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Abstract. Recent years have seen a growing interest in the role that student 
drawing can play in learning. Because drawing has been shown to contribute to 
students’ learning and increase their engagement, developing student models to 
dynamically support drawing holds significant promise. To this end, we 
introduce diagrammatic student models, which reason about students’ drawing 
trajectories to generate a series of predictions about their conceptual knowledge 
based on their evolving sketches. The diagrammatic student modeling 
framework utilizes deep learning, a family of machine learning methods based 
on a deep neural network architecture, to reason about sequences of student 
drawing actions encoded with temporal and topological features. An evaluation 
of the deep-learning-based diagrammatic student models suggests that it can 
predict student performance more accurately and earlier than competitive 
baseline approaches.   
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1   Introduction 

Diagrams and drawing are fundamental to science learning and understanding. From 
primary through post-secondary education, students use drawings and graphical 
representations to make sense of complex systems and as a tool to organize and 
communicate their ideas to others. Studies have shown that learning strategies 
centered on learner-generated drawings can produce effective learning outcomes, 
such as improving science text comprehension and student affect, facilitating the 
writing process, and improving the acquisition of content knowledge [1] .  

Unlike the well studied areas of how people learn from writing text, viewing 
graphics, and reading, relatively little is known about how generating drawings affects 
learning. The benefits of drawing arise from actively involving learners in the 
cognitive processes of selecting, organizing, and integrating the information they have 
been presented, while also requiring both essential and generative processing to 
mentally connect multiple representations [2]. The benefits of learner-generated 
drawing are best realized through supports that constrain and structure the drawing 
activity [3]. The act of generating a visual representation can be a cognitively 
demanding task and, as such, requires scaffolds to guard against excessive and 



extraneous cognitive load [4]. Examples of effective scaffolds for drawing include 
providing symbolic drawing elements, guided questioning, and targeted drawing 
prompts [5].  

Intelligent tutoring systems (ITSs) offer a promising approach to addressing the 
complexity of scaffolding and assessing students’ drawing activities. A key feature of 
many ITSs is the ability to leverage student models that assess knowledge and skills 
from observed learning activities and support learning based on the predicted 
competency level in real-time. In this paper, we introduce diagrammatic student 
models that are designed to reason about students’ drawing trajectories to generate a 
series of predictions about their conceptual knowledge based on their evolving 
sketches. The diagrammatic student modeling framework utilizes deep learning, a 
family of machine learning methods based on a deep neural network architecture, to 
reason about sequences of student drawing actions encoded with temporal and 
topological features. As students draw, an effective diagrammatic student model 
should be able to not only predict student knowledge but also to weight the 
contributions of individual drawing actions toward the goal of the sketching activity, 
as well as monitor student drawing time and efficiency.  

To explore diagrammatic student modeling, we have developed a diagrammatic 
student model for a tablet-based learning environment designed for elementary school 
science education. In an evaluation, the deep-learning-based diagrammatic student 
model was compared against multiple baseline models using an annotated corpus of 
elementary student science drawings. The evaluation shows that the deep-learning-
based diagrammatic student model predicts student drawing performance more 
accurately than baseline models, as well as requires fewer actions to converge on the 
correct prediction. 

This paper is structured as follows. Section 2 discusses related work on analyzing 
student drawing and predicting student performance. Section 3 describes the tablet-
based learning environment that was used to collect the drawing dataset of symbolic 
sketches from elementary students. Section 4 presents the diagrammatic student 
modeling framework used for the predictive modeling task as well as the stacked 
autoencoder pre-training technique used in deep learning. Section 5 describes an 
evaluation of the system compared to other predictive models. 

2   Related Work 

Research on student modeling has explored a variety of computational frameworks. 
Several families of models perform a running estimate of students’ skills and 
knowledge based on their previous performance across multiple problems, including 
techniques such as Bayesian knowledge tracing [6] and performance factor analysis 
[7].  Sabourin et al. combined differential sequence mining with a dynamic Bayesian 
network to perform early prediction of students’ self-regulated learning behaviors in 
an educational game [8]. Chi et al. used reinforcement learning to identify features 
from student-tutor interactions and induce pedagogical strategies [9]. Other systems 
have explored features based on analysis of trace logs to predict transfer of inquiry 
skill [10], predict gaming the system behaviors [11], and predict user goals [12]. 



Similar to the techniques used in this work, a deep learning technique leveraging 
denoising autoencoders has been used to accurately identify intermediate player goals 
in an open-ended science mystery game [13]. The approach presented here utilizes 
deep learning techniques on the problem of modeling students drawing activities.  

Outside of the student modeling community, several efforts have made significant 
progress on machine understanding of student drawing artifacts. Mechanix uses free-
hand sketch recognition capabilities to convert student statics drawings into free-body 
equations that the system can then compare to a target solution and provide basic 
forms of feedback [14]. Van Joolingen et al.’s SimSketch system merges free-hand 
sketching with modeling and simulation of science phenomena by segmenting the 
drawing into distinct objects that are then annotated by the user with a variety of 
behaviors, attributes, and labels [15]. Students can then run a simulation based on 
their drawing and see the results before revising their sketch. SimSketch has been 
evaluated in a planetarium setting and been shown to be both a useable and engaging 
system for visitors. Researchers have also investigated CogSketch, an open-domain 
sketch understanding engine, to compare the drawings of expert and novice users to 
analyze differences in final drawings, as well as differences in the way the drawings 
are created [16]. 

3   The LEONARDO Science Notebook 

Recent years have seen a growing interest in introducing science notebooks into 
elementary science classrooms [17]. Science notebooks capture students’ inquiry-
based activities in both written and graphical form, potentially providing a valuable 
source of both diagnostic and prognostic information. However, because elementary 
school teachers sometimes have limited training in science pedagogy, they often 
struggle with effectively using science notebooks in classroom learning activities. 

For the past four years our laboratory has been developing a digital science 
notebook for elementary school students, LEONARDO (Figure 1), which runs on tablet 
computing platforms. LEONARDO integrates intelligent tutoring systems technologies 
into a digital science notebook that enables students to graphically model science 
phenomena with a focus on the physical and earth sciences. LEONARDO features a 
pedagogical agent that supports students’ learning with real-time problem-solving 
advice. LEONARDO is designed for use in the classroom in conjunction with popular 
science kits, and it is aligned with the Next Generation Science Standards for 
elementary school science education. It has been used in schools in more than ten 
states in the US. 

Throughout the inquiry process, students using LEONARDO are invited to create 
symbolic sketches of different types, including electrical circuits. Given the 
challenges of machine recognition for freehand sketch, as well as concerns of 
excessive cognitive demand for fourth graders working in such an unstructured space 
[18], LEONARDO supports symbolic drawing tasks. To preserve the generative 
processing thought to be of great benefit for learner-generated drawings strategies, 
each activity begins with a blank workspace so that the representations must be 
created from scratch. Students then choose from a variety of semantically grounded 



objects and place them at various points on the drawing canvas. For example, objects 
for the electricity unit include light bulbs, motors, switches, and batteries. Students 
can then place wires on the drawing canvas and connect the various objects that 
together simulate proper electrical behavior. This approach enables students to focus 
on choosing the appropriate circuit elements and creating the appropriate circuit 
topology rather than having to concentrate on free-hand sketching complex objects 
such as motors and switches. Drawing tasks vary in complexity from replicating a 
picture of a circuit held up by the pedagogical agent, to recreating a circuit made 
during a physical investigation, to creating more complex circuits designed to 
increase their understanding of series and parallel circuits. 

 

 
Figure 1. LEONARDO digital science notebook 

4   Diagrammatic Student Modeling 

To scaffold and assess drawing activities such as those supported by the LEONARDO 
digital science notebooks, a diagrammatic student model could reason about students’ 
drawing progress and infer students’ conceptual knowledge. We introduce 
diagrammatic student models by first discussing topology-based methods they use to 
analyze and compare student drawings. We then describe how they can predict 
student conceptual knowledge based on their drawing trajectories. 

To analyze student drawings the diagrammatic student modeling system first 
translates them into a more abstract representation (Figure 2) [19]. It takes as input 
trace logs from students’ work and extracts student actions at a level of granularity 
capable of producing replay-quality representations of the activities. From these 
actions it can reconstruct the state of the student drawing at each point in the activity. 
After each student action, a topological representation of the drawing is constructed 
using the set of objects and locations combined with a simulation engine that supports 
the querying of topological features of the drawing. 

These topological features are used to generate a labeled graph representation of 
the drawing. The first step in the translation from drawings to topological graphs is 



encoding of the primary elements for the domain. For the domain of circuits, we 
define this as non-wire circuit elements. Circuit elements are represented as nodes in 
the graph. Because there are only two points where each node can interact with other 
objects in the drawing space, each node is connected to two child nodes representing 
its contact points. Nodes are then labeled by type, for circuits the supported element 
types are Light bulb, Motor, Switch, or Battery.   

After creating the nodes of the graph, edges are generated based on relationships 
between elements. For this domain the only relationship encoded is electrical 
connectivity, though for other domains additional relationships could be encoded such 
as 2D spatial relations such as near/far, overlapping, or containing. For each contact 
point in the graph, the simulation engine uses a depth first search with resistance as 
the cost function to return all other contact points reachable with a zero resistance 
path. If one or more paths exist between contact points, they are then connected with a 
single edge in the graph.  

 
Figure 2. Circuit encoded as topological graph 

Topologies can then be compared using a modified form of edit distance, which 
determines the number of operations needed to transition from one graph to a target 
graph. Edit distance measures the number of element additions, element deletions, 
edge additions, and edge deletions needed to match two topologies. While traditional 
string edit distances tend to also utilize substitution, we chose to treat this instead as 
deleting an element, then adding a new one because this is the path students would 
take to modify their drawing. While edit distance allows an ITS to compare individual 
drawings, it is also critical for the system to be able to incorporate information about 
how the student arrived at that point. For example, consider a student with a blank 
workspace. By assessing only the current state of the drawing, the system would have 
no idea whether the student is yet to start drawing, or has been attempting 
unsuccessfully to complete the circuit for several minutes.  

 
Figure 3. Sample drawing progression 

An important capability of diagrammatic student models is accurately predicting 
the level of performance a student will attain in a drawing task. For example, using 



the drawing progression shown in Figure 3, the diagrammatic student modeling 
system seeks to predict the quality of the final submitted drawing (D), based on each 
drawing action (e.g., add, remove, rotate, drag). We treat this as a multiclass 
classification problem, in which the model seeks to predict the most likely student 
outcome state given a sequence of drawing actions. Outcome states for the 
diagrammatic student modeling system are defined using a clustering approach 
previously shown to align with human classification [19]. Students’ final drawings are 
grouped into 3 clusters: Correct, Near-Miss, and Far-Miss. For each drawing action 
by a student, we aim to predict which of these clusters the final drawing will belong 
to. The input to the classification task is encoded as a feature vector constructed from 
the student drawing after every action. The feature vectors consist of 6 features: 

• Time: Number of seconds from the start of the activity. 
• Action Step: Number of actions performed by the student thus far. 
• Extra Elements: Number of superfluous non-wire elements on the 

workspace. 
• Missing Elements: Number of required elements missing from the 

workspace. 
• Extra Topological Connections: Number of superfluous connections 

between non-wire elements. 
• Missing Topological Connections: Number of missing connections between 

non-wire elements. 

The output the diagrammatic student model is a prediction of which cluster the 
action sequence will culminate in. It is intuitive that predicting student outcomes 
could benefit from observations based on the sequence of actions preceding the 
current action. While this information is partly encoded in the drawing features, we 
further investigated it by augmenting the input feature vector with n-gram encodings. 
For n-gram encodings, the feature vector for a given action was combined with the 
feature vectors of the previous n-1 actions. For example, the input feature for a 
1-gram encoding would contain 6 elements, the input vector for a 5-gram model 
would include 30 elements, and a 10-gram model would include 60 elements in total.  

For our classifier we leverage deep learning. Stacked autoencoders (SAEs), a pre-
training technique, are investigated to avoid issues of underfitting that are often 
encountered when training deep neural networks. The following sections provide 
background on deep learning in general as well as the specific techniques used in our 
model. 

4.1 Deep Learning Overview 

Deep learning (DL) is a family of machine learning techniques that seek to learn 
multiple levels of higher-level features from lower-level data (e.g., pixels in image 
classification, acoustic inputs in speech recognition) through deep neural networks. A 
key advantage of DL is its feature extraction capabilities, which reduces the need for 
feature engineering by human experts that is often expensive in terms of time and 
effort. The majority of deep learning techniques and model structures are based on 
artificial neural networks (ANNs). ANNs’ structures are typically based on a 



collection of nodes, often referred to as neurons, and weighted edges propagating 
values to neurons in the next layer using both linear and non-linear transformations. 
ANNs have multi-layered structures that consist of an input layer, one or more hidden 
layers, and an output layer. As a method of training ANNs, a variety of 
backpropagation methods have been examined for model optimization, including 
stochastic gradient descent and batch gradient descent methods. Unfortunately, these 
algorithms were often not scalable to deep networks with multiple hidden layers. The 
resulting deep networks often performed worse than single hidden layer networks due 
to their increased vulnerability to converging on poor local optima during training 
[20]. DL systems have successfully set state-of-the-art benchmarks in a variety of 
tasks in fields such as computer vision [21], and sentiment analysis of text [22]. 

The diagrammatic student models utilize the SAE technique. SAEs operate based 
on a set of autoencoders (AEs) that are characterized by encoding and decoding steps 
using an unsupervised criterion [20]. The encoding step takes an input vector and 
projects it onto an output space using an activation function. A decoder step performs 
the opposite action, in which it decodes the projected output back to the original input 
with the objective of minimizing the reconstruction error of the input data. By 
situating an “encoder” and “decoder” in a three-layer network and optimizing the 
network using backpropagation, one can obtain a set of initialized weights that can be 
used for the connections between the first two layers. Once a weight configuration is 
initialized between the first two layers, the hidden layer activations based on the 
previous AE will be used as the input layer in the next AE training as a part of the 
larger network. This iterative method of initializing weights between two layers and 
combining pre-trained weights across all layers is referred to as stacked autoencoders. 
Once the weights for all hidden layers have been pre-trained, the entire network can 
be optimized using standard backpropagation techniques in a supervised fashion to 
fine-tune the network for the classification task.  

 
Figure 4. Dropout training 

While significantly improving the predictive performance of multi-layer neural 
networks, SAEs can induce networks that are highly overfit to the training set 
resulting in high generalization error. One approach to overcoming this problem 
would be to train a large number of networks using different portions of the training 
data and averaging their predictions to classify new data. Unfortunately, this requires 
a large amount of training data, and greatly increases both the training time, and 
prediction time for a trained network to an impractical level. Researchers led by 
Geoffrey Hinton developed a method called dropout to mimic this behavior, while 
only requiring the training of one network [23]. As illustrated in Figure 4, dropout 



works by probabilistically removing neurons from the network during training. For 
each training example, a pre-defined proportion (p) of neurons are stochastically 
dropped from each layer, and both the input and output weights connected to these 
neurons are correspondingly removed from the network. The weights are then learned 
for the thinned network using standard backpropagation, and the process is repeated 
for each training batch. Once training a network is completed, all the weights are 
downscaled by (1-p) as an adjustment process. Empirical analyses demonstrate that a 
network made up of weights combined from a large number of thinned networks 
effectively lower generalization error when training deep neural networks [23]. 

4.2 Model Training and Inference 

The open-source DeepLearnToolbox [24] was used to create and test the networks for 
the diagrammatic student models. While some general guidelines exist, the optimal 
structure and parameters for a multi-layer network must be determined empirically for 
each data set. We explored the space of models by conducting a grid search across the 
following parameters: 

• N-grams: 1, 5, 10 
• Dropout Rate: 0, .25, .5 
• Hidden Layers: 2, 3 

All other parameters were fixed for all trials. The number of neurons per hidden 
layer was set to 150, the activation function was set to the sigmoid function, the 
backpropagation algorithm was set to stochastic gradient descent over 100 epochs 
with the learning rate set to .2 for all layers in both the pre-training and fine-tuning 
steps. Each model contains 3 output nodes that represent class labels (Correct, Near-
Miss, and Far-Miss) inferred through this predictive model. To compare models, 
student-level 10-fold cross validation was conducted using 10 train/test pairs created 
with data from each student appearing in exactly one of the 10 test sets.  

5   Evaluation 

To evaluate our model, a corpus of fourth grade symbolic drawings was collected 
with the LEONARDO system running on iPads in elementary classrooms in North 
Carolina and California in the spring of 2014. Specifically, the student drawings were 
from an exercise requiring the students to create a circuit involving a switch, motor, 
and battery connected in series. After data cleaning, drawings from 403 students were 
used for the analysis. For this exercise, students spent an average of 4 minutes and 24 
seconds in the drawing environment, completing an average of 171 actions. The 
drawings were automatically scored in comparison to normative models after each 
action, and the final drawings were clustered using the procedure described in [19]. 
The clustering process grouped student answers into 3 groups: Correct, Near-Miss, 
and Far-Miss. Far-Miss was the most common outcome, accounting for 40.01% of 
final drawings, and 37.34% of total drawing actions. 37.57% of students correctly 



completed the exercise (30.19% of actions), and 22.42% of student answers were 
labeled as Near-Miss (32.47% of actions). For each of the actions in the drawing 
environment, the model attempted to predict the cluster of the final drawing. 

The deep-learning-based (DL) diagrammatic student model, which used SAE pre-
training, was evaluated against other diagrammatic student models that used a J48 
Decision Tree, a Naïve Bayesian classifier, and a Support Vector Machine (SVM) 
with a Gaussian kernel as well as a most common class baseline. In total 69,979 
actions were classified by each model. Each model was trained on a single action 
based inputs (1-gram encoding), and a sequence of actions based inputs (5 and 10-
gram encoding). Because the effectiveness of SVM depends largely on its 
hyperparameter settings as in deep neural networks, a grid search of C {.5,1,2,4,8} 
and γ {.0625 , .125, .25, .5, 1, 2} was conducted for fair comparisons, and the model 
with the highest accuracy is reported out of models based on all possible 
hyperparameter combinations within the ranges [25]. All models were evaluated with 
the same 10 train/test pairs, with the overall accuracies presented below representing 
the average across the 10 folds. 

Table 1. Model accuracy rates 

 Accuracy 
Most Common Class 37.34% 
Naïve Bayes 45.88% 
Decision Tree  45.87% 
SVM  50.85% 
DL 55.68% 

 
Table 1 shows the best performing model for each technique. All models 

performed best using the 10-gram encoding, showing the importance of including 
previous student actions in the task of predicting students’ knowledge based on their 
evolving sketches. For the SVM model, a C of 4 and a γ of 2 produced the best model. 
For the DL model, 2 hidden layers and a dropout rate of .5 produced the best model, 
with an accuracy of 55.68%. Due to our data not conforming to the normal 
distribution, we computed significance using two non-parametric tests. Both a 
Friedman test (p < .05) and a McNemar post hoc test (p < .0001) elicit that the DL 
model significantly outperformed the top-performing baseline technique (SVM).  

While accuracy provides one metric for evaluating classifiers, it is also important 
to evaluate how quickly and accurately a model converges on a solution. To achieve 
this, we used two metrics from the goal recognition literature [26]: convergence rate 
and convergence point. Convergence rate (CR) calculates what percentage of students 
our model had an accurate last prediction for, and thus higher is better for this metric. 
Convergence point (CP) measures how early in the sequence of actions our model 
was able to converge on the correct prediction, with a lower percentage indicating 
earlier convergence. Table 2 shows that the DL model outperformed SVM with 
respect to both CR and CP, and importantly its significantly lower CP score 
demonstrates DL’s effectiveness as an early predictor of student performance. 

Overall, the results show that the deep-learning-based diagrammatic student model 
more accurately predicted student drawing outcomes compared to several competitive 
models on the corpus of fourth grade circuit drawings.  A possible explanation for the 



DL model’s outperformance compared to the competing techniques is DL’s ability to 
discover high-level representations processed through hierarchical abstraction of low-
level data, an attribute closely related to the latent nature of the student modeling task.  
Further, the model was also able to converge to the correct prediction sooner in the 
sequence of actions than the baseline models, showing great potential for informing 
an intelligent tutoring system of student’s outcomes early in the drawing process. 

Table 2. Convergence rate and convergence point 

 Convergence Rate Convergence Point 
SVM 78.3% 68.5% 
DL 78.8% 55.4% 

6   Conclusions and Future Work 

Drawing is critical to science learning, and it provides a rich source of diagnostic and 
predictive information about a student’s understanding. However, it has been shown 
that without proper support, students can be overwhelmed by the process of drawing 
and fail to experience its benefits. It appears that if ITSs could scaffold the drawing 
process and perhaps use it as a source for assessment, they could enable students to 
experience the benefits that drawing appears to offer. To pave the way toward ITSs 
that support student drawing, we have introduced diagrammatic student models, 
which analyze student drawing artifacts and use these analyses to predict drawing 
performance. 

In this paper we have reported on the investigation of a diagrammatic student 
modeling framework based on deep learning. The deep-learning-based diagrammatic 
student model utilizes temporal and topological features of students’ drawing 
trajectories to predict students’ performance from their drawing actions. In an 
evaluation in which the deep-learning-based framework was compared with several 
competing models, the deep-learning approach was most accurate, and outperformed 
the other models on both convergence rate and convergence point. The strong 
performance of the model suggests that deep-learning-based diagrammatic student 
modeling offers significant potential for modeling student drawing activities, which 
will play an increasingly important role in education with the proliferation of tablet 
computing devices. 

The encouraging results suggest several promising directions for future work. First, 
it will be important to begin experimenting with embedding diagrammatic student 
models into ITSs that support drawing in order to better evaluate the practical 
requirements for model accuracy in improving learning outcomes. Similarly, it will be 
important to develop techniques that allow diagrammatic student models to predict 
intermediate sub-goals in drawing activities. These techniques will contribute directly 
to misconception detection functionalities. Finally, it will be important to explore 
alternative deep learning architecture to support drawing analyses. For example, 
recurrent neural networks have proven effective for sequential data and hence may 
perform well in diagrammatic student modeling considering the highest accuracy was 
achieved by the 10-gram encoded models.  
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