
 

 

Abstract 
Interactive narrative planning offers significant 
potential for creating adaptive gameplay 
experiences. While data-driven techniques have 
been devised that utilize player interaction data to 
induce policies for interactive narrative planners, 
they require enormously large gameplay datasets. A 
promising approach to addressing this challenge is 
creating simulated players whose behaviors closely 
approximate those of human players. In this paper, 
we propose a novel approach to generating high-
fidelity simulated players based on deep recurrent 
highway networks and deep convolutional 
networks. Empirical results demonstrate that the 
proposed models significantly outperform the prior 
state-of-the-art in generating high-fidelity simulated 
player models that accurately imitate human 
players’ narrative interactions. Using the high-
fidelity simulated player models, we show the 
advantage of more exploratory reinforcement 
learning methods for deriving generalizable 
narrative adaptation policies. 

1 Introduction 
Data-driven approaches to interactive narrative generation 
have been a topic of increasing interest. A broad range of 
machine learning methods have demonstrated promise in 
inducing interactive narrative planners to create tailored 
narrative scenarios and adaptive gameplay experiences. 
Dynamic Bayesian networks have been used to model 
director agents’ decisions in interactive narrative generation 
[Lee et al., 2014], and prefix-based collaborative filtering has 
been utilized to predict players’ preferences for particular 
story branches [Yu and Riedl, 2014]. Crowdsourcing has 
been employed to construct plot graphs for deriving new 
stories [Li et al., 2013], and reinforcement learning (RL) has 
been used to tailor interactive narratives to individual players 
in game-based learning environments [Wang et al., 2017a]. 
 Despite significant promise, data-driven interactive 
narrative generation approaches often depend on high 
volumes of player interaction data, largely because of the 
significant uncertainty inherent in the complex interactions 
between narrative planners and human players. Because 

collecting high-quality player data is resource intensive, 
creating high-fidelity simulated player models that accurately 
imitate human player narrative interactions offers significant 
potential for data-driven interactive narrative planning.  

In this paper, we address the problem of generating high-
fidelity predictive simulated player models with deep neural 
networks (NNs). We introduce novel approaches to simulated 
player modeling using deep recurrent highway networks 
(RHNs) [Zilly et al., 2017] and deep convolutional neural 
networks (CNNs) [LeCun et al., 1989] for the tasks of player 
action prediction and player outcome prediction, 
respectively. Empirical results with an educational 
interactive narrative, CRYSTAL ISLAND, demonstrate that 
these deep NN-based simulated player models significantly 
outperform prior state-of-the-art shallow long short-term 
memory (LSTM) [Hochreiter and Schmidhuber, 1997] 
network-based models on both player action prediction and 
player outcome prediction. Further, using high-fidelity 
simulated player models based on deep RHNs and CNNs, we 
investigate the effects of an RL-based narrative planner’s 
exploration strategy on the generalizability of the derived 
narrative planning policies. Results indicate that more 
exploratory RL methods derive more generalizable narrative 
planning policies. 

2 Related Work 
Several families of computational approaches have been 
developed for interactive narrative generation, including 
STRIPS-planning [Porteous et al., 2015; Robertson and 
Young, 2015], adversarial search [Lamstein and Mateas, 
2004] and machine learning [Nelson et al., 2006; Wang et al., 
2016]. For data-driven approaches to interactive narrative 
generation, a variety of methods and data sources have been 
studied. Nelson et al. [2006] adopted temporal-difference 
learning to train a drama manager for a text-based interactive 
fiction system using assumption-based synthetic data. 
Roberts et al. [2006] proposed target-trajectory distribution 
Markov decision process to derive narratives following 
author-specified narrative distributions. With crowd-sourced 
data, Harrison and Riedl [2016] used RL to control virtual 
agents in an interactive narrative. Rowe et al. [2014] and 
Wang et al. [2016] applied modular RL to personalize 
interactive narratives using a corpus of human players’ 
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gameplay data. Robin’s laws have been utilized in player 
modeling to derive an interactive narrative framework that 
selects story elements on the basis of players’ gameplay style 
[Thue et al., 2007]. Yu and Riedl [2014] also adopted Robin’s 
laws-based simulated players in their collaborative filtering-
based interactive narrative generator’s verification. Zook et 
al. [2015] used automated planning agents to simulate 
humans to generate game playthroughs. Wang et al. [2017a] 
introduced a statistical predictive simulated player model to 
train deep Q-networks for tailoring interactive narratives to 
individual players. The advantage of utilizing simulated 
players for training interactive narrative planners by 
leveraging the intrinsic rules of a narrative environment has 
also been investigated [Wang et al., 2017b]. 

Although NNs have been adopted in predictive simulated 
player modeling, prior state-of-the-art methods use shallow 
(1 hidden layer) network structures. Meanwhile, theoretical 
and empirical evidence indicates that deep NNs are more 
capable than shallow networks in learning meaningful 
representations [Bengio, 2009; Srivastava et al., 2015]. Deep 
recurrent and deep convolutional networks’ success in tasks 
such as language modeling [Zilly et al., 2017] and image 
recognition [He et al., 2016] motivate the present work on 
deep neural network-based high-fidelity predictive simulated 
player modeling. 

3 Data-Driven Interactive Narrative Planning  

3.1 Interactive Narrative Testbed 
We investigate deep neural network-based simulated player 
modeling with an interactive narrative-centered educational 
game, CRYSTAL ISLAND, which features a science mystery 
involving an infectious outbreak on a remote island. In the 
game, players explore the virtual environment by talking with 
non-player characters (NPCs), reading virtual books, 
conducting virtual laboratory tests, and completing an in-
game diagnosis worksheet in the process of solving the 
mystery. 
 In CRYSTAL ISLAND, a narrative planner monitors players’ 
gameplay and dynamically tailors the interactive experience 
when narrative adaptation opportunities arise. In this work, 
we examine four recurring adaptable events in CRYSTAL 
ISLAND, each of which is triggered by certain player actions. 
The four adaptable events include the following: (1) how an 
NPC, Teresa, describes her symptoms during an in-game 
dialogue with the player; (2) how an NPC, Bryce, describes 
his symptoms during an in-game dialogue with the player; (3) 
how much feedback the player receives after a failed attempt 
at diagnosing the outbreak; and (4) whether NPCs deliver in-
game quizzes for the player to take. An adaptable narrative 
planner should be able to tailor the narrative to each 
individual player by selecting proper narrative adaptation 
actions according to how the narrative unfolds so that the 
expected gameplay experience can be optimized. For 
example, when the player converses with Teresa, a sick NPC, 
the planner may direct Teresa to provide minimal symptoms-
related detail if the player has not visited key areas of the 

game world and the narrative planning policy encourages 
game environment exploration before revealing symptoms. 

In this work, the success of an interactive narrative planner 
is assessed in terms of player outcomes. Because CRYSTAL 
ISLAND has an educational focus, we adopt normalized 
learning gain (NLG) [Marx and Cummings, 2007] as a player 
outcome measure. NLG, a broadly used educational metric, 
captures a student’s observed learning gain divided by their 
potential learning gain (i.e., (post - pre) / (max – pre)). Player 
outcomes are grouped into two categories, high NLG and low 
NLG, which are determined using players’ NLG scores 
relative to the median NLG value. 
 The interactive narrative dataset was collected from two 
human subject studies with 453 players. In the studies, an 
interactive narrative planner utilizing a uniform random 
policy was deployed to broadly sample the planning policy 
space. All of the adaptable events within the narrative were 
designed in such a manner that story coherence is guaranteed 
under any narrative adaptation actions. In these two studies, 
players’ gameplay action sequences, players’ traits, players’ 
interaction history with the narrative planner, and their pre- 
and post-test outcomes were collected. After eliminating 
incomplete records, data from 402 students were retained. 

3.2 Simulated Player Modeling 
Modeling simulated players entails developing two 
components of human player characteristics: players’ actions 
in the interactive narrative (e.g., player interactions with the 
CRYSTAL ISLAND interactive narrative) and players’ narrative 
outcomes (e.g., players’ learning gains from interacting with 
CRYSTAL ISLAND). We model these two components with 
two modules. In CRYSTAL ISLAND, the player action 
prediction module is a classifier that predicts the player’s next 
action at each gameplay time step among 15 possible player 
actions (including game-ending actions), which collectively 
captures the ways players explore CRYSTAL ISLAND’s 
interactive narrative. The player outcome prediction module 
is a binary classifier, which distinguishes player experiences 
that yield high learning outcomes (high NLG) from those 
with low learning outcomes (low NLG). A set of 21 features 
is utilized to represent players’ gameplay state for both action 
and outcome predictors. These features store cumulative 
player action history (14 features), player traits (3 features), 
and the narrative planner’s past decisions (4 features).  

High-fidelity simulated player models can be utilized to 
induce and evaluate interactive narrative planners. In these 
settings, the simulated player generates one player action at 
each gameplay time step by sampling from the softmax 
distribution in the player action prediction module’s output. 
When the game-ending action is generated, a player outcome 
is sampled similarly from the player outcome prediction 
module. The simulated player thereby simulates the process 
of a human player interacting with the narrative. 

3.3 Reinforcement Learning-Based Interactive 
Narrative Planning 

For interactive narrative planning problems, RL provides a 
natural computational framework because of its capacity to 



 

 

model sequential decision-making tasks in uncertain 
environments with delayed rewards, i.e., player outcomes. 
We represent interactions between a narrative planner and a 
player as a series of stochastic state transitions, which are 
influenced by the narrative planner’s run-time adaptations 
that shape players’ narrative outcomes. 
 Formally, when a player triggers an adaptable event e at 
interactive narrative planning time step t after conducting a 
series of player actions, the narrative planner chooses a 
narrative planning action 𝑎"#  from the action set 𝐴" =
{𝑎"', 𝑎"), … , 𝑎"+} of event e. The narrative planner makes its 
decision following planning policy 𝜋.  at the narrative 
interaction state 𝑠0 ∈ 𝑆 = (𝑜05678, … , 𝑜0), in which 𝑜0 is the 
observation at narrative planning time step t, and n is the 
number of observations encoded in the RL agent’s state 
representation. Then the interactive narrative proceeds to the 
state 𝑠078  and a reward 𝑟0  is administered according to a 
narrative experience quality metric. Training an RL-based 
interactive narrative planner optimizes the interactive 
narrative planning policy 𝜋. so that the expected discounted 
cumulative reward 𝑅0 = 𝛾=50𝑟=>

=?0  can be maximized, 
where the discount factor 𝛾 ∈ (0,1].  

In CRYSTAL ISLAND, the RL narrative planner utilizes 25 
features for each observation, of which 21 features are the 
ones used to represent a simulated player’s gameplay state 
(described in Section 3.2), and 4 additional features form a 
one-hot encoding for the adaptable event index. Among the 
four adaptable events, in total 10 optional narrative 
adaptation actions exist. A discount factor 𝛾 = 0.99 is set to 
slightly encourage quick learning for players. 

4 Simulated Player Modeling with Deep 
Neural Networks 

Prior successes with shallow (1 hidden layer) LSTM 
networks in predictive simulated player modeling 
demonstrate the advantages of NN-based models in dealing 
with narrative interaction data [Wang et al., 2017b]. 
Following this path, we present deep NN-based models in 
training player action and outcome predictors, with novel NN 
structures and effective regularization techniques. 

4.1 Recurrent Highway Networks for Player 
Action Prediction  

Recurrent highway networks (RHNs) construct recurrent 
NNs using highway layers [Zilly et al., 2017]. A highway 
layer calculates its output as a weighted summation of an 
input’s non-linear transformation and the input itself. This 
design has proven effective for building deep and trainable 
NNs [Srivastava et al., 2015]. Specifically, RHNs increase 
network depth by utilizing a high recurrence depth in the 
recurrent step transition: at each transition time step, multiple 
highway layers (yellow blocks in Figure 1a) are connected. 
A 3-layer RHN with recurrence depth of 3 is depicted in 
Figure 1a. The output of the adopted RHN model at 
recurrence depth l and time step t on any RHN layer (the 
output of any yellow block in Figure 1a) is calculated as 
follows: 

sF0 = hF0 ⋅ rF0 + sF580 ⋅ (1 − rF0)                      (1) 
in which ℎF0  is a nonlinear transformation of 𝑠F580  with 𝑠M0 
being the recurrent output from time step t-1, and 𝑟F0 is the 
transform gate that controls the contribution of ℎF0  into the 
output 𝑠F0. 1 − rF0 calculates the weight for the prior recurrent 
state 𝑠F580  into 𝑠F0. Calculation of ℎF0 and 𝑟F0 is as follows: 

hF0 = tanh	(𝑊S𝑥0𝕀F?8 + 𝑅SVsF58
0 + 𝑏SV)             (2) 

rF0 = sigmoid	(𝑊]𝑥0𝕀F?8 + 𝑅]VsF58
0 + 𝑏]V)           (3) 

where 𝑥0 is input into one RHN layer at time step t, 𝕀 is the 
identity function, and W, R, b are trainable weights and biases 
in RHN. 
 To achieve strong generalization, we adopt variational 
inference based dropout [Gal and Ghahramani, 2016] to train 
RHN-based player action predictors. This dropout technique 
utilizes a fixed dropout mask on each recurrent unit for each 
unique sequence. It resamples the dropout mask when 
processing the next sequence. So the same set of features will 
be kept for each sequence during training. This technique has 
shown better results than classic dropout techniques in 
recurrent NN regularization. 

 
Figure 1: The NN architecture of (a) RHN player action predictor 
and (b) CNN player outcome predictor. 

4.2 Convolutional Neural Networks for Player 
Outcome Prediction   

Because player outcomes are typically measured only after 
the conclusion of an interactive narrative experience, 
outcome data tends to be more sparse than player action data. 
To address this problem we utilize convolutional NN-based 
(CNN) models for player outcome prediction. CNN-based 
player outcome prediction models can detect repeatable 
patterns from each gameplay time step and eliminate the 
constraint imposed by recurrent NN models of having to 
extract patterns using the exact input sequences. 
 CNN models can be leveraged in simulated player 
modeling because the same feature set is usually utilized at 
each gameplay time step to record the player’s behaviors, 
thereby enabling convolution to be naturally applied along 
the time axis. This strategy has been used in machine 



 

 

translation tasks [Gehring et al., 2017]. The CNN-based 
player outcome prediction model has two convolution layers 
stacked above the input layer (Figure 1b). To make the 
network easy to train, we adopt the residual learning method 
in [He et al., 2016]. Residual structure in NNs builds a direct 
path from input to output so that each layer with a residual 
connection learns a residual function with reference to the 
layer’s input, which has proven effective in training deep 
CNN models. Specifically, we adopt a residual structure that 
directly adds raw input into the output of each of the two 
convolution layers. In this way, the output of convolution 
layer l is	𝑜F = conv(𝑖F) + 𝑖8 in which 𝑖F represents the input 
into convolution layer l. 
 To improve the generalization of the player outcome 
predictor, two major regularization techniques are utilized. 
The first is multi-task learning. For NN models, when 
multiple tasks are correlated, building one NN model with 
multiple outputs can potentially improve its performance on 
each individual task. In this work, we construct a two-task 
NN model to predict the player outcome classification result 
(i.e., the outcome type in Figure 1b, high NLG or low NLG 
in CRYSTAL ISLAND) and regression result (i.e., the outcome 
score in Figure 1b, the exact NLG score in CRYSTAL ISLAND) 
together. Because these two tasks are highly correlated, 
adding a regression task can improve the performance of the 
outcome classification predictor. The second regularization 
technique utilized in the player outcome predictor is mixture 
of experts (ME) [Masoudnia and Ebrahimpour, 2014], which 
is an ensemble method employing multiple NNs to solve the 
same problem. Specifically, in our player outcome predictor, 
an ME module is utilized as a player outcome classifier and 
regressor, so the final output is the weighted summation of all 
expert modules (green blocks in Figure 1b) with a gate 
module (orange block in Figure 1b) assigning weights to each 
expert. 

5 Interactive Narrative Planning with High-
Fidelity Simulated Players   

High-fidelity simulated player models enable the 
investigation of the generalizability of narrative planning 
policies, which measures the policy’s effectiveness when 
interacting with unfamiliar player populations. A narrative 
planning policy’s generalizability is essential to consider 
because the deployment environment of an interactive 
narrative planner is often challenging to control, and it can 
differ substantially from the training environment. For 
interactions with player populations who have different 
gameplay preferences, a generalizable narrative planning 
policy should generate meaningful and adaptive narratives. 
In this work we investigate the effects of an RL-based 
narrative planner’s exploration-exploitation strategy on the 
narrative planning policy’s generalizability. The exploration-
exploitation strategy balances an RL agent’s preference for 
gathering more information about the environment or 
utilizing its current knowledge to drive decision making. This 
problem is central in interactive narrative adaptation because 
of the pervasive high uncertainty in the interplay between 

human interaction and narrative adaptation. With insufficient 
exploration, the high variance of the state transition 
distribution and reward distribution may lead a narrative 
planner to learn a risky suboptimal policy. Without sufficient 
exploitation, convergence to (locally) optimal policies may 
not be achieved. This problem becomes even more important 
when narrative planners are expected to interact with 
unfamiliar player populations that exhibit different gameplay 
patterns. To explore this problem, we investigate three deep 
RL methods with different exploration-exploitation 
strategies: asynchronous one-step Q-networks (AQN), the 
asynchronous advantage actor-critic (A3C) method [Mnih et 
al., 2016], and the proximal policy optimization (PPO) 
method [Schulman et al., 2017]. 
 AQN implements one-step Q-learning using deep NNs. As 
a value-based RL method, AQN learns the 𝑄 𝑠0, 𝑎0; 𝜃  
function, which represents expected discounted cumulative 
rewards by performing action 𝑎0 at state 𝑠0 following policy 
𝜋., towards an estimated target as shown in Equation 4:  

𝑦 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎𝑡+1𝑄 𝑠078, 𝑎078; 𝜃5                 (4) 
so that 𝑄 𝑠0, 𝑎0; 𝜃  can gradually approach the Q-values 
𝑄 𝑠0, 𝑎0; 𝜃∗  of an (locally) optimal policy 𝜋.∗. 𝜃 and 𝜃5 are 
the parameters of the AQN model and its target model, 
respectively. The target model parameters 𝜃5  are only 
updated with the training AQN parameters 𝜃 every certain 
number of steps. The other symbols in Equation 4 have the 
same meaning as in Section 3.3. As a value-based method, 
AQN usually adopts the exploratory strategy of e-greedy. In 
e-greedy, the RL agent picks the action 𝑎𝑟𝑔𝑚𝑎𝑥i𝑄(𝑠, 𝑎; 𝜃) 
with probability 1 − 𝜀 for exploiting the learned knowledge, 
or it selects a random action with probability 𝜀 for exploring 
alternative choices. Usually, a decaying schedule is set for the 
𝜀  parameter, so the agent explores the environment more 
often during its early learning stages, and it exploits learned 
knowledge more often later in learning as it has gained 
experiences. 
 A3C and PPO belong to the category of actor-critic RL 
methods. In contrast to value-based methods, which only 
maintain Q-values for state-action pairs, actor-critic RL 
methods maintain a state value function 𝑉(𝑠; 𝜃) measuring 
the expected discounted cumulative rewards from state s 
following policy 𝜋. , as well as an explicit policy 
representation 𝜋(𝑎|𝑠; 𝜃)  expressing the probability 
distribution of selecting each action at state s following policy 
𝜋.  when optional actions are discrete. In A3C, training 
focuses on increasing the value of a target function as defined 
in Equation 5, in which A0n is the advantage value function 
which can be estimated from samples using Equation 6. In 
contrast to A3C, PPO implements trust region update 
[Schulman et al., 2015] by utilizing a special target function 
as defined in Equation 7, so that policy updates are 
constrained within a threshold controlled by a hyper-
parameter 𝜖 to improve training robustness. In Equation 7, 
𝑟𝑡0(θ)  represents the ratio of probability to obtain the 
transition sequence under the current policy 𝜋.  and the 
probability under the sampling policy. 

𝑇0 = log 𝜋(𝑎0|s0; θ)A0n                          (5) 



 

 

A0n = 𝛾=50𝑟=>
=?0 − V(s0; θ)                       (6) 

𝑇0 = 𝔼[min(𝑟𝑡0(θ)A0n, 𝑐𝑙𝑖𝑝(𝑟𝑡0(θ),1 − 𝜖, 1 + 𝜖)A0n)	]  (7) 
Because actor-critic methods keep an explicit 

representation of the policy 𝜋(𝑎|s; θ), in standard use their 
exploration strategy is to sample actions following the 
probability distribution in 𝜋 so that more promising actions 
will be selected more often for exploitation, while other 
actions also have chances to be adopted for exploration. The 
difference in the target functions of A3C and PPO not only 
distinguishes their updating processes, but it also affects their 
exploration strategies. Because PPO prevents its updating 
step from being very large, policies of PPO agents change 
more slowly, which offers PPO agents opportunities to 
exploit the already learned knowledge more often, and allows 
PPO polices to converge easier. On the other hand, because 
A3C’s policy updating can be significantly influenced by 
each single noisy transition sequence in any training stage, 
A3C is encouraged to avoid early convergence to (local) 
optima and explore other choices more often, which holds 
promise for interactive narrative planning with unfamiliar 
players.  

6 Evaluation   

6.1 Simulated Player Modeling Evaluation   
We evaluate the performance of simulated player models on 
the metrics of player action and outcome prediction accuracy 
rates, and macro-average F1 scores . In the CRYSTAL ISLAND 
dataset, 402 human players generated a total of 16,313 player 
actions spanning 15 player action types, of which the most 
commonly exhibited action type consists of 24.01% of all 
player actions. With a median split on the player learning 
outcome metric of NLG, 200 out of 402 players are labeled 
as high NLG players, and all the other players are labeled as 
low NLG players. For the following player action and 
outcome prediction experiments, Adam [Kingma and Ba, 
2015] is employed for NN optimization. A dropout rate of 0.1 
is adopted for all the models. Five-fold cross-validation is 
conducted for both prediction accuracy and macro-average 
F1 score based evaluations. The number of training epochs in 
each round of cross-validation is determined using a separate 
validation set, which is later merged back into the training set 
for the final evaluation. All the model size related 
hyperparameters are tuned using random search. 

In our evaluation of player action predictors (Table 1), a 
logistic regression model serves as a baseline, a shallow (1-
layer) LSTM model with 64 hidden neurons is the prior state-
of-the-art [Wang et al., 2017b], and three deep recurrent NN 
models are considered. The RHN model has 3 RHN layers 
with each layer maintaining a recurrence depth of 3 (as in 
Figure 1a). A 4-layer deep LSTM network and a 4-layer Grid 
LSTM [Kalchbrenner et al., 2016] model are compared to 
consider the effectiveness of different recurrent unit 
structures. The input layer and all the recurrent layers in the 
three deep recurrent NNs have 21 neurons that reflect the 
gameplay feature set size. A CNN action predictor with one 
convolution layer of size 21 using a 1´21 sized convolution 

kernel, convolution step size of 1, and 2 time-frame inputs is 
also utilized. 

Using results from five-fold cross-validation, the Friedman 
statistical test finds significant differences in player action 
prediction accuracy rates, χ2(5)=25.0, p<0.001, and macro-
average F1 scores, χ2(5)=23.6, p<0.001, across the six 
models. The deep RHN model outperforms all the other 
action prediction models, including the prior state-of-the-art 
(shallow LSTM) by large margins, with the Wilcoxon post-
hoc analysis yielding a p value of 0.043 for each pairwise 
comparison on both prediction accuracy and macro-average 
F1 score metrics. The fact that all three deep recurrent NN 
models (RHN, deep LSTM, and Grid LSTM) outperform the 
shallow LSTM model on both metrics with p values of 0.043 
under pairwise Wilcoxon tests suggests that depth in 
recurrent NNs is an important factor in player action 
predictors. Further, all three deep recurrent NNs outperform 
the CNN model with p values of 0.043 from pairwise 
Wilcoxon tests, which indicates that deep recurrent NNs 
provide an advantage over CNNs in player action prediction. 
A possible explanation may be that the exact gameplay 
history sequence provides considerably more information, 
which contributes to accurate player action prediction. To 
investigate the effects of regularization technique on training 
the deep RHN model, we train other RHNs either without 
dropout or only adopting a normal dropout layer on the output 
of the RHN model. In these cases, the action prediction 
accuracy rates drop from 0.4435 to 0.4112 and 0.4137, 
respectively. 

 Logistic 
Regress. 

Shallow 
LSTM 

Deep 
LSTM 

Grid 
LSTM RHN CNN 

Accu. 0.3135 0.3304 0.4306 0.4126 0.4435 0.3605 
Mac. F1 0.1774 0.2361 0.3108 0.3065 0.3218 0.2655 

Table 1: Player action prediction model performance. 

 Logistic 
Regress. 

LSTM-
Mul RHN CNN CNN-

noME 
CNN-
noMul 

Accu. 0.5673 0.5871 0.5997 0.6096 0.5772 0.5971 
Mac. F1 0.5712 0.5909 0.5997 0.6121 0.5798 0.5974 

Table 2: Player outcome prediction model performance. 

In a similar evaluation process, we assess the following 
player outcome prediction models. Logistic regression serves 
as a baseline. LSTM-Mul, a multi-task structured shallow (1-
layer) LSTM model, is the prior state-of-the-art [Wang et al., 
2017b]. A 1-layer RHN with recurrence depth of 5 is a deep 
recurrent model. A 2-layer CNN model with mixture of 
experts (using 23 experts) and multi-task regularization 
(labeled as CNN in Table 2) is implemented as shown in 
Figure 1b. CNN-noME is the same network as the CNN 
model but without mixture of experts regularization, and 
CNN-noMul eliminates the multi-task output module from 
the CNN model. All CNN-based outcome predictors have 
convolution layers of size 21 with convolution kernels of size 
1´21, convolution step size of 1, and 2 time-frame inputs. 

CNN models outperform all the other models on both 
metrics of player outcome prediction accuracy and macro-
average F1 score with five-fold cross-validation (Table 2). 
The Friedman test indicates that there are no statistically 



 

 

significant differences between these models in the outcome 
prediction accuracy (χ2(5)=9.0, p=0.110) and macro-average 
F1 score (χ2(5)=7.8, p=0.167). However, we find that CNN 
models outperform the logistic regression baseline in all the 
five rounds of evaluations in cross-validation on both 
metrics, which is not achieved by the LSTM-Mul or RHN 
models. This observation indicates that in contrast to player 
action prediction, keeping track of the exact sequence of 
gameplay history may not be necessary in outcome 
prediction, which allows CNN models to perform better than 
recurrent neural networks. The result that CNN models 
achieve higher average performance over CNN-noME and 
CNN-noMul reveals that both mixture of experts and multi-
task learning techniques have good regularization effects on 
training CNN-based player outcome predictors. 

6.2 Interactive Narrative Planning Evaluation   
Building on the results described in Section 6.1, we train 
high-fidelity deep RHN-based and deep CNN-based 
simulated player models to evaluate the effectiveness and 
generalizability of narrative adaptation policies derived by 
RL methods. Three experimental conditions are employed. In 
Condition 1, RL narrative planners are trained using the full 
CRYSTAL ISLAND corpus-based simulated player model and 
then evaluated on the same simulated player model. In 
Condition 2, the CRYSTAL ISLAND corpus is randomly 
divided into two halves, and a simulated player model is 
trained on each half. Then two RL narrative planners are 
trained using each half corpus-based simulated player model 
and evaluated on the full corpus-based simulated player 
model. In Condition 3, a two-fold cross-validation-like 
evaluation is conducted, in which RL narrative planners are 
trained using a training set-based simulated player model and 
evaluated on a test set-based simulated player model. In this 
way, the evaluation narrative planning environment in 
Conditions 1, 2 and 3 becomes increasingly unfamiliar to the 
trained narrative planners. For each interactive narrative 
interaction step, a reward of 1 is assigned only at the 
conclusion of the narrative if the simulated player reaches a 
high NLG outcome; otherwise, the reward is always 0. All 
evaluations are conducted by allowing the derived narrative 
planners to interact with high-fidelity simulated player 
models for 5,000 episodes. Policies are evaluated by policy 
value, which is the average score the narrative planner 
receives for each narrative adaptation episode, ranging in 
[0,1]. For each RL method in each condition, three policies 
are generated with different training steps after training 
converges. In evaluation, averaged policy values are reported 
with the largest coefficient of variation of 5.5% for all entries 
in Table 3. For A3C and PPO methods, a stochastic policy 
using the direct output of the methods and a greedy policy, 
which always adopts the action with the largest probability 
from 𝜋(𝑎|s; θ∗), are both evaluated. The e value in e-greedy 
of AQN is set to decay from 1 to 0.01 linearly in 75% of the 
training steps, which makes AQN operate in an exploration 
mode initially and in an exploitation mode in the later stages 
of training. Because of PPO’s optimization, it also takes on 

an exploitation mode more prominently than A3C. A3C is the 
most exploratory RL method in this experiment. 

We find that the exploratory strategy of RL methods 
heavily affects the effectiveness, and particularly the 
generalizability, of interactive narrative planners (Table 3). 
When the evaluation environment is the same as the training 
environment (Condition 1), all RL methods derive effective 
narrative planning polices, and the more exploitative methods 
(AQN and PPO) are usually superior to the more exploratory 
method (A3C). These behaviors are what one would expect 
because exploitation helps the narrative planner to converge 
to (local) optimal policies easier. When the evaluation 
environment becomes more challenging and more unfamiliar 
to the RL narrative planners (Conditions 2 and 3), their 
performance drops with the degradation speed reflecting their 
degree of exploration. For less exploratory methods (AQN 
and PPO), performance drops faster, and they even derive 
policies worse than random in Condition 3. Meanwhile, the 
more exploratory method (A3C) is able to generate effective 
narrative planning polices (better than random policy), even 
when the evaluation simulated player model is quite different 
from the training simulated player model. These results 
indicate that the greater emphasis on exploration helps A3C 
avoid relying too much (and too early) on the highly noisy 
early narrative adaptation experiences, and A3C’s preference 
for exploring more thoroughly in uncertain environments 
boosts its ability to derive more generalizable narrative 
adaptation policies for unfamiliar players. 

Cond. Random AQN A3C A3C-
Greedy PPO PPO-

Greedy 
1 0.5531 0.6255 0.6064 0.6031 0.6061 0.6195 
2 0.5531 0.5864 0.5769 0.5802 0.5653 0.5697 
3 0.5315 0.5038 0.5510 0.5516 0.4756 0.4674 

Table 3: Narrative adaptation policies evaluation. 

7 Conclusion   
High-fidelity simulated player models can play a central role 
in data-driven adaptable interactive narrative planning. We 
have presented a high-fidelity simulated player model based 
on deep recurrent highway networks and deep convolutional 
neural networks that effectively leverages the recurrent and 
convolutional structures to predict players’ actions and 
outcomes. Empirical results demonstrate that the simulated 
player model achieves significant improvements over the 
prior state-of-the-art in predicting players’ behaviors. With 
this high-fidelity simulated player model, we have also 
investigated the effects of reinforcement learning’s 
exploration strategy on the effectiveness of narrative 
planning policy learning. Results indicate that more 
exploratory RL methods derive narrative planners with better 
generalizability. In future work, it will be important to 
investigate the performance of simulated player modeling on 
a broader range of interactive narratives, and investigate the 
effectiveness of data-driven interactive narrative planners 
induced with high-fidelity simulated player models in run-
time settings with human players.  
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