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Abstract 
Data-driven approaches to interactive narrative personaliza-
tion show significant promise for applications in entertain-
ment, training, and education. A common feature of data-
driven interactive narrative planning methods is that an 
enormous amount of training data is required, which is rare-
ly available and expensive to collect from observations of 
human players. An alternative approach to obtaining data is 
to generate synthetic data from simulated players. In this 
paper, we present a long short-term memory (LSTM) neural 
network framework for simulating players to train data-
driven interactive narrative planners. By leveraging a small 
amount of previously collected human player interaction da-
ta, we devise a generative player simulation model. A multi-
task neural network architecture is proposed to estimate 
player actions and experiential outcomes from a single 
model. Empirical results demonstrate that the bipartite 
LSTM network produces the better-performing player ac-
tion prediction models than several baseline techniques, and 
the multi-task LSTM derives comparable player outcome 
prediction models within a shorter training time. We also 
find that synthetic data from the player simulation model 
contributes to training more effective interactive narrative 
planners than raw human player data alone. 

 Introduction   
Data-driven approaches to personalized interactive narra-
tive generation have been the subject of growing interest. 
A broad range of machine learning techniques have shown 
considerable promise for improving interactive narrative 
planners’ capacity to personalize stories and generate novel 
narrative scenarios. Yu and Riedl (2014) proposed a pre-
fix-based collaborative filtering approach to predict player 
ratings of story branches to drive interactive narrative gen-
eration. Lee et al. (2014) used dynamic Bayesian networks 
to model director agent decisions in educational interactive 
narratives. Crowdsourcing approaches have also been ex-
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amined to derive plot graphs for generating stories from 
prior players’ input (Li et al. 2013; Harrison and Riedl 
2016). More recently, reinforcement learning techniques 
have been used to personalize adaptable event sequences in 
narrative-centered learning environments (Rowe et al. 
2014; Wang et al. 2016). 
 The limited availability of high-quality training data is a 
key gating factor in devising scalable data-driven interac-
tive narrative generation techniques. High-quality data’s 
limited availability is often an obstacle for developers 
seeking to use data-driven techniques. In many cases, col-
lecting data by conducting large-scale studies with human 
players is resource-intensive. In these cases, utilization of 
player simulation models, which imitate human player 
behaviors to assist in training data-driven interactive narra-
tive planners, shows particular promise.  
 In this paper, we present a long short-term memory 
(LSTM) network framework for devising simulated players 
that assist with training interactive narrative planners. We 
compare a multi-task neural network (NN) architecture 
with a bipartite architecture to predict player actions and 
experiential outcomes. LSTMs enable the player simula-
tion model to compactly encode players’ narrative interac-
tion histories, and the multi-task NN architecture enables 
lower level feature sharing between player action and ex-
periential outcome predictions tasks in the NNs. Experi-
mental results indicate that bipartite LSTMs improve accu-
racy for predicting player actions relative to several com-
petitive baselines and the multi-task NN architecture im-
proves the training speed for LSTM-based player experien-
tial outcome prediction using data from an educational 
interactive narrative, CRYSTAL ISLAND (Rowe et al. 2011). 
In addition, results suggest that the player simulation mod-
el assists in training better-performing reinforcement learn-
ing (RL)-based interactive narrative planners compared to 
RL-based interactive narrative planners trained with only 
human player data. 



Related Work 
A broad range of computational techniques and data 
sources have been utilized for training data-driven interac-
tive narrative planners. Nelson et al. (2006) investigated 
temporal-difference methods for training a drama manager 
for a text-based interactive fiction, Anchorhead. Synthetic 
player data was utilized with the assumption that players 
would behave either cooperatively or adversarially with 
respect to the drama manager’s decisions. Roberts et al. 
(2006) proposed target-trajectory distribution Markov de-
cision process models for interactive narrative generation, 
which drive drama manager decisions toward an author-
specified target distribution over narrative trajectories. 
Crowdsourcing techniques have also shown promise for 
training interactive narrative planners. Li et al. (2013) uti-
lized crowdsourced data to generate plot-graph based nar-
rative models. This framework was extended by Harrison 
and Riedl (2016) to learn reward functions for an RL sys-
tem that controls virtual agents in the interactive narrative 
Robbery World.  
 Player modeling is another approach for capturing the 
dynamics of player behavior to support data-driven interac-
tive narrative planning. Thue et al. investigated PaSSAGE, 
an interactive narrative framework that dynamically selects 
interactive story content by estimating players’ gameplay 
styles based upon Robin’s Laws (Thue et al. 2007). Yu and 
Riedl (2014) also applied Robin’s Laws to synthesize sim-
ulated users in the verification of collaborative filtering 
techniques for interactive narrative generation.  
 Raw player data—these typically consist of human play-
ers’ game log files and questionnaire responses—have 
been utilized as training data sources in several interactive 
narrative planners. Lee et al. (2014) conducted Wizard-of-
Oz studies to gather training data for devising dynamic 
Bayesian network-based interactive narrative planners. 
Rowe et al. (2014) investigated a modular RL framework 
for generating personalized interactive narratives using 
data from human players. More recently, the same dataset 
was used to investigate alternate decompositional represen-
tations for modular RL-based interactive narrative person-
alization (Wang et al. 2016).  
 Devising player simulations from human player data is a 
promising approach to training data-driven interactive nar-
rative planners, but to date this has not been widely stud-
ied. An exception is recent work by Wang et al. (2017), 
which investigated a bipartite deep learning-based player 
simulation model to synthesize training data for a deep RL-
based interactive narrative planner. We examine an alter-
nate version of this framework by investigating a multi-
task NN architecture to perform player action prediction 
and experiential outcome prediction simultaneously.  
 Multi-task NN architectures have not been previously 
investigated in player simulation or interactive narrative 

generation, but they have shown promise in other applica-
tions. For example, multi-task convolutional NNs have 
proven to be successful in multi-domain visual tracking 
(Nam and Han 2016) and automated image analysis 
(Fourure et al. 2017). Lample and Chaplot (2016) applied 
the same technique to enhance deep RL’s ability to play 
FPS games. These examples motivate our hypothesis that 
multi-task deep NNs can be an effective approach for play-
er simulation.  

Data-Driven Interactive Narrative               
Personalization in CRYSTAL ISLAND 

CRYSTAL ISLAND Testbed Environment 
To investigate the performance of the player simulation 
models, as well as their effectiveness in training data-
driven interactive narrative planners for story personaliza-
tion, we utilize CRYSTAL ISLAND, a narrative-centered edu-
cational game for middle school science. CRYSTAL ISLAND 
features a science mystery about an infectious outbreak on 
a remote island (Figure 1). The player adopts the role of a 
medical detective who must determine the source and iden-
tity of the illness by exploring a virtual open world, con-

versing with virtual characters, reading virtual books, con-
ducting tests in a virtual laboratory, taking in-game quiz-
zes, and completing an in-game diagnosis worksheet to 
solve the mystery.  
 In CRYSTAL ISLAND, an interactive narrative planner can 
dynamically tailor a player’s story experience at run-time 
in several ways, such as adapting in-game dialogues be-
tween the player and non-player characters (NPCs), 
providing feedback on player performance, or guiding the 
player toward in-game resources that might help with solv-
ing the mystery. These decisions can be made at run-time 
to personalize the gameplay experience to individual play-
ers’ preferences and needs. In this work, following the ex-
perimental design in (Wang et al. 2017), we focus on four 

Figure 1. CRYSTAL ISLAND interactive narrative. 



recurring adaptable events in CRYSTAL ISLAND: (1) how 
the NPC Teresa describes her symptoms during an in-game 
dialogue with the player, (2) how the NPC Bryce describes 
his symptoms during an in-game dialogue with the player, 
(3) how much feedback the player receives after a failed 
attempt at diagnosing the outbreak, and (4) whether the 
NPC Kim delivers an in-game quiz for the player to take. 
 Because of the educational design objectives of CRYS-
TAL ISLAND, we utilize normalized learning gain (Marx 
and Cummings 2007) to assess the quality of players’ in-
teractive narrative experiences. Players typically complete 
pre- and post-tests when participating in classroom studies 
with CRYSTAL ISLAND. Normalized learning gain (NLG) is 
the normalized difference between player’s post-test score 
and pre-test score. In our analysis, we group player experi-
ences into two categories: high NLG and low NLG. Play-
ers with NLG scores above or equal to the median value 
are in the high NLG group, and players with NLG scores 
below the median are labeled with low NLG. Although 
NLG is adopted in this study, other experience metrics 
(e.g., engagement questionnaire scores) could also be em-
ployed. 
 The dataset used to investigate player simulation models 
for CRYSTAL ISLAND is from two human subject studies 
with 453 students from two public middle schools. During 
both studies, students either played the game until they 
solved the mystery, or 55 minutes had elapsed, whichever 
occurred first. An interactive narrative planner that fol-
lowed a uniform random policy for controlling adaptable 
events in CRYSTAL ISLAND was deployed to broadly sam-
ple the space of planning policies; the adaptable events 
were designed in such a manner to avoid coherence con-
flicts in the generated narratives. From these two studies, 
we collected data on players’ gameplay action sequences, 
players’ traits, players’ interaction history with the narra-
tive planner, and their pre- and post-test outcomes.  

Reinforcement Learning-Based Interactive 
Narrative Planning 
Reinforcement learning provides a natural computational 
framework for modeling interactive narrative planning as a 
sequential decision-making task with delayed rewards, i.e., 
experiential outcomes. Utilizing the abstraction of adapta-
ble event sequences, as in (Rowe et al. 2014), we represent 
interactions between the narrative planner and player as a 
series of stochastic state changes, which are influenced by 
the planner’s run-time adaptations to CRYSTAL ISLAND’s 
interactive narrative, and which drive players’ experiential 
outcomes as measured by normalized learning gains. 
 More formally, when a player conducts a series of player 
actions and triggers an adaptable event e at interactive nar-
rative planning time step t, the interactive narrative planner 
chooses an action 𝑎"# from a discrete action set 𝐴# =

{𝑎#', 𝑎#), … , 𝑎#+} of event e. Decisions about adaptable 
narrative events are driven by planning policy π and the 
current narrative interaction state 𝑠" ∈ 𝑆 = (𝑜"2345, … , 𝑜"), 
in which 𝑜" is the observation at interactive narrative plan-
ning time step t, and n is the number of observations en-
coded in the state representation. The interactive narrative 
environment proceeds to the state 𝑠"45 and reward signal 𝑟" 
is administered according to a narrative experience quality 
metric. Training RL-based interactive narrative planners 
gradually adjusts the interactive narrative planning policy π 
in order to optimize the expected discounted cumulative 
reward 𝑅" = 𝛾:2"𝑟:;

:<"  obtained by the narrative planner, 
where the discount factor 𝛾 ∈ [0,1]. The output of RL 
training is an optimal policy 𝜋∗, which encodes the optimal 
narrative planning action to perform in each state 𝑠. 

Player Simulation in Interactive Narrative 
In interactive narratives with open-world virtual environ-
ments, such as CRYSTAL ISLAND, players actively drive the 
narrative forward by performing actions in the virtual 
world. However, open-world environments afford many 
possible narrative trajectories—players may follow differ-
ent sequences of conversing with NPCs, completing in-
game sub-tasks, or interacting with virtual objects—and 
each player is likely to experience his or her own unique 
trajectory, albeit with similarities to peers’ experiences.  
 To simulate player behavior in CRYSTAL ISLAND, we 
devise a model that predicts the next player action at each 
time step using prior gameplay history and player trait data 
as input. In addition, the player simulation model predicts 
the player’s experiential outcome at the conclusion of the 
narrative episode. Specifically, synthetic data is generated 
as follows: an initial simulation state is generated by sam-
pling from the human player initial states’ probability dis-
tribution. Next, the simulated player is used to determine 
the distribution over likely player actions at the next time 
step. One action is sampled according to this distribution, 
and the player simulation’s current state is updated accord-
ing to the effects of the synthetic player action. If the play-
er action triggers an adaptable event sequence, then a nar-
rative adaptation decision by the planner occurs, once 
again updating the simulation’s current state. This process 
continues until a game-ending action is generated. After-
ward, the simulated player’s experiential outcome is pre-
dicted. 
 We frame both player action prediction and outcome 
prediction as classification problems. Because player ac-
tions in CRYSTAL ISLAND can be represented in terms of a 
discrete player action set, player action prediction can be 
formalized as a multi-class classification problem. In 
CRYSTAL ISLAND, we concentrate on 15 types of player 
actions (including the game-ending action), which collec-



tively capture the different ways players explore CRYSTAL 
ISLAND’s interactive narrative. As described above, be-
cause the interactive narrative testbed was designed for 
educational purposes, we focus on two types of player out-
comes: high learning outcomes (represented with high 
normalized learning gain) and low learning outcomes (rep-
resented with low normalized learning gain). 
 The input features to the player simulation model are 
designed to represent key player attributes, how the player 
interacts with the virtual environment, as well as how the 
interactive narrative planner adapts events to shape the 
player’s experience. Accordingly, we design an input rep-
resentation that consists of three groups of features. The 
first group contains features consisting of accumulated 
counts of player actions (except the game-ending action). 
The second group consists of player trait information, such 
as prior gameplay experience, prior content knowledge, 
and gender. The third group consists of details regarding 
the planner’s most recent narrative adaptation decisions. In 
combination, these three groups comprise a 21-feature in-
put vector, in which 14 features encode the player’s action 
history, 3 features encode player traits, and 4 features en-
code the interactive narrative planner’s past decisions.   
 In our work, we expect the simulated player to not only 
interact with the interactive narrative planner, but also to 
emulate how human players behave, providing abundant 
realistic data to enhance the training of an interactive narra-
tive planner compared to training with a limited corpus of 
human player data. This objective can be achieved by lev-
eraging logical rules from the interactive narrative envi-
ronment during synthetic data generation.  
 To illustrate, we first consider an RL-based interactive 
narrative planner trained directly from human player data. 
Adaptable event sequences in CRYSTAL ISLAND are trig-
gered when certain conditions are met in the virtual story-
world. Adaptable events, or actions taken by the interactive 
narrative planner, occur less frequently than player actions 
(Figure 2). If an RL-based interactive narrative planner is 
trained directly with human player data, the planner can 
only model the sequence of state transitions observed along 
the Interactive Narrative Planner Action Timeline, yielding 
a coarse-grained simulation that abstracts away details of 
how player action sequences form RL states and trigger 
adaptable events. This is illustrated in Figure 2: on the In-
teractive Narrative Planner Action Timeline, the state tran-
sition from 𝑡5 to 𝑡D describes the effect of applying interac-
tive narrative planner action 𝑎"'

#E'  in the narrative environ-
ment. An RL-based planner would fit a transition function 
consistent with the distribution 𝑃(𝑠")|𝑠"', 𝑎"'

#E'), either ex-
plicitly or implicitly depending on the RL algorithm. The 
series of events denoted in the Player Action Timeline 𝑢D 
to 𝑢I are ignored, losing contextual detail contained in the 
player action sequence, and the potential constraints in the 
logical rules of the interactive narrative environment.  

 In contrast, in our player simulation model, when syn-
thetic player behaviors and adaptable events are generated 
along the Player Action Timeline, the player simulation 
model not only generates behaviors following the patterns 
learned from the raw human player data, but it also ex-
ploits logical rules of the interactive narrative to avoid syn-
thesizing impossible trajectories. By adopting an expres-
sive player simulation model, extra prior knowledge from 
the rules of the virtual environment can be added in ap-
proximating the transition function 𝑃(𝑠")|𝑠"', 𝑎"'

#E').  
 Another approach could be modeling narrative planner’s 
behavior using RL along the Player Action Timeline by 
defining extra no-operation action for the narrative planner. 
However, this design can drastically delay the reward sig-
nal by increasing the interaction trajectory length, and re-
sult in a noisier state transition probability distribution 
from the additional less meaningful transitions. 

LSTM Network-Based Player Simulation  
Interactive narrative experiences are fundamentally se-
quential in nature, and this sequence data may contain use-
ful information for predicting future player actions and 
experiential outcomes. To restrict the size of the feature 
space for player simulation, input feature sets in prior work 
have often not contained sequence information about nar-
rative events. However, recurrent neural networks (RNNs) 
offer a convenient way to compactly encode a player’s 
sequential interaction history and apply it for prediction.  
 In an RNN, the current hidden layer receives the output 
of the hidden layer in the preceding time step, and it prop-
agates the current hidden layer output to the next time step. 
This property allows the player simulation model to repre-
sent the player’s sequential behaviors using only the accu-
mulated count information at each time step while still 
keeping the feature space compact. To overcome the van-
ishing gradient problem in standard RNNs, we adopt a 
broadly utilized RNN technique: long short-term memory 
(LSTM) networks (Hochreiter and Schmidhuber 1997). 
Specifically, we investigate an LSTM architecture that 
utilizes three gating units following (Graves 2012). Input 
and output gates modulate the incoming and outgoing sig-

Figure 2. Example interactive narrative planner action timeline 
and player action timeline. 



nals to the memory cell, and a forget gate controls whether 
the previous memory cell state is remembered or forgotten. 
In our player simulation model, player action prediction 
can be framed as a sequence-to-sequence LSTM, meaning 
that each player state input at one time step has an output 
of the next action. In contrast, player outcome prediction is 
formed as a sequence-to-one LSTM because predicted out-
come is measured once at the end of each interaction se-
quence. 

Multi-Task Neural Network Architecture for 
Player Simulation 
Player action prediction and player outcome prediction are 
distinct but related tasks. In interactive narrative personali-
zation, players with positive experiential outcomes may 
exhibit different patterns of actions than players with nega-
tive experiential outcomes. We exploit this relationship by 
utilizing a multi-task NN architecture for player simula-
tion, which integrates player action prediction and player 
outcome prediction into a single model.  
 Deep neural networks provide a convenient structure for 
multi-task models. Because deep neural networks learn 
multi-level hierarchical features across several hidden lay-
ers, it is possible for multi-task deep neural networks to 
utilize shared lower layers with distinct output layers tar-
geting each task. This architecture enables the model to 
leverage cross-task information by sharing abstract fea-
tures. During training, errors from each output layer are 
backpropagated into the shared lower layers. Consequent-
ly, extraction of hierarchical features in the shared hidden 
layers is determined by multiple sources in a multi-task 
NN architecture. Figure 3 illustrates a multi-task LSTM 
model for predicting player actions and player outcomes 
simultaneously. For the sequence-to-one LSTM used for 
player outcome prediction, only the error from the last time 
step of one input sequence is backpropagated. 

Evaluation 
Two sets of experiments were conducted to evaluate how 
accurately the proposed player simulation models predict 
player actions and player outcomes, as well as how effec-
tively the simulated players assist in training an RL-based 
interactive narrative planner. After removing incomplete 
records, data from 402 players were included in the corpus. 
In this dataset, each interactive narrative trajectory consist-
ed of approximately 41 player actions centered around 15 
player action types and 8 adaptable event occurrences on 
average. Among the 402 interactive narrative episodes, 200 
were labeled as high NLG (i.e., high learning gains on ed-
ucational outcomes).  
 We compare the performance of LSTM player simula-
tion models with several baselines: logistic regression (Lo-
gistic), multi-layer perceptron (MLP), and mixture of ex-
perts (ME) (Masoudnia and Ebrahimpour 2014). For each 
of the NN models (MLP, ME, LSTM), they were imple-
mented with both a bipartite architecture (denoted “-Bi”) 
and a multi-task architecture (denoted “-Mul”). The bipar-
tite networks used two separate models for player action 
prediction and outcome prediction (Wang et al. 2017), in 
contrast to the multi-task architectures that used a single 
model with two parallel output layers. For each MLP net-
work, we designed a 2 hidden-layer structure, with the first 
hidden layer consisting of 32 neurons and the second hid-
den layer consisting of 24 neurons. The ME models con-
sisted of four MLPs with a four-gate structure. The design 
of each MLP in the ME models is the same as the 
standalone MLP models. The LSTM models contain one 
hidden layer with 64 hidden units. The Adam (Kingma and 
Ba 2015) optimizer was utilized to train all NN models, 
and a dropout (Srivastava et al. 2014) rate of 0.3 was ap-
plied to avoid overfitting. Five-fold cross validations are 
conducted to evaluate player simulation models’ prediction 
capabilities.  
 Results from a comparison of these models are shown in 
Tables 1 and 2. For player action prediction, the Friedman 
statistical test finds significant differences in player action 
prediction accuracy rates, χ2(6)=24.3, p < 0.001, and pre-
diction macro-average F1 scores, χ2(6)=26.6, p < 0.001, 
across the seven models. The best performing player action 
prediction model, LSTM-Bi, outperforms the other six 
models on the evaluations in each split of the five-fold 
cross validation with respect to both accuracy rate and 
macro-average F1 score metrics.  
 

 Logistic MLP-Bi MLP-Mul ME-Bi ME-Mul LSTM-Bi LSTM-Mul 
Prediction Accuracy 0.3135 0.3248 0.2859 0.3190 0.3190 0.3304 0.3160 

Macro-Average F1 Score 0.1774 0.1698 0.1420 0.1588 0.1561 0.2361 0.1738 
Table 1. Player action prediction performance of player simulation models. 

Figure 3. Multi-task LSTM network implementation of a player 
simulation for interactive narrative planning. 



 
 Logistic MLP-Bi MLP-Mul ME-Bi ME-Mul LSTM-Bi LSTM-Mul 

Prediction Accuracy 0.5673 0.4952 0.5622 0.5723 0.5523 0.5747 0.5871 
Macro-Average F1 Score 0.5712 0.5125 0.5459 0.5712 0.5529 0.5723 0.5909 

Table 2. Player outcome prediction performance of player simulation models. 
 
 We further run a Wilcoxon post-hoc analysis. In a series 
of pairwise comparisons using the post-hoc statistical test, 
we derive the p value of 0.043 between LSTM-Bi and all 
other competitive models. An interesting finding from Ta-
ble 1 is that LSTM-Bi outperforms the competitive base-
lines for the action prediction task with a sizable difference 
in the macro-average F1 score (33.1% improvement over 
the 2nd best). This result indicates LSTM-Bi predicts rarely 
occurred player actions much better than other models.  
 For player outcome prediction, the LSTM-Mul model 
achieves the highest averaged accuracy rate and macro-
average F1 score. The Friedman tests indicate that there are 
no statistically significant differences across these models 
on both outcome prediction accuracy rate (χ2(6)=12.5, 
p=0.053) and macro-average F1 score (χ2(6)=7.7, 
p=0.259).  
 With regard to the training process, we find that the mul-
ti-task NN architecture usually speeds up the training time 
for LSTM and MLP-based player simulation models. On 
average, an LSTM-Mul model completes the training after 
76 epochs, which is only 34.2% of the number of training 
epochs required for an LSTM-Bi model, where the stop-
ping criterion is when they reach the highest predictive 
accuracy on a held-out validation set. This demonstrates 
that multi-task NN models can be a valuable option espe-
cially for player simulation problems with large dataset 
when training speed is of significant concern.  
 We also investigate the effectiveness of utilizing syn-
thetic data from LSTM-Bi player simulation model to train 
an RL-based planner for personalizing interactive narrative 
in CRYSTAL ISLAND. In our experiment, we randomly se-
lect 80% of the data (321 students’ records) to form a train-
ing set, and the remaining to form a test set. RL-based in-
teractive narrative planners are trained using either (1) hu-
man player interaction data in the training set, or (2) syn-
thetic data from the training set-based simulated player. 
We compare these two interactive narrative planners in 
terms of their estimated RL policy values, which represent 
the expected accumulated rewards the planners will obtain 
by following optimal policies during interactive narrative 
personalization.  
 To evaluate the two RL-based interactive narrative plan-
ners, we utilize an evaluation approach that leverages test 
set-based simulated players—they are generated from test 
set data following the same procedure as used to devise 
training set-based simulated players—to interact with the 
RL-based planner. According to the reward design in 

CRYSTAL ISLAND, valid RL policy values are in the range 
[-1,1], in which higher is better. Linear RL and Q-network 
RL techniques are employed to train the interactive narra-
tive planners. The Q-network model has a 2-hidden layer 
structure with 64 and 32 hidden neurons, respectively. 
Other hyperparameters are set according to the experiment 
results reported in (Wang et al. 2017). As seen in Table 3, 
both linear RL models and Q-network RL models achieve 
better performance by utilizing the test set-based simulated 
players in the training process. The marginal improvement 
in normalized policy value by utilizing simulated players to 
train a linear RL interactive narrative planner is 5.6%. This 
marginal improvement is 4.1% when Q-network RL is 
utilized. For comparison, the uniform random policy’s val-
ue is -0.0212.  

Policy Value Linear RL Q-network RL 
Train with Raw Data 0.0408 0.1234 

Train with Simulated Players 0.0992 0.1698 
Table 3. Interactive narrative planning policy values. 

Conclusion 
We have presented an LSTM-based neural network 
framework for devising player simulation models to assist 
in training data-driven interactive narrative planners. We 
utilize LSTMs to encode sequential information about 
player behavior to perform player action prediction and 
player outcome prediction. We propose the utilization of a 
multi-task neural network architecture to predict player 
action and outcome from a single model. Empirical results 
demonstrate that LSTM bipartite networks yield improved 
performance for player action prediction over several com-
petitive baselines. The multi-task NN architecture trains 
comparable player outcome prediction models much faster 
than bipartite models using LSTM. Further, the resulting 
player simulations enhance the quality of interactive narra-
tive planning policies induced under both linear RL and Q-
network RL methods. In future work, it will be important 
to investigate alternate deep learning techniques, such as 
generative adversarial networks, for devising effective 
player simulation models, as well as investigate the run-
time impacts of RL-based interactive narrative planners 
trained with simulated player data. 
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