
Towards ITS Authoring Tools for Domain Experts

Robert Taylor, Andy Smith, Samuel Leeman-Munk, Bradford Mott, and James Lester

North Carolina State University, Raleigh, North Carolina, USA
{rgtaylor, pmsmith4, spleeman, bwmott, lester}@ncsu.edu

Abstract. The scarcity of efficient and user-friendly authoring tools has long
been acknowledged as a limiting factor in the widespread development and de-
ployment of intelligent tutoring systems (ITSs). Creating an effective authoring
tool for domain experts poses two significant challenges: it must facilitate the
creation of curricular content by domain experts who are typically neither ITS
experts nor software engineers, and it must support the creation or modification
of ITS-specific pedagogical strategies without exposing the complexity of the
ITS itself to the domain expert. This paper presents a set of authoring tool de-
sign principles such as leveraging existing UI workflows, collaboration, and au-
tomation to improve the effectiveness of domain experts. Specifically, this pa-
per examines the design of ITS authoring tools through the lens of software en-
gineering.

Keywords: Authoring tools, Intelligent tutoring systems, Software engineering.

1 Introduction

Intelligent tutoring systems (ITSs) hold great promise for enhancing the learning ex-
perience of students at all levels inside and outside the classroom [1]. ITSs have been
used in various forms in laboratories, classrooms, and workplaces for more than forty
years [2]. However, ITSs have not achieved widespread adoption despite evidence
that they lead to improved student learning [3, 4] and in some cases have been found
to be nearly as effective as one-on-one human tutoring [5]. The scarcity of ITSs in the
classroom is even more remarkable given the ever increasing availability of network
connectivity and computational power available to implement and deploy sophisticat-
ed tutoring systems [1].

A formidable and well-known barrier to building and widely deploying ITSs is the
complexity and expense associated with developing an ITS and populating it with
domain-specific content and tutoring strategies [6]. It has been estimated that up to
300 hours of development time are required to create one hour of instruction [1, 6].
To alleviate the expense and time required to build an ITS suitable for deployment
outside the lab, new ITS techniques have been developed such as example-tracing
tutors [7] and constraint-based tutors [8]. Even with these notable advances and the
creation of a variety of ITS authoring tools [9], significant effort is still required to
codify knowledge from domain experts (or subject matter experts) into the ITS.

A potential solution to this problem is to create ITS authoring tools that are tailored
for the domain experts who will use them. However, creating an effective authoring
tool for domain experts poses two significant challenges. First, it must facilitate the
creation of curricular content for the ITS by domain experts who are not ITS experts
and are often not software engineers. Second, it must support the creation or modifi-
cation of ITS-specific pedagogical strategies without exposing the complexity of the
ITS itself to the domain expert. In practice, a majority of the design and programming
effort expended on an ITS is often spent on developing the ITS itself, which results in
the authoring tool being treated as an afterthought, leaving little time and resources to
design and develop a tool that is suitable for domain experts. Based on our experience
of developing an ITS authoring tool for educators, this paper identifies promising
authoring tool principles and features that could improve the authoring efficiency of
domain experts.

2 Design Principles for ITS Authoring Tools

To make intelligent tutoring systems more widely available, ITS authoring tools must
be designed and implemented that empower domain experts to quickly and efficiently
populate the domain knowledge and pedagogical strategies within the ITS. To this
end, creating usable and efficient ITS authoring tools can be framed as a software
engineering problem. Since the design and implementation of the authoring tool di-
rectly impacts the design and implementation of the ITS (and vice versa), the author-
ing tool must be considered at the beginning of the project and developed in concert
with the ITS as opposed to being developed near the end of a project and constrained
to work within an existing ITS implementation. In the following subsections, we will
enumerate software principles and features that should be considered for inclusion in
a domain expert-centered ITS authoring tool.

2.1 Adopt a Familiar User Interface Paradigm

From a usability standpoint, the most important feature of an authoring tool is its user
interface (UI). Ideally, an ITS authoring tool should present a UI that is familiar and
intuitive for the type of domain expert who is intended to use it. Instead of requiring
the domain expert to conform to unfamiliar ITS naming conventions and authoring
workflow, the authoring tool should be modeled after software that the domain expert
is already comfortable using. For example, if the intended user of the tool is a K-12
teacher, this type of user is likely very comfortable using Microsoft PowerPoint to
create presentations to be shown in the classroom. Likewise, if the type of domain
expert is a computer science professor, this user will be comfortable writing code and
using an integrated development environment (IDE), such as Eclipse. Of course, ex-
isting UIs and usage paradigms can (and should) be improved upon; however, instead
of starting from scratch when designing an ITS authoring tool, modeling after an ex-
isting tool leverages decades of real-world usability and efficiency improvements.

Modeling an ITS authoring tool’s UI after an existing authoring tool, like Mi-
crosoft PowerPoint, does not imply that the ITS content must be as simple as the con-
tent in a typical PowerPoint presentation. This would indeed be challenging since an
ITS is likely to require authoring of complex pedagogical strategies or annotation of
incorrect and correct answers which is not afforded by the PowerPoint UI. Instead,
this implies that the authoring tool should model the existing tool by using similar
naming conventions, presenting similar software features, and mimicking its work-
flow. For example, a pedagogy-oriented ITS authoring tool might represent blocks of
curriculum knowledge as “slides” in a PowerPoint-like authoring tool. Likewise, a
slide might provide static text or multimedia that is used to convey information to the
student, as well as embedded assessments that are used to gauge student proficiency.
The slide could also be associated with editable “tags” that represent ITS-specific
metadata such as the skills or concepts represented by the slide. Without the domain
expert explicitly authoring it, the ITS could use this metadata and the student model to
determine the next slide to display to the student without the domain expert explicitly
authoring every possible sequence.

2.2 Include Standard Editing Features

Modeling an ITS authoring tool after a mature software package, such as Microsoft
PowerPoint, suggests the implementation of several software features which are ex-
pected and relied upon by typical software users; however, these features are often
nontrivial to implement and have profound effects on how data is represented, stored,
and manipulated within the authoring tool, which is likely to affect how the data is
represented in the ITS itself. For example, copy, cut, and paste features are expected
by users to be available on any data type that can be authored in a tool. This feature
may require deep or shallow copies of data models used to represent curriculum and
pedagogical data while maintaining relationships between the data. Similarly, the
undo and redo features enable users to experiment and quickly repair authoring mis-
takes. Undo and redo can drastically impact the design and implementation of the
authoring tool itself and, therefore, should not be left as a feature to be added at the
end of project when there is no time to refactor data models or add revision tracking.

2.3 Support Author Collaboration

An ITS authoring tool should implement features that allow multiple domain experts
to collaborate while authoring domain knowledge and pedagogical strategies. Collab-
oration has the potential to increase both the quality and quantity of content available
to the ITS. Users have come to expect and rely upon collaboration features in other
contexts. For example, at one extreme, multiple authors can use web browsers to sim-
ultaneously edit a single Google document, presentation, or spreadsheet. The authors
can view each other’s modifications and chat with one another while editing. Like-
wise, many content authoring tools enable change tracking to record which author
made a change and when, or allow an author to comment on a piece of content with-
out changing it in the form of a note. Implementing collaboration in an ITS authoring

tool will have significant impacts on the design of data models, the architecture of the
application, and user authorization in regards to who is allowed to access which data.
For example, storing ITS domain knowledge and pedagogical strategies in a cloud-
based server and implementing a web browser-based authoring tool would simplify
implementation of collaboration features. Of course, this decision would need to be
considered early in the design of the ITS and the authoring tool since it would impact
the architecture and implementation of the entire system.

2.4 Facilitate Rapid Iteration and Testing

To facilitate refining of the curriculum content or ITS behavior, the authoring tool
should support a “rapid iteration” mode where small changes made in the authoring
tool can be quickly seen and interacted with in the context of the ITS. In this mode,
the domain expert can ideally interact with the ITS while editing content in real-time
or with only a minor delay. This feature allows the domain expert to quickly confirm
that content is presented in a visually appealing manner in the ITS and that the tutor
behaves correctly while the domain expert is modifying properties or settings that
influence the ITS behavior. This feature could be implemented as a real-time connec-
tion to the ITS running as a separate application or the ITS could be embedded in the
authoring tool to provide a WYSIWYG experience. In either situation, the ITS data
models would be required to support dynamic updates and the ITS itself would have
to respond to commands from the authoring tool such as navigating to specific do-
main content or modify the current state of the ITS depending on the types of edits the
domain expert is making. Revision tracking of data changes previously mentioned in
the description of the collaboration feature would also be useful in implementing a
rapid iteration feature.

2.5 Accommodate Novice and Expert Authors

The ITS authoring tool should support editing methods that are specifically tailored to
novice and expert users rather than presenting a one-size-fits-all UI. For example, a
novice user is likely to be overwhelmed and discouraged by an authoring tool that
exposes too many ITS-specific properties or settings. Conversely, an expert will be
less efficient and will be frustrated by a UI that repeatedly walks through a series of
basic steps as opposed to providing direct access to advanced settings and authoring
mechanisms. Therefore, for less frequently used authoring activities or when author-
ing complex knowledge representations or ITS-specific behavior, the authoring tool
should present a step-by-step wizard interface for novice users and a more direct au-
thoring UI for expert users. For example, when authoring rules to evaluate the answer
to an essay question, a wizard UI may ask the domain expert a series of questions that
are used to generate a set of rules for grading the answer. On the other hand, an expert
user would have the option of bypassing the wizard and authoring the rules directly.
Interestingly, this feature could be supported by embedding an ITS in the authoring
tool itself to assist the domain expert in authoring content.

2.6 Automation of Complex Tasks

Some aspects of authoring domain knowledge or ITS behavior may be too complicat-
ed or too labor intensive for a domain expert to accomplish manually using an ITS
authoring tool. In these situations, the authoring tool should provide automated mech-
anisms for generating curriculum content or pedagogical strategies. For example,
consider the use case for generating curriculum content for a performance-oriented
ITS where students are presented with many variations of similar problems while the
ITS provides step-by-step tutoring. Cognitive Tutor Authoring Tools (CTAT) simpli-
fies the authoring of these types of problems while creating example-tracing tutors
[7]. CTAT allows the domain expert to demonstrate correct and incorrect behavior
while solving a problem to create a generalized behavior graph. The CTAT “mass
production” feature is then used to create multiple problems that can be solved using
the generalized behavior graph. This gives the example-tutor the ability to tutor stu-
dents for problems that were not manually annotated by a domain expert using an
authoring tool, while not requiring the author to understand the computational models
needed to generate the new content.

Another approach to simplify the authoring of pedagogical strategies is to assist the
domain expert though the use of data mining techniques. Instead of authoring an ITS
with pedagogical strategies for every possible situation, authoring effort could be
placed on the most common misconceptions or areas where students are showing
weakness. In an educational data mining study by Merceron and Yacef, a web-based
learning environment was data mined to inform teachers of students who were at risk
[10]. Students were grouped into learner cohorts using clustering techniques to identi-
fy students who were having difficulties. In a similar way, an ITS could initially be
deployed with curriculum content but relatively little pedagogical scaffolding. After
collecting student answers, the data could be mined to identify common misconcep-
tions or domain knowledge that may require additional scaffolding by the ITS. The
ITS authoring tool would flag sections of the domain knowledge or identify broader
concepts that the domain expert could then focus on improving. This would naturally
lead to an iterative authoring process where the ITS continues to evolve by focusing
effort on the issues most relevant to students who are using the ITS. Using this type of
ITS authoring assistance feature has the potential to dramatically reduce the amount
of authoring effort since the domain expert is not required to exhaustively predict and
annotate all possible correct and incorrect answers. On the other hand, the initial itera-
tions of the ITS are not likely to be particularly effective since it will have limited
ability to remediate students who are having difficulty.

3 Lessons Learned from the LEONARDO Digital Science Notebook

For the past three years our laboratory has been developing a digital science notebook
for upper elementary science education, the LEONARDO CyberPad, which runs on the
Apple iPad and within a web browser on Windows and Mac OS X computing plat-
forms. LEONARDO integrates intelligent tutoring systems technologies into a digital
science notebook that enables students to graphically model science phenomena. With

a focus on the physical and earth sciences, the LEONARDO PadMate, a pedagogical
agent, supports students’ learning with real-time problem-solving advice.
LEONARDO’s curriculum is based on that of the Full Option Science System [11].
Throughout the inquiry process, students using the LEONARDO CyberPad are invited
to answer multiple-choice questions, write responses to constructed response ques-
tions, and create symbolic sketches of different types, including electrical circuits. To
date, LEONARDO has been implemented in over 70 elementary school classrooms
across the United States.

LEONARDO consists of three major components: the CyberPad digital science note-
book, the Composer authoring tool, and a cloud-based server. Fourth and fifth grade
elementary students learn about magnetism, circuits, and electricity using the Cyber-
Pad software. Domain experts use the Composer (Figure 1) authoring tool to create
curriculum content displayed in the digital science notebook as well as rules and dia-
logue that drive the pedagogical agent, which is embodied as a green alien within the
CyberPad UI. The cloud-based server is used to store all curriculum knowledge, tutor-
ing rules, and student data. During the design and development of the Composer au-
thoring tool, many of the principles of a domain expert-centered authoring tool (dis-
cussed in the previous section) were “discovered” as required features or features that
would enhance the productivity of domain experts.

The LEONARDO project did not originally include an ITS authoring tool in its work
plan. The first year of the project was spent designing and implementing a prototype
of the CyberPad application to field test with fourth and fifth grade students to assess
the practicality and ergonomics of using iPads in elementary school classrooms. Dur-
ing the first year, domain experts, who were science education faculty and graduate
students, used Microsoft Word to author all of the curriculum content and pedagogical
agent dialogue. The development team, who were computer science research staff and
graduate students, manually copied the text from the Microsoft Word document into
multiple XML documents. The XML documents were then embedded in the Cyber-
Pad iPad application as fixed resources that were then installed on iPads. The agent
dialogue and rules were coded directly into the CyberPad’s source code. Needless to

Figure 1. The Composer tool (left) and CyberPad (right) in rapid iteration editing mode

say, this approach to authoring domain content was highly inefficient. It was labor
intensive and error prone due to manually copying data. In addition, pedagogical
agent rules and dialogue were tightly coupled with the contents of the XML docu-
ments making the entire system brittle and easily broken by syntax and typographical
errors in the XML documents.

This initial approach to ITS authoring for the LEONARDO project had several signif-
icant drawbacks: First, the domain experts did not have a means to visualize what the
curriculum content and agent dialogue would look like when it was displayed in the
CyberPad UI as they were authoring content in Microsoft Word. Second, it was ex-
tremely slow to make small changes to the content since it required a development
team member to be available to a) make the change in XML b) rebuild the application
and c) redeploy the CyberPad application to the iPads. Third, this dependency result-
ed in frustration for the domain experts and development team members. As a result,
the curriculum content lacked polish, which is typically achieved by making many
small changes after the original content is created. Since making small changes was
highly inefficient, these changes were often not made due to lack of resources and
time. Using this approach to authoring content, one hour of instruction required more
than the estimated 300 hours of development time often cited for ITS authoring [6].

Based on this initial authoring experience and future plans to dramatically increase
the amount of curriculum content and pedagogical agent dialogue, it became an im-
perative to design and implement the Composer authoring tool in the second year of
the project. We started requirements gathering by identifying the types of domain
experts who would use the tool in the future: elementary school teachers, college of
education graduate students, and faculty. We then proceeded to design Composer’s UI
by reviewing authoring tools from other domains that our domain experts were com-
fortable using. This included applications such as Microsoft PowerPoint, Google doc-
uments, and Edmodo. In the new system, curriculum content, agent dialogue, and
rules would be stored in a cloud-based server where it could be directly accessed by
both the Composer tool and the CyberPad application. This approach formed the basis
for the authoring tool principles and features proposed in the previous section.

The Composer authoring tool dramatically improved the authoring workflow for
the LEONARDO project in years two and three. Domain experts were empowered to
author and refine curriculum content and pedagogical agent rules independently of the
development team. In addition, a familiar workflow and features such as rapid itera-
tion, copy, cut, and paste further improved the efficiency of domain experts. These
improvements did come at a development cost of refactoring data models, logic, and
storage to make it possible to possible to edit and track small discrete parts of the
curriculum independent of the rest of the curriculum data.

4 Conclusions

Widespread development and deployment of ITSs depends on efficient transfer of
domain knowledge and pedagogical strategies from domain experts to the ITS. Au-
thoring tools hold great promise to facilitate knowledge engineering. However, it

should be emphasized that authoring tools should be tailored to the domain expert
using features and workflows that have been proven effective by authoring software
from non-ITS domains.

In future work, it will be important to investigate automation features to assist in
the authoring of pedagogical strategies and to identify parts of the curriculum that
need additional scaffolding as indicated by mining student data. Likewise, it will be
important to design and implement novice and expert UIs to simplify authoring com-
plex knowledge and underlying ITS mechanisms.

Acknowledgments. The authors wish to thank members of the IntelliMedia Group
for their assistance. This work was supported by the National Science Foundation
under Grant DRL-1020229. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

5 References

1. Woolf, B.P.: Building Intelligent Interactive Tutors: Student-centered strategies for revo-
lutionizing e-learning. (2009).

2. Nwana, H.: Intelligent tutoring systems: an overview. Artif. Intell. Rev. 4, 251–277
(1990).

3. Beal, C.R., Walles, R., Arroyo, I., Woolf, B.P.: On-line tutoring for math achievement
testing: A controlled evaluation. J. Interact. Online Learn. 6, 43–55 (2007).

4. Graesser, a. C., Chipman, P., Haynes, B.C., Olney, A.: AutoTutor: An Intelligent Tutoring
System With Mixed-Initiative Dialogue. IEEE Trans. Educ. 48, 612–618 (2005).

5. VanLehn, K.: The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Sys-
tems, and Other Tutoring Systems. Educ. Psychol. 46, 197–221 (2011).

6. Murray, T.: An Overview of Intelligent Tutoring System Authoring Tools: Updated analy-
sis of the state of the art. In: Murray, T., Blessing, S., and Ainsworth, S. (eds.) Authoring
Tools for Advanced Technology Learning Environments. pp. 493–546 (2003).

7. Aleven, V., Mclaren, B.M., Sewall, J., Koedinger, K.R.: A New Paradigm for Intelligent
Tutoring Systems  : Example-Tracing Tutors. Int. J. Artif. Intell. Educ. 19, 105–154
(2009).

8. Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., McGuigan,
N.: ASPIRE  : An Authoring System and Deployment Environment for Constraint-Based
Tutors. Int. J. Artif. Intell. Educ. 19, 155–188 (2009).

9. Nkambou, R., Bourdeau, J., Psyché, V.: Building Intelligent Tutoring Systems: An Over-
view. In: Nkambou, R., Bourdeau, J., and Mizoguchi, R. (eds.) Advances in Intelligent Tu-
toring Systems. pp. 361–375 (2010).

10. Merceron, A., Yacef, K.: Educational Data Mining: a Case Study. AIED. pp. 467–474
(2005).

11. Mangrubang, F.R.: Preparing elementary education majors to teach science using an in-
quiry-based approach: The Full Option Science System. Am. Ann. Deaf. 149, 290–303
(2004).

