
 

 

Abstract 
Data-driven techniques for interactive narrative 
generation are the subject of growing interest. 
Reinforcement learning (RL) offers significant 
potential for devising data-driven interactive 
narrative generators that tailor players’ story 
experiences by inducing policies from player 
interaction logs. A key open question in RL-based 
interactive narrative generation is how to model 
complex player interaction patterns to learn 
effective policies. In this paper we present a deep 
RL-based interactive narrative generation 
framework that leverages synthetic data produced 
by a bipartite simulated player model. Specifically, 
the framework involves training a set of Q-networks 
to control adaptable narrative event sequences with 
long short-term memory network-based simulated 
players. We investigate the deep RL framework’s 
performance with an educational interactive 
narrative, CRYSTAL ISLAND. Results suggest that the 
deep RL-based narrative generation framework 
yields effective personalized interactive narratives. 

1 Introduction 
Recent years have seen growing interest in data-driven 
approaches to interactive narrative generation. A broad range 
of machine learning techniques has shown promise for 
creating and tailoring interactive narratives, including prefix-
based collaborative filtering techniques for narrative 
personalization [Yu and Riedl, 2014], dynamic Bayesian 
network models of directorial decisions [Lee et al., 2014], 
crowdsourcing approaches for automated story generation 
[Li et al., 2013], and reinforcement learning techniques for 
inducing interactive story planners from logs of past players’ 
interactions [Rowe et al., 2014; Wang et al., 2016a].  

Reinforcement learning (RL) techniques have shown 
particular promise because of their inherent support for 
sequential decision-making under uncertainty with delayed 
rewards. Computational models of interactive narrative 
generation should account for uncertainty because human 
players’ actions are poorly understood and difficult to predict. 
Further, interactive narrative generation involves delayed 
rewards because player judgments about interactive 

narratives’ quality are often deferred until after story episodes 
are complete. Despite this natural alignment, applications of 
RL to interactive narrative present significant challenges. 
Prior work on RL-based interactive narrative generation has 
often utilized low-dimensional state features and linear RL 
models to account for the limited availability of training data, 
particularly where interaction data from human players is 
involved [Rowe et al., 2014; Wang et al., 2016a]. 
Alternatively, synthetic data generated from simulations of 
human players have been utilized, but these models have 
been relatively simple and not validated [Nelson et al., 2006]. 
A limitation of these designs is they restrict RL-based 
narrative planners’ abilities to identify complex non-linear 
player interaction patterns that are relevant to effectively 
personalizing interactive narratives.  

In this paper, we investigate a deep RL framework for 
personalizing interactive narratives in stochastic open-world 
game environments. The contributions of our work include 
(1) investigating the effectiveness of a Q-network based deep 
RL framework for interactive narrative personalization, and 
(2) introducing a bipartite player simulation model that uses 
a pair of validated classifiers to generate synthetic data on 
player action sequences and player outcomes. By evaluating 
the Q-network based interactive narrative planner in a widely 
used educational interactive narrative, CRYSTAL ISLAND, we 
demonstrate that deep RL yields more effective policies for 
interactive narrative personalization than commonly utilized 
linear RL techniques. 

2 Related Work 
Several families of computational techniques have been 
investigated for interactive narrative generation, including 
adversarial search [Lamstein and Mateas, 2004], STRIPS- 
planning [Porteous et al., 2015; Robertson and Young, 2015], 
and RL [Riedl and Bulitko, 2013]. Nelson et al. (2006) 
utilized temporal-difference methods to train a drama 
manager for a text-based interactive fiction, Anchorhead, 
using synthetic data from user simulations. The simulation 
model assumed players interacted either cooperatively or 
adversarially with respect to the drama manager’s decisions. 
This approach was extended by Roberts et al. (2006), which 
applied target-trajectory distribution Markov decision 
processes to generate interactive narratives following an 

Interactive Narrative Personalization with Deep Reinforcement Learning 

 
Pengcheng Wang, Jonathan Rowe, Wookhee Min, Bradford Mott, James Lester 

Department of Computer Science 
North Carolina State University 

Raleigh, North Carolina 27695, USA  
{pwang8, jprowe, wmin, bwmott, lester}@ncsu.edu 



 

 

author-specified target trajectory distribution. Rowe et al. 
(2014) investigated a modular RL method for inducing an 
interactive narrative planner in an educational game. Wang et 
al. (2016a) studied alternative decompositional 
representations of an interactive narrative, demonstrating the 
decompositional representation’s effect on the induced 
narrative planner’s quality.  
 Value-function-based RL has made great strides in recent 
years, originating from the success of applying Q-networks 
to solve high-dimensional complex sequential decision-
making problems. The capacity of neural networks (NNs) to 
extract hierarchical features enables RL agents to learn better 
policies in large state and policy spaces. The feasibility of 
designing and implementing NN structures spurred the 
development of Q-network techniques. More diverse Q-
networks have been adopted by applying different 
stabilization techniques [Mnih et al., 2015; Mnih et al., 2016], 
encoding observation histories with LSTMs [Hausknecht and 
Stone, 2015], and exploiting the advantage learning 
technique [Wang et al., 2016b]. These findings suggest that 
Q-networks show significant promise for solving high-
dimensional complex interactive narrative generation tasks 
compared to traditional linear RL methods. 
 Training of RL interactive narrative planners requires a 
large amount of interaction data, particularly for deep RL. A 
similar problem arises in the domain of spoken dialogue 
systems, where user simulations serve an important role in 
training effective RL-based dialogue managers [Schatzmann 
et al., 2006; Young et al., 2013]. In this work, we adapt this 
simulated user approach by inducing a bipartite player 
simulation model for generating synthetic training episodes 
for deep RL-based interactive narrative personalization. 

3 Deep RL Framework For Interactive 
Narrative Personalization  

3.1 Interactive Narrative in CRYSTAL ISLAND   
To investigate the performance of a Q-network-based deep 
RL interactive narrative personalization framework, we 
utilize CRYSTAL ISLAND, an educational interactive narrative 
featuring a science mystery about an infectious outbreak on a 
remote island (Figure 1). In CRYSTAL ISLAND, the player 
investigates a mysterious illness that is afflicting a team of 
scientists on the island. To solve the mystery, the player 
converses with non-player characters (NPCs), reads virtual 
books, conducts tests in a virtual laboratory, and completes 
an in-game diagnosis worksheet. The interactive narrative 
planner monitors the player’s behavior and makes decisions 
about how adaptable event sequence (AES) should unfold. 
An AES is a recurring series of one or more adaptable story 
events that can unfold into several different possible narrative 
trajectories, each leading to potentially different player 
experiences and outcomes. A simplified example of an AES 
is the following: the player explores the game environment 
for a while, then talks with a sick NPC, Teresa, which triggers 
an adaptable event, for which the interactive narrative planner 
selects the narrative planning action of allowing Teresa to 
reveal limited information about her symptoms. Later the 

player character continues exploring the virtual world, 
conducting tests in the virtual laboratory, and submits a 
diagnosis worksheet of her anticipated solution to the science 
mystery, which unfortunately turns out to be incorrect. This 
triggers another adaptable event, leading the interactive 
narrative planner to select the adaptable narrative planning 
action of providing a detailed explanation of the player’s 
errors. These adaptable events are recurring, i.e., each event 
can be triggered multiple times, and adaptable event 
occurrences are determined by player actions and narrative 
rules. 

 
Figure 1. CRYSTAL ISLAND interactive narrative environment. 

 In this work we investigate four learning-related adaptable 
events in CRYSTAL ISLAND: 

• Teresa Symptoms Event is triggered each time the 
player inquires about the sick scientist Teresa’s 
symptoms. The interactive narrative planner selects 
one of three conversational responses for Teresa: 
providing minimal detail, moderate detail, or maximal 
detail about her symptoms. 

• Bryce Symptoms Event is triggered each time the 
player inquires about the sick NPC Bryce’s symptoms. 
The interactive narrative planner has two optional 
responses: providing minimal detail or moderate detail 
about his symptoms. 

• Diagnosis Feedback Event is triggered when a player 
submits an incorrect diagnosis worksheet. The 
interactive narrative planner selects one of three 
options for the camp nurse’s feedback: providing 
minimally detailed, moderately detailed, or maximally 
detailed feedback. 

• Knowledge Quiz Event is triggered when a player 
converses with a subset of the NPCs. The interactive 
narrative planner optionally delivers, or does not 
deliver, an in-game quiz about relevant microbiology 
concepts. 

 Since CRYSTAL ISLAND is designed to achieve educational 
objectives, we adopt normalized learning gain (NLG) as a 
metric for gauging player experience. NLG is a normalized 
measurement of the difference between the player’s post-test 
score and pre-test score. For analyses, players’ narrative 
records are divided into two groups: records with NLG scores 
above the median (high NLG), and records with NLG scores 
below the median (low NLG). Although NLG is adopted 
here, other quantifiable metrics like engagement also fit into 



 

 

the deep RL framework, and they may be more appropriate 
for interactive narratives that are primarily designed for 
entertainment purposes. 
 The human player interaction corpus for CRYSTAL ISLAND 
was generated from two human subject studies (one with 300 
students and one with 153 students), which were conducted 
in two public middle schools. Students played the game until 
they solved the mystery, or 55 minutes had elapsed, 
whichever occurred first. During the studies, a uniform 
random narrative planning policy was deployed to interact 
with human subjects. The adaptable events in CRYSTAL 
ISLAND were designed to ensure the coherence of the 
narrative when the random policy was adopted. The game 
logged all player actions, triggered adaptable events, and 
random interactive narrative planner responses. In addition, 
several questionnaires were administered prior to, and 
immediately after, students’ interactions with CRYSTAL 
ISLAND. These questionnaires were used to obtain 
information about students’ individual characteristics, 
curricular knowledge, and engagement with the narrative 
environment. 

 
Figure 2. Q-network based deep RL interactive narrative 

personalization framework. 

3.2 Deep RL Interactive Narrative Planner 
Architecture 

As shown in Figure 2, the deep RL interactive narrative 
personalization framework has a 4-tier structure. We 
illustrate the architecture with respect to two principal 
phases: policy learning and policy evaluation. In the Dataset 
Tier, human player game interaction and questionnaire data 
are randomly divided into training (80%) and test sets (20%), 
which have 321 and 81 students’ logs, respectively, after 
eliminating incomplete records. In the training set, 160 out of 
the 321 logs are from students with high NLG scores. In the 
test set, 39 out of 81 students have high NLG scores. In the 
bipartite model Player Simulation Tier, using features from 
players’ gameplay behaviors and questionnaire results, one 
module predicts players’ next action at each time step, and 

the other module predicts the players’ learning outcomes. 
During training, the simulated player’s behavior, as input, are 
sent into the RL Tier, where a Q-network improves the 
interactive narrative planning policy in an optimization 
process. In evaluation, the interactive narrative planner from 
the Narrative Adaptation Tier utilizes and assesses the 
optimized policy by interacting with simulated players from 
test set. 

4 Player Simulation Model  
In order to generate enough player interaction data for the 
deep RL interactive narrative planner to explore the vast state 
and policy space during training, we introduce a statistical, 
predictive bipartite model to simulate players’ behavior in 
interaction with interactive narrative planners. In this model, 
players’ behaviors are represented as a combination of player 
action and player outcome. The bipartite model uses two 
separate modules to predict and generate player actions and 
outcomes respectively. 
 The player action simulation module predicts the player’s 
next action according to the interaction history. In CRYSTAL 
ISLAND, 15 discrete in-game player actions are modeled. In 
addition to the game-ending player action, which represents 
the termination of a game, the other 14 player actions encode 
how the player explores the game environment. These player 
actions include actions such as reading a virtual book or 
talking to NPCs. A subset of these player actions, under 
certain conditions, can trigger an adaptable event, which 
enables the interactive narrative planner to personalize the 
narrative by performing a narrative planning action that fits 
the individual player’s interaction and experiencing patterns.  
 The player action prediction problem is formulated as a 15-
class classification problem, in which a 21-feature input 
representation is constructed. The first 14 features represent 
player action histories (excluding game-ending action from 
the 15 player actions), which are accumulated counts of each 
player action until the current time step. The 15th to the 18th 
features store the interactive narrative planner’s prior 
responses when one out of the four adaptable events was 
triggered. The 19th to the 21st features encode an individual 
player’s information gathered from questionnaires, including 
the player’s gender, prior game frequency, and pre-test score. 
The output of this module is the probability distribution of 
each player action the player might perform. 
 Similar to the player action simulation module, in the 
player outcome simulation module, the outcome prediction 
problem is formulated as a 2-class classification task (high 
NLG, low NLG). The same input feature set is adopted, and 
the player’s outcome is estimated when the termination of 
each interaction trajectory is reached. 
 We select one type of recurrent neural network, long short-
term memory (LSTM) [Hochreiter and Schmidhuber, 1997] 
to construct the player simulation model. For both the player 
action prediction module and the player outcome prediction 
module, the same LSTM structure with one hidden layer 
leveraging 32 hidden units is utilized. Because in the player 
interaction corpus each discrete player action has been 
accurately labeled, the player action prediction module is a 



 

 

sequence-to-sequence LSTM, in contrast to the sequence-to-
one LSTM in player outcome prediction module, due to the 
fact that player outcome is only needed and accurately 
labeled at the end of each interaction sequence. 
 After training LSTMs for both the action and outcome 
prediction modules, we evaluated them on the test set. The 
top-1 player action prediction accuracy is 33.34%, the micro-
average F1 score is 33.34%, and the top-8 player action 
prediction accuracy (the fraction of the correct label among 
the 8 labels considered most probable by the model) reaches 
91.84%. The accuracy of player outcome prediction is 
56.79%. The goal of the player simulation model is to imitate 
human player behaviors to train the RL interactive narrative 
planner, the result of which is reported in Section 6. 
 The simulated player behavior generation process 
proceeds as follows: First, we randomly sample the player’s 
initial state and first time step player action from the training 
set. After that, at each time step, we update the player state 
by applying the player action effect, and then use the updated 
player state value as input into the action prediction LSTM. 
The user simulation model then selects the next player action 
by sampling from the optional actions according to the 
softmax output of the action prediction model. Whenever an 
adaptable event is triggered, the interactive narrative 
planner’s response will be stored in the 15th to the 18th state 
features. When a game-ending player action is generated, the 
player outcome simulation module makes a prediction and 
returns it as a measure of this interactive narrative’s quality. 
On average, the training set-based simulated player triggers 
7.26 adaptable events while interacting with random policy. 
This number is 7.69 in observed trajectories in training set.  

5 Q-network Based Interactive Narrative 
Planner Derivation   

The AES unfolding process is modeled as a sequential 
decision-making problem in which the interactive narrative 
planner interacts with players over discrete interactive 
narrative planning time steps using RL. We use interactive 
narrative planning time step to represent the time point when 
adaptable events are triggered in the narrative, which makes 
it a more coarsely grained process than player action 
prediction and simulation. This interactive narrative planning 
time step design follows the convention in RL-based 
interactive narrative personalization in previous work [Rowe 
et al., 2014, Wang et al., 2016a]. A formal RL-based player–
interactive narrative planner interaction is represented as 
follows: when a player triggers an adaptable event of type c 
at interactive narrative planning time step t, after viewing 
interaction state 𝑠" ∈ 𝑆 = 𝑜"'()*,⋯ , 𝑜" , in which 𝑜" is the 
interaction observation at interactive narrative planning time 
step t, and n is the length of observations encoded into the 
state representation, the interactive narrative planner (i.e., the 
RL agent) chooses an action 𝑎". from a discrete action set 𝐴. 
of type c to perform by following the interactive narrative 
planning policy π. The interactive narrative then proceeds to 
the state 𝑠")*  and receives a reward signal 𝑟"  generated 
according to the narrative evaluation metric. Training of the 

RL agent optimizes the interactive narrative planning policy 
π, so that the expected discounted cumulative rewards gained 
by the interactive narrative planner as 𝑅" = 𝛾3'"𝑟34

35"  can 
be maximized, in which 𝛾 ∈ 0,1  is a discount factor trading 
off the importance of future rewards and immediate rewards. 
The expected output of RL training is an optimal policy 𝜋∗, 
indicating the best action to be taken by the interactive 
narrative planner in each state.  

 
Figure 3. Q-network structures of (a) Q-net and Async Q-net, (b) 
Recurrent Q-net, and (c) Dueling Q-net and Async Dueling Q-net. 
The structure of the Recurrent Dueling Q-net is the same as the 
Dueling Q-net except for the substitution of the dual fully connected 
hidden layers in hidden layer 2 below A and V with dual LSTMs. In 
all these Q-networks, ReLU is the adopted non-linearity. 

A Q-network is a NN implementation of the Q-learning 
algorithm. Under policy π, the Q value of a state–action pair 
𝑠", 𝑎"  represents the expected cumulative reward the agent 

can receive by taking action 𝑎" at state 𝑠"	and then following 
policy π till the end of the interaction. In CRYSTAL ISLAND, 
the interaction observation 𝑜" is a set of 25 features, in which 
the first 21 features are identical to the player simulation 
model features containing both gameplay and questionnaire 
information of a simulated player when an adaptable event is 
triggered. The other 4 features are a one-hot encoding of 
adaptable event type. Interactive narrative planner action 𝑎". 
has the definition specified in Section 3.1, and the reward 
signal r at the end of each interactive narrative is either 1 for 
high NLG trajectories or -1 for low NLG trajectories. The 
input into the CRYSTAL ISLAND Q-networks is the state 𝑠". 
The output is the Q values for 10 interactive narrative 
planning actions belonging to four adaptable events. 

5.1 Q-network Stabilization 
Utilizing NNs enables RL interactive narrative planners to 
extract complex nonlinear interaction patterns. However, the 
training process of Q-networks can be unstable, or even 
diverge [Tsitsiklis and Roy, 1997] because of the correlations 
in the sequence of neighboring interactions [Mnih et al., 
2015]. To stabilize the Q-network interactive narrative 
planning policy training, we investigate three techniques. The 
first stabilization method is experience replay [Lin, 1993]. By 
applying experience replay, instead of updating Q functions 



 

 

directly using the instant experience 𝑒" = 𝑠", 𝑎", 𝑟", 𝑠")* , all 
interaction experiences are stored into a dataset, then a 
minibatch of experiences are randomly sampled from the 
dataset at each training step. This approach breaks the 
correlations in neighboring interactions by rearranging 
sequences of experiences used in Q-learning. 

The second stabilization technique we applied is separate 
target network [Mnih et al., 2015]. With this method, instead 
of employing a single NN to calculate both 𝑄 𝑠", 𝑎"  and the 
temporal difference target 𝑟" + 𝑚𝑎𝑥@A𝑄 𝑠")*, 𝑎′  in Q-
learning, a separate target network is copied from the training 
Q-network every certain steps and held fixed between 
individual updates. The target network is only used in 
temporal difference target estimation. By freezing the target 
network for certain steps, a less frequently changing target 
function can be achieved, so training can be stabilized. Using 
𝜃 and 𝜃' to represent the training Q-network parameters and 
separate target Q-network parameters respectively, Q-
learning can be executed with any gradient descent-based 
optimization method using the gradient of the loss function 
𝐿 𝜃  as shown in Equation 1 and 2. Note that we remove the 
subscript for time step t, in s, a and r, to make the expectation 
not specific to to a certain time. 

∇F𝐿 𝜃 = 𝔼H,@,I,HA 𝑄 𝑠, 𝑎; 𝜃 − 𝑦 ∇F𝑄 𝑠, 𝑎; 𝜃        (1) 
𝑦 = 𝑟 + 𝛾𝑚𝑎𝑥@A𝑄 𝑠M, 𝑎M; 𝜃'                       (2) 

The third way we exploit to stabilize Q-network training is 
the asynchronous gradient descent optimization [Mnih et al., 
2016]. The core idea of implementing an asynchronous RL 
interactive narrative planner architecture is that, instead of 
using one interactive narrative planner to interact with one 
player and learn from the interactions, multiple RL 
interactive narrative planners can be set up to interact with 
multiple players in parallel. By accumulating gradients of 
loss from each RL interactive narrative planner with respect 
to the shared Q-network parameters, the training of the Q-
network can be stabilized using all current experiences 
without the need to build the experience replay dataset. 

5.2 Recurrent Q-network 
Although the player–interactive narrative planner interaction 
environment has been often assumed to be Markovian in 
previous RL-based interactive narrative personalization 
works [Rowe et al., 2014; Wang et al., 2016a], the 
assumption does not hold in practice in interactive narrative 
generation. To model interactions in a partially observable 
environment, a common solution is to stack a fixed length of 
observation history into the RL state representation. 
However, there are other ways to concisely encode long-term 
history, such as the adoption of RNNs. Specifically, the 
recurrent Q-network embeds an LSTM layer within the Q-
network [Hausknecht and Stone, 2015], which enables the Q-
network to effectively preserve a long-term memory in the 
narrative but maintains a compact state representation as 𝑠" =
𝑜" (Figure 3b). This structure may help with situations when 
long interaction patterns influence interactive narrative 
quality severely, i.e., late stage interactive narrative planning 
decisions being strongly affected by early stage events. 

5.3 Dueling Q-network 
Because state and policy spaces in interactive narrative 
personalization problems are often vast, utilizing advantage 
learning [Harmon and Baird, 1995] by evaluating state values 
independently can be valuable. State values give the RL agent 
the estimation of the “goodness” of a state, even without all 
actions being thoroughly explored. Thus, in early stages in 
interactive narrative planner training, advantage learning 
might be able to guide the interactive narrative planner to 
avoid “bad states” early and explore “good states” more 
thoroughly. 

Under the Q-network structure, this notion can be 
implemented using a dueling Q-network [Wang et al., 
2016b]. As shown in Equation 3, an action’s Q values can be 
represented by the summation of a state value V and an action 
advantage value A. Corresponding to Figure 3c, 𝜃′ represents 
parameters of the Q-network below the dueling layer, and 
𝛼, 𝛽 represent parameters in the advantage stream and state 
stream, respectively. A merging module sums the output 
from these two streams to obtain the same output format as 
other Q-networks. 

        𝑄 𝑠, 𝑎; 𝜃′, 𝛼, 𝛽 = 𝑉 𝑠; 𝜃′, 𝛽 + 𝐴 𝑠, 𝑎; 𝜃′, 𝛼         (3) 

6 Evaluation   
To evaluate the performance of interactive narrative planning 
policies, an evaluation was conducted with interactive 
narrative planning Q-networks distinctly configured in three 
dimensions. The first dimension is the choice of stabilization 
techniques. Because both experience replay and 
asynchronous gradient descent optimization methods are 
compatible with the separate target network method in our 
implementation, we either combine experience replay with 
separate target network (Q-net) or integrate asynchronous 
gradient descent optimization with separate target network 
(Async Q-net). The second configuration dimension is based 
on the manner in which observation history is embedded into 
RL state representations. The interactive narrative planning 
Q-networks either take a fixed length observation in the state 
representation, or utilize the recurrent Q-network structure by 
substituting one hidden layer with an LSTM layer. This 
configuration is labeled History Length. The third dimension 
of configuration is exploiting (Dueling Q-net, Async Dueling 
Q-net) or not exploiting the dueling structure. Structures of 
these Q-networks are shown in Figure 3. For all of these 
structures, Hidden Layer 1 has 64 neurons, and Hidden Layer 
2 (either fully connected layer or LSTM) has 32 neurons. The 
advantage stream and state value stream both contain 32 
neurons in dueling structures. We use Adam, a first-order 
gradient-based optimization method, to train the weights for 
all of the Q-networks [Kingma and Ba, 2015]. As a baseline, 
we also train a linear RL interactive narrative planning model 
(Linear). All of these RL models are trained with the same 
training set-based simulated players, and evaluated by 
interacting with the same test set-based simulated players  for 
10,000 episodes. Each RL model has been trained until they 
converge to optimized narrative planning policies (Table 1). 
Training the Q-net and Dueling Q-net requires approximately 



 

 

8 hours without GPU acceleration. The Asyn Q-net and 
Async Dueling Q-net require approximately 2 hours to 
converge on 4 threads. 
 For measuring derived interactive narrative planning 
policies, we tried importance sampling and weighted 
importance sampling, as used in [Wang et al. 2016a]. 
However, both of the methods generate highly skewed 
estimations. Thus, we adopt the method of evaluating policies 
on test set-based simulated players, which follows the 
evaluation convention in the field of spoken dialogue systems 
when simulated user models are utilized [Henderson et al., 
2005; Schatzmann et al., 2006]. The test set-based player 
simulation model is constructed and trained in the same way 
as it is for the training set-based player simulation model.  

Hist. 
Length Linear Q-net Dueling  

Q-net 
Async  
Q-net 

Async 
Dueling  
Q-net 

1 0.0540 0.0586 0.1698 0.0942 0.1042 
2 0.0764 0.0880 0.1262 0.1114 0.0860 
3 0.0992 0.0770 0.1320 0.0748 0.0958 
4 0.0788 0.1066 0.1272 0.1128 0.0740 

LSTM – 0.1294 0.1252 0.0874 0.0976 

Table 1. Evaluated policy values of interactive narrative planner 
trained with each type of Q-network structures on 10,000 
interactions with test set-based simulated players. According to 
reward signal design, policy’s value is in range of [-1,1], where a 
uniform random policy has value of 0.0482. Discount factor γ is set 
to 1. 

As seen in Table 1, Q-network based RL interactive 
narrative planners derive better-performing policies than the 
linear RL interactive narrative planner does. Although all of 
the Q-networks converge to locally optimal policies in 
training, we have observed that the stabilization techniques 
affect policy quality for interactive narrative personalization. 
An interesting finding is that the performance of the 
asynchronous gradient descent optimization method is 
correlated with the number of trainable parameters in Q-
networks (as shown in Table 2). In our experiment, when the 
trainable parameter number is relatively small (5,674 for Q-
net and Async Q-net), the asynchronous method generates 
better or comparable policies (Table 1 rows 2–5 in 5th 
column) than Q-net policies (3rd column of Table 1). 
However, when either a recurrent structure or dueling 
structure is added, which dramatically increases the number 
of trainable parameters in Q-networks, the asynchronous 
method diminishes the interactive narrative planning policy’s 
performance in CRYSTAL ISLAND.  

Hist. 
Length Q-net Dueling  

Q-net 
Async  
Q-net 

Async Dueling  
Q-net 

1–4 5674 7787 5674 7787 
LSTM 14410 26859 14410 26859 

Table 2. Number of trainable parameters in Q-networks. 

From Table 1, we find that utilizing the dueling structure 
significantly improves the Q-network’s performance when 
experience replay and separate target network are used for 

stabilization with fixed-length observation RL states (4th 
column). Dueling Q-networks achieve best performance with 
a short observation history encoded into the RL state 
representation (4th and 6th columns of Table 1). Q-networks 
without a dueling structure achieve their best performance 
with long observation histories (3rd and 5th columns of Table 
1). Because dueling Q-networks use a separate stream to 
estimate RL state values, results suggest that more compact 
narrative representations may be more effective for 
estimating state values when training an interactive narrative 
planner for CRYSTAL ISLAND. 

We also investigate the effectiveness of incorporating 
recurrent structures into the Q-networks (bottom row of 
Table 1) to extract representative RL states. The LSTM 
structure yields better performance for the Q-net planner (3rd 
column of Table 1) than all other fixed-length state 
representations. Overall, fixed-length state representations 
yield better performance for the other types of Q-networks 
(4th through 6th columns of Table 1), but the LSTM structure 
does produce policy values that are comparable to several 
fixed-length state representations. Given these mixed results, 
additional investigation of recurrent Q-network structures for 
interactive narrative personalization is merited.  

The intuition for the quality of derived interactive narrative 
planning policies is as follows: out of the 10,000 interactions 
between the derived interactive narrative planner and test set-
based simulated players, the best-performing Q-network 
(with policy value of 0.1698) agent led 5,849 players to reach 
to a high NLG (high learning gain), compared to the best 
performing linear RL agent with 5,496 players reaching high 
NLG (an evaluation value of 0.0992). It should be noted that 
the random policy guided only 5,241 players towards a high 
NLG. Normalizing the policy values into the scope of [0,1], 
the performance improvement of the optimally configured Q-
network interactive narrative planner over the best linear RL 
agent is 6.42%. Given the challenges presented by modeling 
human players’ behaviors in interactive narratives, this 
improvement is significant.  

7 Conclusion   
Data-driven approaches to interactive narrative planner offer 
considerable promise for generating personalized interactive 
narratives. We have presented a Q-network based deep RL 
framework that features a bipartite player simulation model. 
Utilizing a Q-network improves an interactive narrative 
planner’s ability to extract non-linear complex player 
interaction patterns, and the long short-term memory 
network-based player simulation model supplies Q-networks 
with unlimited training and testing data by synthesizing 
sequential player actions and outcomes separately. Results of 
an evaluation suggest that a properly configured Q-network 
RL interactive narrative planner can significantly outperform 
a linear RL-based interactive narrative planner. In future 
work, it will be important to investigate RL-based interactive 
narrative planners for both education and entertainment to 
further explore their potential to create effective interactions 
to support a broad range of player populations and a wide 
array of genres of interactive narrative.  
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