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Abstract. Interactively modeling science phenomena enables students to 
develop rich conceptual understanding of science. While this understanding is 
often assessed through summative, multiple-choice instruments, science 
notebooks have been used extensively in elementary and secondary grades as a 
mechanism to promote and reveal reflection through both drawing and writing. 
Although each modality has been studied individually, obtaining a 
comprehensive view of a student’s conceptual understanding requires analyses 
of knowledge represented across both modalities. Evidence-centered design 
(ECD) provides a framework for diagnostic measurement of data collected from 
student interactions with complex learning environments. This work utilizes 
ECD to analyze a corpus of elementary student writings and drawings collected 
with a digital science notebook. First, a competency model representing the 
core concepts of each exercise, as well as the curricular unit as a whole, was 
constructed. Then, evidence models were created to map between student 
written and drawn artifacts and the shared competency model. Finally, the 
scores obtained using the evidence models were used to train a deep-learning 
based model for automated writing assessment, as well as to develop an 
automated drawing assessment model using topological abstraction. The 
findings reveal that ECD provides an expressive unified framework for 
multimodal assessment of science learning with accurate predictions of student 
learning. 
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1   Introduction 

Formative assessment can play a central role in enabling intelligent tutoring systems 
(ITSs) to provide students with personalized, adaptive learning experiences [1]. 
Effective formative assessment can be used to infer students’ underlying mental 
models as well as their movement through learning progressions [2, 3]. The models 
inferred from these assessments can then be used as the basis for real-time feedback 
and adaptive support [4]. Formative assessment can improve science learning, and 
because science learning often features both drawing and writing activities, intelligent 
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tutoring systems for science education should support multimodal assessment of both 
student drawing and student writing [5]. 

Evidence-centered design (ECD) provides a systematic approach to designing and 
developing assessments [6]. ECD identifies multiple phases in the design process, 
each with its own explicit goals. These phases include the creation of a Competency 
Model, an Evidence Model, and a Task Model that operate in concert to recognize 
evidence of conceptual understanding from student work. For multimodal assessment, 
ECD can provide a systematic way of mapping between learning goals and student 
artifacts from various modalities that show evidence of student learning. Of particular 
interest is how ECD might provide a unified framework for assessing both written and 
drawn artifacts of student work for formative purposes. 

This paper introduces a new ECD-based framework for multimodal science 
assessment. First, we use a multimodal approach to ECD to define a competency 
model and a multimodal evidence model for elementary science to understand how 
conceptual understanding about magnetism is revealed in both drawing and writing 
tasks. Specifically we aim to evaluate student writings and drawings using a common 
competency model that contributes to a deeper understanding of the relative 
contributions of the two modalities. Second, with the long-term goal of integrating 
multimodal assessments into an ITS, we present computational models for evaluating 
student writings and drawings in real-time and compare their predictive accuracy to 
expert human scorings. The findings reveal that ECD provides a unified framework 
for multimodal assessment of science learning with accurate predictions of student 
learning. 

2   Related Work 

Though much less investigated than short-answer writing assessment, there has been 
some work on assessment of learner-generated drawings. Mechanix [7] utilizes free-
hand sketch recognition to convert student drawings in the domain of statics into free-
body equations that the system can then analyze and provide corrective feedback. Van 
Joolingen et al.’s SimSketch system seeks to merge free-hand sketching with 
modeling science phenomena. The system first segments the free-hand drawing into 
distinct objects that can be annotated by the user with a variety of behaviors and 
attributes [8]. Students can then run a simulation based on those behaviors and 
attributes. SimSketch was used in a planetarium setting by elementary students for 
modeling and simulation, showing evidence for increasing student learning and 
engagement. CogSketch [9], which aims to support open-domain sketch 
understanding, has been employed to compare the drawings of expert and novice 
users to analyze differences in drawings, as well as differences in the ways the 
drawings are created.  

Automatic grading of written short answers has long been the focus of the ITS and 
natural language processing (NLP) communities, with short answers being defined as 
natural language responses varying in length from one sentence to one paragraph [10]. 
Many of these approaches, such as the widely used Latent Semantic Analysis [11], 
rely on “bag-of-words” approaches that focus primarily on the occurrence or 



frequency of words that appear in text. Other approaches, such as the ones embodied 
in Educational Testing Service’s C-Rater, use a variety of preprocessing techniques to 
generate syntactic relationships between words in a sentence [12]. The technique 
employed by Dzikovska et al. uses dependency parses in a facet-based approach to 
assessment, which provides more fine-grained information about assessments than a 
monolithic overall score [13]. Other approaches have used word embeddings and 
convolutional neural networks that incorporate information across sequences of words 
[14]. Our work proposes an approach combining word conversion techniques and 
feedforward neural networks to address noisy students’ answers that contain various 
forms of misspellings to implement a reliable writing assessment solution. 

Recent years have also seen a growing interest in evidence-centered design as a 
method for interpreting the complex data streams generated by virtual learning 
environments. Gobert et al. used ECD to create predictive models of student inquiry 
skills from action logs generated in a science microworld [15]. Rupp et al. utilized 
ECD in both the design of an interactive training application for employees of a 
networking company, as well as the design of the accompanying assessments [16]. 
Finally, ECD is used in conjunction with computational methods such as Bayesian 
networks and stacked autoencoder networks to construct “stealth” assessments for 
educational games [2, 17]. Our work builds on this line of investigation by 
introducing a unified framework for multimodal assessment of both drawing and 
writing based on ECD. 

3   The LEONARDO Digital Science Notebook  

Data for the work reported here was collected with LEONARDO, a cloud-based digital 
science notebook developed for elementary school science education [14]. LEONARDO 
was designed for use in the classroom and runs on both desktop computers and 
tablets. LEONARDO supports inquiry learning by providing adaptive support to 
students as they engage in both virtual and physical lab activities as well as providing 
them with tools to create their own visual and written representations (Figure 1). 
LEONARDO currently supports three science units: Electricity, Magnetism, and 
Weather. Each unit consists of several subunits driven by Focus Questions (FQs), 
which are organized around an open-ended driving question (e.g., What makes a 
magnet magnetic?). The activities and tasks employed in each FQ were designed to 
facilitate student learning of the underlying science concept to answer the driving 
question.  

Fig. 1 Examples of LEONARDO drawing (a) and writing (b) prompts. 



In most FQs, students are required to construct written and visual explanations by 
completing a series of drawing and writing tasks to solidify and extend their 
understanding of the observed scientific phenomena. To facilitate meaningful writing 
composition, the writing tasks require students to compose short responses, and in 
some cases a starter prompt is given to help students build an argument sentence, 
(e.g., A magnet attracts a paperclip because...). In drawing tasks students manipulate 
built-in pictorial symbols representing key scientific concepts relevant to the current 
FQ. Pictorial symbol manipulation includes selecting appropriate symbols from a 
toolbar and organizing them in the drawing field by modifying their direction, 
alignment and relative placement. At the end of each FQ, students are presented with 
their original answers to the driving question and offered to construct a new response 
based on what they have learned so that they can recognize and monitor the change in 
their own understanding of the subject matter by comparing their old and new 
response. 

4   ECD Coding Framework 

Evidence-centered design is a holistic approach to designing, implementing, 
evaluating, and delivering educational assessments [18]. ECD recognizes assessment 
as an evidentiary reasoning process that entails making arguments on learning based 
on the limited evidence provided by the learner [6]. ECD has gained considerable 
popularity in a broad range of fields in recent years, and it has been used in 
conjunction with several forms of learning technologies, including game-based 
learning environments [2], and educational data mining [1,16]. The ECD framework 
formalizes the different phases in the assessment design process as “layers” and each 
layer has its own specific objectives and associated products. In this work, we 
employed ECD’s Conceptual Assessment Framework layer to analyze our assessment 
models in LEONARDO’s magnetism unit, and we generated a comprehensive rubric to 
score students’ drawing and writing artifacts based on this analysis. 

 
Fig. 2 Application of the ECD process to science notebook task data. 

The Conceptual Assessment Framework layer consists of three components: the 
Competency Model, the Evidence Model, and the Task Model (Fig. 2). The first layer 
begins by identifying and determining what collection of knowledge, skills or 
practices on which the learner will be assessed. These concepts are then combined to 



form the Competency Model, sometimes referred to as the Student Model. Once 
defined, values in the Competency Model can be inferred across multiple interactions 
using a variety of techniques including Bayesian knowledge tracing and dynamic 
belief networks [4]. The second step is determining what types of observations of 
student work or artifacts will provide measurable evidence for the target 
competencies, including defining specific evidence for each of the modalities to be 
evaluated. The Evidence Model is the product of this layer. The final step focuses on 
designing tasks—the Task Model—that will give the learner relevant opportunities to 
provide the expected evidence. When the possible evidence that students may exhibit 
have been identified, the tasks can then be designed that will require students to 
generate those evidence. Mislevy and Haertel note that ECD is a sequential process 
but can include iterations and refinements within and across the layers during the 
design cycle [6]. 

To develop our models we used a subset of a larger sample of fourth grade students 
from the 42 schools who implemented LEONARDO’s magnetism module during the 
2013-2014 and 2014-2015 school years. The participating schools are located across 
the United States. A total of 98 students from 19 different classrooms were selected 
based on the requirement that they completed all eight of the drawing and writing 
tasks in FQ-3 and FQ-5 in the Magnetism unit. Although there are six instructional 
units (FQs) in the magnetism module, we chose to analyze FQ-3 (What happens to the 
particles in an iron object when the object is turned into a temporary magnet?) and 
FQ-5 (Can magnets work through materials like paper, cardboard, and metal foil?) 
because they provide the richest set of drawing and writing tasks in terms of the 
number and variety of the scientific concepts that they address. 

An initial coding was completed by two human raters individually grading 
students’ drawing and writing artifacts. Initial practice trials were completed using 
data from students not included in the final sample to train raters, formalize the rubric, 
and align their interpretations. Cohen’s kappa (κ) was run to determine the inter-rater 
reliability based on a randomly selected subset of 20% of responses coded by both 
raters. A high level of agreement was found between the two raters’ drawing scores, κ 
= .838 (95% CI, .806 to .869, p < .001) and a substantial level of agreement between 
the two raters’ writing scores, κ = .754 (95% CI, .669 to .838, p < .001). 

Table 1. Means* and Standard Deviations for Total Scores (N = 98) 

Questions Min Max Mean SD 
FQ-3 Drawings 0 100 62.6 32.9 
FQ-5 Drawings 4 100 60.8 26.2 
FQ-3 Writings 0 88 28.5 23.6 
FQ-5 Writings 10 100 63.3 20.9 
Post-Test 20 95 68.0 20.4 

*Scores are converted to a 0-100 scale for ease of interpretation. 

Table 1 shows the students’ drawing and writing scores and post-test performance. 
Although the mean scores of FQ-3 and FQ-5 drawings and FQ-5 writings are close to 
each other, the mean score of FQ-3 writings is much lower than the others. This might 
be explained by the fact that one of the FQ-3 writing tasks asks students to compare 
their two drawings, and thus has a higher number of potential concepts to be observed 



than the other writings. However, most students’ responses compared only one or two 
aspects of their drawings resulting in the lower scores. A hierarchical multiple 
regression test was conducted to analyze how student knowledge revealed by multiple 
drawing and writing artifacts predict their post-test performance. The first model, 
which uses only FQ-3 and FQ-5 drawing scores, significantly predicted 
approximately 36% variance in the post-test scores F(2, 95) = 27.17, p < .001, R2 = 
.364 , while the second model containing FQ-3 and FQ-5 both drawing and writing 
scores significantly predicted about 48% variance in total in the post-test scores F(4, 
93) = 27.75, p < .001, R2 = .483, producing an R2 change of .119. 

5   Automated Assessment Systems 

With the goal of integrating these new assessments into LEONARDO, we used the 
human scorings to devise computational assessment models to assess both student 
drawing and writing. We next introduce the drawing scoring, using a rule-based 
system based on topological features, as well as the writing scoring, using word 
conversion techniques combined with feedforward neural networks.  

5.1 Automated Assessment of Symbolic Drawings 

Building on techniques developed in our previous work [14], drawings are 
represented as a set of objects and their associated x, y coordinates and rotation. For 
example, the set of possible objects in the drawing space include a paper clip, a plastic 
straw, a magnifier bubble to indicate microscopic properties, inert particles, magnetic 
particles, and an arrow. For this work we decompose the drawing into a set of 
topological relations between these objects. Topological features allow us to 
discretize a wide range of continuous features in a way that facilitates symbolic 
manipulation. In this case we use these topological relations to generate a labeled 
graph representation of the drawing. The first step in the translation from drawings to 
topological graphs is encoding the primary elements for the domain. Initially, this 
consists of defined elements drawn by the student. In the later steps these elements 
can be combined into new elements, such as converting a group of similarly rotated 
magnetic particles into a single “aligned particles” element.  

After creating the nodes of the graph, edges are generated based on topographical 
relationships between elements. Many potential 2D relationships are encoded, with 
the goal of generating a sufficiently large number of relationships to capture the 
relevant information expressed by the drawing, while excluding irrelevant 
relationships that will unnecessarily complicate the computation. For example, one 
solution could be to generate a complete set of all possible relations for every 
pairwise combination of elements in the drawing, though, this approach would 
quickly produce a large amount of features, many of which are unnecessary for the 
intended analysis. To simplify this task, each object is assigned a type. For each type, 
we specify a set of related types for which topological relationships will be generated. 
The set of qualitative 2D relations used in this work are near, far, intersects, and 
aligns-with. Finally, more complex relationships are defined based on combinations 



of atomic spatial relations. For example, the point of the magnifier object intersecting 
with a paperclip generates a set of contains relationships between the paperclip and 
the elements that have been drawn within the larger magnification bubble.  

Finally, to convert the symbolic representation into a rubric score, we assign a set 
of rules for each rubric component. For example, for the component associated with 
the concept of a straw containing only non-magnetic particles, a contains(straw, inert) 
relationship must exist, as well as contains(straw, aligned) and contains(straw, 
unaligned) not existing. These rules can also be defined to compare relationships 
between drawings, as is required by some components of the competency model. 

5.2 A Feedforward Neural Network for Short Answer Analysis 

Building automated writing assessments entails devising computational models that 
take as input students’ text-based responses and predict as output their grades 
according to the pre-specified rubric discussed in Section 4. A key challenge posed by 
the automated assessment of elementary-grade students’ writing is effectively dealing 
with many forms of misspelled words, including cognitive misconceptions (e.g., 
magnetism misspelled by magnetizm) and typographical errors (e.g., paperclip 
misspelled by paperrclip). Misspellings caused by cognitive misconceptions tend to 
persistently appear in the student’s writing, whereas typographical errors, such as 
injecting an extra character or mistakenly typing a neighboring character, occur in 
other places less frequently. To address this challenge, we implement a two-step 
writing assessment system, in which the system first creates a dictionary to convert 
similar words to the same representative word using Levenshtein edit distance and 
then trains classifiers based on a bag-of-words representation based on the induced 
dictionary.  

For computational writing assessment models, we utilize feedforward neural 
networks. Deep neural networks, often called deep learning [19], have demonstrated 
considerable success for a wide range of computational challenges, such as computer 
vision, natural language processing, and speech recognition. A model is trained per 
short-answer question. Since every writing question has multiple labels (i.e., 
competencies) to predict, this task is cast as multi-label classification. The 
hyperparameters for neural networks are often empirically determined using grid 
search [14]. In this work, we explore the number of hidden units using 256 and 512, 
and the number of hidden layers from 1 to 4. We fix the following parameters: setting 
all the activation functions to sigmoid, adopting the dropout regularization technique 
[19] with the dropout rate of 0.5, and using binary cross entropy and stochastic 
optimization for the loss function and optimizer, respectively.  

6   Evaluation  

To evaluate the assessment models, we conducted validation studies with the corpus 
of fourth grade writings and drawings collected with the LEONARDO system. The 
drawing models were assessed using 4 drawings each from the 98 students scored by 
human coders. For each drawing, rules mapping between topological features and 



competency scores were authored based on notes from the rubrics used by human 
scorers and from tuning on a scored set of drawings not used in the evaluation sample. 
As the drawing models used authored rules and were not machine-learned, cross 
validation was not used. The baseline accuracy rate is calculated by computing the 
most common class rate per competency, and then averaging across all the 
competencies within each question. 

Table 2. Automated drawing assessment results (N = 98) 

Question Concepts Accuracy Baseline 
FQ3 – Drawing 1   11 90.4% 66.8% 
FQ3 – Drawing 2 13 87.9% 62.8% 
FQ5 – Drawing 1 12 86.3% 61.8% 
FQ5 – Drawing 2 13 90.8% 61.6% 

As shown in the table, the models performed well compared to the baseline. 
Analysis of the classification errors showed a small number of cases where the 
automated model incorporated elements that were occluded from the drawing 
presented to human coders. The majority of the error cases were the result of the 
system not giving credit for a concept for which the human coders gave credit. These 
types of errors could be potentially corrected by creating more scoring rules, though 
many would be difficult to author without incurring an unacceptable level of false 
positives. 

For the writings, four feedforward networks were trained for each of the four 
questions (2 for FQ-3 and 2 for FQ-5), adjusting the number of hidden layers from 
one to four. Each model was evaluated using a 10-fold student-level cross validation. 
The accuracy levels shown in Table 3 represent the average accuracy rates across all 
competencies for the question. The baseline accuracy rate was calculated using the 
same process as for the drawings. The accuracy rate of neural networks that achieve 
the highest predictive performance in the 10-fold cross validation is reported along 
with the number of hidden layers the models leverage.  

Table 3. Automated writing assessment results (N = 98) 

Question Hidden Layers Concepts Accuracy Baseline 
FQ3 –Writing 1 1 13 78% 71.4% 
FQ3 –Writing 2 1 5 73% 62.6% 
FQ5 –Writing 1 1 3 90% 82% 
FQ5 –Writing 2 1 7 76% 65.3% 

 
Overall the writing assessment system performed very well with accuracies 

ranging from 73% to 90% for the 4 questions. While the shallow networks exhibited 
the best overall performance for each question, the accuracies of the other models 
performed very similarly, often less than 1% different. This result is perhaps not 
surprising given that deep networks are more likely to suffer from overfitting when 
trained with small datasets [19]. The high baseline accuracy for the first writing 
sample in FQ-5 suggests that that question in particular may have been over-
scaffolded and should be revised in future implementations. Further analysis of the 
errors reveals the majority are likely due to the high level of misspellings and 



grammatical errors in the text, indicating that while the steps taken to cope with noisy 
text were effective, there is room for improvement. 

7   Conclusions and Future Work 

Multimodal assessments that operate on both student drawing and student writing 
hold great potential for expanding the diagnostic power of ITSs. ECD provides a 
unifying framework for multimodal assessment by defining targeted learning concepts 
of a given exercise, and for identifying evidence of those concepts in student work 
that includes both drawing and writing. We hypothesized that a unified ECD-based 
multimodal assessment framework would support the design of computational models 
of assessment that could operate on both drawing and writing.  

In this paper, we introduced a framework for applying ECD to multimodal student 
learning. First, a competency model is defined, identifying scientific concepts of 
interest. Next, rubrics are created to define which features of student writings and 
drawings constitute evidence of the previously defined competencies. Using the 
rubrics we then found that the evidence measured from both drawing and writing 
were significantly predictive of performance on a multiple-choice summative post-
test. We also found that students were generally able to express more concepts 
through drawing than writing, although this could be related to the inherent 
scaffolding afforded by the symbolic drawing tasks. Finally, with the long-term goal 
of incorporating automated multimodal assessments into interactive learning 
environments such as the LEONARDO digital science notebook, we developed 
computational methods for the real-time automated assessment of student drawing 
and writing artifacts. An evaluation of the resulting multimodal assessment 
framework found that the models outperformed baseline models in accurately 
assessing student work across multi-faceted rubrics for both modalities. 

In future work it will be important to further refine the automated assessment 
techniques to increase their accuracy. A second promising line of investigation is to 
use ECD to better understand how student knowledge of low-level concepts relates to 
higher-order concepts. Finally, it will be important to investigate how to best 
incorporate multimodal assessment into an ITS and utilize real-time assessment 
results to drive personalized feedback and scaffolding. 
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