.50 (st. dev.= 0.29).

This relationship is stronger than that of CS-specific self-efficacy, so general self-
efficacy score will be the measure used to represent the concept of student self-efficacy.
Reflecting upon the student population in this study, it is not surprising that general
self-efficacy is more informative than CS-specific self efficacy because these students
were total novices (recall that any students who reported prior computer science
experience were intentionally not included in this study). Novices may be much less
able to judge their self-efficacy in a domain with which they have no experience, which
is the case with these students and computer science.

Predictive Models

In order to explore differences in learning gain and frustration between students of high
and low self-efficacy, we divided the students into two mutually exclusive bins by the

Fig. 4 Histograms of the General Self-Efficacy for Females (left) and Males (right)
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median general self-efficacy score. For the remainder of this paper we simply refer to
general self-efficacy as self-efficacy. The data utilized are drawn from the first of six
sessions in the human-human JavaTutor study. Of the 67 students who participated in
the study, one is omitted from further analysis due to a missing post-test score. The
remaining students (N=66) were split into a high self-efficacy bin (N=32) containing
the students whose self-efficacy was above the median of 4 on a scale of 1 to 5. The
low self-efficacy bin (N=34) contains those students who reported a self-efficacy equal
to or below the median. This median split was selected because there is no theoretically
established threshold for Bhigh^ and Blow^ self efficacy; therefore, we use the sample
of students to situate each student as Bhigh^ or Blow^ with respect to all other students
in the sample. As we discuss later in the Limitations section, a drastically different
sample of students would be unlikely to maintain stability of these groups of Bhigh^
and Blow^ self-efficacy students.

Using the detailed logs of tutoring events (Table 1), we constructed a sequential
representation of each tutoring session. We then extracted bigrams (pairs of adjacent
interaction events) across those sequences. An interaction sequence (e1, e2, e3, …, en)
generates the following bigrams: (e1, e2), (e2, e3), …, (en-1, en). Using these extracted
bigrams we computed the relative frequency of each bigram over the session, which
controls for sessions of varying lengths.

Bigrams were selected as the unit of analysis for two reasons. First, compared to
unigrams (single events considered in isolation), bigrams provide additional context by
capturing the preceding event. Additionally, in contrast to higher order n-grams such as
trigrams and 4-grams, bigrams avoid issues of sparsity that arise when considering
these higher order n-grams. Bigrams are widely used in tutorial dialogue research as the
unit of analysis (Forbes-Riley and Litman 2005; Boyer et al. 2009).

In order to model how these bigrams, which represent aspects of the tutorial
interactions, are associated with the outcomes of learning gain and frustration, we built
multiple regression models. The bigram relative frequencies were provided to the
models as predictors, and separate models were built to predict normalized learning
gain and frustration as response variables. Because the number of features is large—
there is one feature for each bigram— we performed feature selection using
model averaging, a technique that creates regression models for all possible combina-
tions of predictor variables and then selects the most predictive variables using the
average coefficient estimate from models with one, two, or three predictive variables
(Symonds and Moussalli 2010). For example, if we only had four features, model
averaging across models with one, two, or three predictive variables would generate the
following: 4 models with one feature, 6 models with two features, and 4 models with

Table 5 Self-efficacy correlations with student outcomes

General self-efficacy CS-Specific self-efficacy

r p r p

Pretest −0.1795 0.1493 0.2569 0.0373

Normalized learning 0.3406 0.0055 0.2550 0.0403

Frustration −0.3317 0.0051 −0.1529 0.2203
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three features (i.e., all possible combinations for each number of features). The
coefficient estimates for each feature would then be averaged across the models (i.e.,
one average coefficient estimate per feature), with the top 20 features selected based on
the average coefficient estimates.

Feature selection using model averaging was performed using JMP, then multiple
regression models were also constructed in JMP. Using the top 20 features, forward
stepwise feature selection was performed with leave-one-student-out cross-validated R2

value as the selection criterion. If leave-one-student-out cross-validated R2 value did
not increase more than a specified epsilon value, the variable was not added to the
model. This approach varies slightly from a traditional stepwise regression model,
which inserts a variable if the p-value for that variable’s coefficient is smaller than a
threshold. This resulted in two R2 values per model: one value to report the
performance of the model constructed using all data, and a second value to report the
average R2 across the leave-one-out cross-validated models, which provides approxi-
mate evidence of generalizability.

The next three sections examine the resulting predictive models of learning gain and
frustration built for all students, and then built separately for students of high and low
self-efficacy.

All Students

The first set of models we will consider are those built on data from all students
(N=66) to predict normalized learning gain and standardized frustration. These models
will allow us to compare bigrams that are predictive of learning and frustration in the
full set of students versus the high and low self-efficacy groups. We hypothesize that
the models that specialize by self-efficacy group will explain a greater proportion of the
variance in outcomes than the model learned on all students.

All Students | Predicting Normalized Learning Gain

As shown in Table 6, two bigrams show a positive relationship with normalized
learning gain in the overall group of students. First, a run success followed immediately
by starting another compilation (RUNSUCCESS_COMPILEBEGIN) may indicate that
the student is repeatedly testing her program, which is likely productive in uncovering
code bugs as well as misconceptions held by the student. (Note that these novices may
plausibly have held a separate, unrelated misconception that they needed to compile

Table 6 Model for learning gain built on all students (R2 = 0.353; r = 0.594)

Normalized learning gain = p

2.02 * RUNSUCCESS_COMPILEBEGIN 0.0080

0.64 * COMPILEBEGIN_COMPILESUCCESS 0.0245

−8.51 * TUTORMSG_RUNSTART 0.0024

−0.05 (intercept)

RMSE = 0.277 Standard Deviations Leave-One-Out Cross Validated R2 = 0.176
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before running the code each time, which may be influential in this bigram’s appear-
ance in the model.) The second bigram that significantly predicts learning is a compile
attempt followed by compile success (COMPILEBEGIN_COMPILESUCCESS). This
bigram indicates syntactically correct generation of programming code, a step toward
completing the task and learning the related material.

The model selected one bigram that was negatively correlated with normalized
learning gain: a tutor message followed by the student running the code
(TUTORMSG_RUNSTART). These bigrams were often the tutor instructing the
student to run the code, a didactic mode of tutoring that has previously been observed
to be less effective (Mitchell et al. 2013).

Table 7 displays an excerpt illustrating some of the bigrams that were selected in the
model in Table 6. In this excerpt the student improves the code quality and then
compiles. After a superficial code edit, the tutor begins to explain some elements of
the code in more detail to the student and then instructs the student to test the code.

All Students | Predicting Frustration

Next we turn our attention to the model built on all students to predict frustration. As
shown in Table 8, one bigram was negatively correlated with frustration: moving to the
next task followed by a superficial code edit (SESSIONPROGRESS_CODE0). Super-
ficial code edits do not substantively change the program’s functionality—for example,
adding or editing comments. However, comments may have been used by students to
organize their thoughts, and it is possible that this type of Bscratch work^ helped to
reduce frustration.

Table 7 Excerpt containing bigrams identified by model for learning gain on all students

Excerpt 1

Student: [CODE+]

[COMPILEBEGIN]^

[COMPILESUCCESS]^

[CODE0]

Tutor: On line 9, two things are happening

1) java stops at nextLine() and waits for user input.

2) whatever is typed is put into (assigned) to PlanerName.

Okay?

Student: Okay

Tutor: Try it.*

Student: [RUNSTART]*

[INPUTSENT]

[RUNSUCCESS]

Tutor: It worked as you wrote it

The bigrams positively associated with learning gain are marked with ^ and those that are negatively
associated are marked with *
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There were also six bigrams selected which were positively correlated with frustration.
For example, tutor messages followed by negative code changes (TUTORMSG_CODE-)
or another tutor message (TUTORMSG_TUTORMSG) were both predictive of increased
frustration. These may correspond to a particularly didactic mode of tutoring and unsuc-
cessful code modifications, respectively. As another example, successful compile follow-
ed by a student message (COMPILESUCCESS_STUDENTMSG) was also positive
associated with frustration. We see that students who are progressing rapidly on the task
will compile and then run. Compiling and thenmessaging the tutor likely indicates that the
student is not sure what to do next, which is associated with increased frustration.

In Tables 9 and 10, excerpts with some of these bigrams are displayed. In Table 9, a
student has successfully compiled the code and then the tutor suggests commenting out
a line of code which will cause the code not to compile. The tutor then instructs the
student to compile the code to see the error. In Table 10, the student successfully
compiles the code and then asks the tutor to confirm correctness. The tutor tells the
student to run the code and see that without adding new print statements, nothing

Table 8 Model for frustration built on all students (R2 = 0.620; r = 0.787)

Standardized frustration level = p

−1.31 * SESSIONPROGRESS_CODE0 0.0253

108.64 * CODE+ _ INPUTSENT 0.0345

6.40 * COMPILESUCCESS_STUDENTMSG 0.0001

6.93 * INPUTSENT_STUDENTMSG 0.0003

10.82 * TUTORMSG_CODE- 0.0297

1.38 * CODE-_CODE+ 0.0055

1.87 * TUTORMSG_TUTORMSG 0.0163

−0.81 (intercept)

RMSE = 0.664 Standard Deviations Leave-One-Out Cross Validated R2 = 0.369

Table 9 Excerpt containing bigrams identified by model for frustration on all students

Excerpt 2

Student: [COMPILEBEGIN]

[COMPILESUCCESS]

Tutor: Very good. Any questions?

Student: I think im good. :)

Tutor: Try commenting out line 4^ that is, make it begin with a //^

Student: [CODE-]^

[CODE-]

Tutor: Now compile

Student: [COMPILEBEGIN]

[COMPILEERROR]

Tutor: Make sense?^ you must do more than just declare^ a string variable^

(* denotes negative correlation; ^ denotes positive correlation)
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different was printed to the console. They then move on to the next task and the student
begins by making a superficial code edit.

High Self-Efficacy Students

Having seen the models for predicting learning gain and frustration in the overall group
of students, we now turn our attention to more specialized models built to predict these
outcomes for only students with high self-efficacy (N=32). Recall that these students
were grouped because their self-efficacy was above the sample median of 4 on a scale
from 1 to 5. High self-efficacy students are those with a strong belief in their ability to
reach their learning goals. In this data set, higher self-efficacy is associated with higher
learning gains and decreased frustration. However, we hypothesize that the events
during tutoring play an important role on learning gain and frustration. We examine
the learned predictive models to explore that hypothesis.

High Self-Efficacy Students | Predicting Normalized Learning Gain

As shown in Table 11, for students with high self-efficacy, one bigram is positively
predictive of learning gain: a tutor message followed by the student stopping a running
program (TUTORMSG_RUNSTOP). These messages were often the tutor explaining
something that is not correct in the student’s program, and the student may stop the run
in order to correct the code and then run again later.

Three bigrams were selected for having a negative relationship with learning gain:
tutor message followed by a run success (TUTORMSG_RUNSUCCESS) or by a
superficial code edit (TUTORMSG_CODE0), and run success followed by an increase
in code quality (RUNSUCCESS_CODE+). These bigrams highlight the fact that a
tutor proactively leading the student is not as helpful for high self-efficacy students,
whereas independent work within the student’s ability may foster learning. These

Table 10 Excerpt containing bigrams identified by model for frustration on all students

Excerpt 3

Student: [COMPILEBEGIN]

[COMPILESUCCESS] okay, is that right?

Tutor: Good.

Try running

Student: [RUNSTART]

[RUNSUCCESS]

Tutor: nothing changed bc we did not add any print lines.^

ready?^

Student: Yes

Tutor: [SESSIONPROGRESS]*

Student: [CODE0]*

[CODE+]

(* denotes negative correlation; ^ denotes positive correlation)
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bigrams highlight the tutor’s actions causing decreased learning by interfering with the
student’s exploration of the session.

In Tables 12 and 13, excerpts containing bigrams identified for their association with
learning gain in high self-efficacy students are displayed. In Table 12, the tutor instructs
the student to make a superficial code edit and then tells the student to stop his/her
current testing in order to attempt to compile the new code. In Table 13, the student
successfully compiles the code and then starts running the code. The running code is
waiting for user input and the tutor asks the student to identify the line of code that is
causing the wait. The student enters input and then correctly identifies and modifies the
logic error in the code.

High Self-Efficacy Students | Predicting Frustration

The previous models suggest that student control may foster learning for high self-
efficacy students. We next explore predictors of frustration for these students. As shown
in Table 14, one bigram was selected for a negative association with frustration: student
message followed by run start (STUDENTMSG_RUNSTART). As seen in the excerpt
in Table 12, this is often acknowledgment of tutor moves before running the program.

Table 12 Excerpt containing bigrams identified by model for learning gain on high self-efficacy students

Excerpt 4

Tutor: So read the TASK and do Task 3*

Student: [CODE0]*

Tutor: Good*

Student: [CODE0]*

Tutor: ready?

Student: i typed the comment and now do i hit compile

Tutor: Try it

Then run it^

Student: [RUNSTOP]^

[COMPILEBEGIN]

[COMPILESUCCESS]

(* denotes negative correlation; ^ denotes positive correlation)

Table 11 Model of learning gain for high self-efficacy students (R2 = 0.716; r = 0.846)

Normalized learning gain = p

12.41 * TUTORMSG_RUNSTOP 0.0274

−32.26 * TUTORMSG_RUNSUCCESS 0.0445

−6.46 * RUNSUCCESS_CODE+ 0.0053

−2.91 * TUTORMSG_CODE0 0.0066

0.61 (intercept)

RMSE = 0.186 standard deviations Leave-One-Out Cross-Validated R2 = 0.319
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Prior research has shown that high self-efficacy students make more acknowledge-
ments during dialogue, and these social moves may indicate rapport with the tutor that
is helpful in mitigating frustration (Boyer et al. 2007).

Two bigrams with a positive association with frustration were a student message
followed by sending input to the running program (STUDENTMSG_INPUTSENT),
which happened during program testing, and a code decrease in quality followed by a
compilation attempt (CODE-_COMPILEBEGIN). Also positively associated with
frustration were the student stopping the running code and then the tutor advancing
to the next task (RUNSTOP_SESSIONPROGRESS) and a successful run followed by
an increase in code quality (RUNSUCCESS_CODE+); both of these indicate positive
progress toward completing the task.

In Table 15, an excerpt containing bigrams associated with frustration in high self-
efficacy students is displayed. In this excerpt, the tutor is engaging the student in a
dialogue about what is really happening when the code is compiled before the student
tests his/her compiled code.

Low Self-Efficacy Students

The final grouping of students we consider are those with low self-efficacy (N=34),
those who reported a self-efficacy of 4 or lower on a scale from 1 to 5. Low self-efficacy
students are those with a less strong belief in their ability to reach their learning goals. In

Table 13 Excerpt containing bigrams identified by model for learning gain on high self-efficacy students

Excerpt 5

Student: [COMPILEBEGIN]

[COMPILESUCCESS]

[RUNSTART]

Tutor: What line is it waiting on?

Student: [INPUTSENT]

[RUNSUCCESS]*

[CODE+]*

(* denotes negative correlation; ^ denotes positive correlation)

Table 14 Model of frustration for high self-efficacy students (R2 = 0.827; r = 0.909)

Standardized frustration level = p

−70.66 * STUDENTMSG_RUNSTART <0.0001

43.58 * STUDENTMSG_INPUTSENT <0.0001

4.00 * CODE-_COMPILEBEGIN <0.0001

1.32 * RUNSTOP_SESSIONPROGRESS <0.0001

7.13 * RUNSUCCESS_CODE+ 0.0017

−0.66 (intercept)

RMSE = 0.220 standard deviations Leave-One-Out Cross-Validated R2 = 0.431

Int J Artif Intell Educ



the JavaTutor data set we see that having a lower self-efficacy is related to decreased
learning gains and higher frustration. The models we examine next examine what events
within tutoring predict learning and frustration for lower self-efficacy students.

Low Self-Efficacy Students | Predicting Normalized Learning Gain

As shown in Table 16, there were three bigrams associated with increased learning: a
student running his/her code and then increasing the code qual i ty
(RUNSTART_CODE+), finishing a run successfully being followed by increasing
the code quality (RUNSUCCESS_CODE+) and a run stop being followed by a student
utterance (RUNSTOP_STUDENTMSG). All these bigrams involve running the code.
Interestingly, it is possible that the benefit to learning in these instances is coming from
the student learning by doing, which may be particularly impactful for lower self-
efficacy students, or from discussing what has just been done. The only bigram
associated with decreased learning was a compile success followed by a tutor message
(COMPILESUCCESS_TUTORMSG).

In the excerpt in Table 17, a low self-efficacy student successfully compiles and then
begins running the code. However, after seeing what is printed to the screen, the student
stops the code and asks the tutor for advice, correctly identifying the logic error in the
code. The tutor then tells the student to try out the idea, and the student corrects the

Table 15 Excerpt containing bigrams identified by model for frustration on high self-efficacy students

Excerpt 6

Tutor: What you’re doing is actually complex

What do you think a machine language is like?

Student: Well to be honest I have no idea haha but it should be pretty straightforward

Tutor: Yeah

Computers actually operate on 1’s and 0’s

So, the Java compiler takes what you see in the Java Code panel and translates it to that

[SESSIONPROGRESS]

Student: Alright, cool*

[RUNSTART]*

(* denotes negative correlation; ^ denotes positive correlation)

Table 16 Model of learning gain for low self-efficacy students (R2 = 0.603; r = 0.777)

Normalized learning gain = p

9.27 * RUNSTART_CODE+ 0.0194

6.04 * RUNSUCCESS_CODE+ 0.0126

0.72 * RUNSTOP_STUDENTMSG 0.0047

−0.88 * COMPILESUCCESS_TUTORMSG 0.0070

0.62 (intercept)

RMSE = 0.239 standard deviations Leave-One-Out Cross-Validated R2 = 0.158
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problem. In Table 18, a low self-efficacy student is making adjustments to the code and
the tutor tells her that she is running out of time. The tutor suggests that they compile
the code, which the student does successfully. Rather than give the student the
opportunity to test the program in a hands-on way, the tutor describes what will happen
and then proceeds to the next task. Consistent with previous observations, this short-
circuit of hands-on practice may not be productive for students with low self-efficacy.

Low Self-Efficacy Students | Predicting Frustration

As shown in Table 19, the only bigram associated with decreased frustration for low
self-efficacy students is a code decrease in quality followed by a compile attempt
(CODE-_COMPILEBEGIN). This bigram indicates that the student may be checking
code changes frequently, an iterative approach that may help mitigate frustration. On
the other hand, a decrease in code quality followed by an increase in code quality
(CODE-_CODE+), as well as an increase in code quality followed by input to a
running program (CODE+_INPUTSENT), are associated with increased frustration.
Interestingly, these two bigrams indicate independent steps taken toward completing

Table 17 Excerpt containing bigrams identified by model for learning gain on low self-efficacy students

Excerpt 7

Student: [COMPILEBEGIN]

[COMPILESUCCESS]

[RUNSTART]

[RUNSTOP]^

Do I need to change the order to make the prompt before the input?^

Tutor: Try it.

Student: [CODE+]

(* denotes negative correlation; ^ denotes positive correlation)

Table 18 Excerpt containing bigrams identified by model for learning gain on low self-efficacy students

Excerpt 8

Student: [CODE0]

[CODE+]

Tutor: Ok. We are running out of time.

Just compile your code for now.

[COMPILEBEGIN]

[COMPILESUCCESS]*

Tutor: Alright. Your game will now prompt the player for her name and then display the input field.*

In interest of time, I am going to skip past the next task.

[SESSIONPROGRESS]

(*denotes negative correlation; ^ denotes positive correlation)
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the task without tutor intervention, which are in the same spirit as the bigrams that
predicted increased learning. However, these predict increased frustration.

In Table 20, an excerpt that has bigrams associated with frustration in low self-
efficacy students is displayed. In the excerpt, a low self-efficacy student is having
trouble getting his/her code to compile and the tutor gives some advice, which the
student initially misunderstands, but then when the tutor follows up, the student is able
to make the correction.

Discussion

As we move toward creating highly effective tutoring systems to support computer
science learning, it is important to consider the possibility that student characteristics

Table 19 Model of frustration for low self-efficacy students (R2 = 0.744; r = 0.863)

Standardized frustration level = p

−9.95 * CODE-_COMPILEBEGIN 0.0192

9.90 * COMPILESUCCESS_STUDENTMSG <0.0001

158.08 * CODE+ _INPUTSENT 0.0084

13.65 * TUTORMSG_CODE+ 0.0350

2.56 * CODE-_CODE+ 0.0072

−1.36 (intercept)

RMSE = 0.734 standard deviations Leave-One-Out Cross-Validated R2 = 0.374

Table 20 Excerpt containing bigrams identified by model for frustration on low self-efficacy students

Excerpt 9

Student: [COMPILEBEGIN]

[COMPILEERROR]

Tutor: The carat points to the error.

Student: [CODE-]^

[CODE+]^

[COMPILEBEGIN]

[COMPILEERROR]

Tutor: Compare your line with example^

[CODE+]^

[CODE0]

[CODE0]

[CODE0]

[COMPILEBEGIN]

[COMPILESUCCESS]

(* denotes negative correlation; ^ denotes positive correlation)
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such as self-efficacy influence the effectiveness of tutorial interventions. We hypothe-
sized that self-efficacy has a substantial influence on learning gain and frustration
during one-on-one tutorial dialogue for introductory computer science. The models
that we have presented provide support for this hypothesis.

One important consideration for the models is the extent to which they were able to
explain the variance in the outcomes of interest. The All-Students models for frustration
and learning achieved leave-one-student-out cross-validated R2 of 0.35 and 0.62,
respectively. In comparison, the models learned for High Self-Efficacy students
achieved 0.71 and 0.83, while the models for Low Self-Efficacy students achieved
R2 of 0.60 and 0.74. In both cases, the specialized model outperformed the all-students
model for explaining the outcome variables, despite having less data for training. This
confirms that self-efficacy is an important consideration when modeling the effective-
ness of tutorial dialogue for computer science.

For learning gain, we see important differences in the predictors for students with
high self-efficacy and low self-efficacy. For students with high self-efficacy, positively
associated with learning were tutor messages followed by the student stopping a
running program. This move may have improved the efficiency of learning because
rather than having the student complete a full test of the program to uncover a
remaining bug, the tutor chose to proactively discuss it. High self-efficacy students
may be able to keep up with this Bshortcut^ toward addressing errors, whereas the
approach may not be as effective for low self-efficacy students. In contrast, positive
predictors of learning for low self-efficacy students all involved running the program
followed by either code improvements or a student dialogue move, but not any tutor
dialogue moves. In fact, tutor dialogue moves only appear in one bigram for low self-
efficacy students, and that is when the tutor chooses to send a message immediately
after the student compiles successfully. That bigram is negatively associated with these
students’ learning, suggesting that the importance of timing for low self-efficacy
students may be greater than for high self-efficacy students where tutor messages do
not appear in the second half of any significant bigram for predicting learning.

For frustration, there are also important differences in the predictors for students with
high self-efficacy and low self-efficacy. For high self-efficacy students, we see de-
creased frustration with student messages followed by starting a code test, which often
involved the student acknowledging tutor feedback and then testing the program. For
low self-efficacy students, student dialogue messages only appeared once in the predic-
tors for frustration, and that was following a compile success. In that case the messages
were associated with more frustration. This situation illustrates an important possibility
regarding natural language dialogue and self-efficacy: students with low self-efficacy
may opt not to make non-essential dialogue moves, such as acknowledgments, as
frequently as students with high self-efficacy, and there are two compelling possible
reasons for this. One is that non-essential dialogue may represent extraneous load on a
student who is already challenged by the task. A second is that low self-efficacy may
also go hand in hand with a decreased sense of Bstanding^while conversing with a tutor,
a phenomenon that computer science educators may observe in their classrooms by the
hesitation of less confident students to ask questions or engage in classroom dialogue.

Finally, it is important to note a nuance of frustration. While it seems at first blush to
be something to avoid, research has demonstrated that some degree of healthy frustra-
tion supports learning (D’Mello et al. 2014). Indeed, we saw that bigrams representing
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independent student work were associated with both higher learning and higher
frustration, particularly for students with low self-efficacy. This is a different perspec-
tive on the cognitive-affective tradeoff (which suggests that in order to improve
learning, affective considerations may have to take a backseat). The nature of the
cognitive-affective tradeoff may depend upon student characteristics.

LimitationsWhile this article provides insight to the relationship between self-efficacy
and student learning outcomes during computer science learning, it is important to
consider the limitations of the study. Firstly, we note limitations regarding the measured
self-efficacy in the JavaTutor study. While self-efficacy could range from 1.0 to 5.0, the
range in the sample considered here was only 3.25 to 5.0. These high reported self-
efficacy values are not surprising for a sample of college freshmen at a large research
university. In a sample with different students, the division between high and low self-
efficacy would be at different point, and may change the phenomena observed in these
groups. Additionally, we note that the present study treats self-efficacy as stable:
students were grouped based on answers to the survey which was administered prior
to tutorial interaction. It is possible that self-efficacy may change during learning, and
these changes may affect students’ behaviour (Bernacki et al. 2015). It is also important
to note that this work does not consider the differences between tutors and their
individual effectiveness. Such analysis has been addressed in previous work and is
known to play a role in the student’s learning outcomes (Mitchell et al. 2013).

Conclusion

As the computer science education community moves toward adaptive support for
individual learners, it is crucial for intelligent learning environments to consider not
only students’ knowledge and skill, but also motivational factors driven by affect. Self-
efficacy, students’ beliefs in their own abilities, may have deep and far-reaching
implications for computer science learning. Students’ level of self-efficacy may, in
particular, influence the types of adaptive support that are most effective.

This article has examined a data set of human-human tutoring for introductory
computer science using the Java programming language. We have investigated predictive
models of learning and frustration for students with high and low self-efficacy, finding that
different interactions were predictive of these outcomes for the two groups. Student
control, social dialogue, and tutor moves to increase efficiency, may be particularly helpful
for high self-efficacy students. This group of students has more advanced self-regulated
learning techniques and are receptive to feedback. For low self-efficacy students, guided
experimentation may foster greater learning while at the same time potentially increasing
frustration. This highlights the importance of carefully supporting low self-efficacy
students during experimentation phases of computer science problem solving.

Future Work

As a research community, we must work to customize future learning environments to
students’ individual needs and preferences, with the goal of increasing both affective
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outcomes and learning. This study found that effective interactions between students of
high and low self-efficacy vary, and the results suggest that it may be beneficial to have
separate dialogue policies for the two groups. These policies could potentially increase
the learning gain of students, while managing the frustration that they are experiencing
while interacting with the challenging domain of Computer Science. In the future it will
be important to take a deeper look into engagement and motivation, observing not only
groups with higher likelihood of disengagement, but also the effectiveness of remedial
strategies on different groups of students.

Another promising direction for future work is to investigate whether these findings
are observed with younger learners. Computer science is being taught to students much
younger than college age, and these students likely exhibit a much wider range of self-
efficacy. Individual adaptation is a crucial goal for computer science tutoring systems,
which hold great potential to support broader populations of students in learning
computer science.
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