
Principles of Asking Effective Questions During Student
Problem Solving

Kristy Elizabeth
Boyer

William
Lahti

Robert
 Phillips*

Michael D.
Wallis*

Mladen A.
Vouk

James C.
Lester

Department of Computer Science, North Carolina State University, Raleigh, NC
*Dual affiliation with Applied Research Associates Inc., Raleigh, NC

{keboyer, wjlahti, rphilli, mdwallis, vouk, lester}@ncsu.edu

ABSTRACT
Using effective teaching practices is a high priority for educators.
One important pedagogical skill for computer science instructors
is asking effective questions. This paper presents a set of
instructional principles for effective question asking during
guided problem solving. We illustrate these principles with results
from classifying the questions that untrained human tutors asked
while working with students solving an introductory programming
problem. We contextualize the findings from the question
classification study with principles found within the relevant
literature. The results highlight ways that instructors can ask
questions to 1) facilitate students’ comprehension and
decomposition of a problem, 2) encourage planning a solution
before implementation, 3) promote self-explanations, and 4)
reveal gaps or misconceptions in knowledge. These principles can
help computer science educators ask more effective questions in a
variety of instructional settings.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Design, Human factors

Keywords
Computer science education research, instructional discourse,
question-asking, tutoring

1. INTRODUCTION
Instructional discourse and dialogue are ubiquitous in computer
science education. Channels for this discourse include formal
lecture classes [11, 17], office hour help sessions, online message
boards [20], email, blogs and Twitter channels. In each of these

situations, instructors have the opportunity to increase the efficacy
of classroom time and homework exercises by facilitating
students’ learning. An instructor’s choices during instructional
discourse and dialogue can profoundly affect the experience of the
students [1]. In particular, carefully formulated questions can
encourage students to self-explain [6], promote comprehension of
requirements and effective planning of solutions [14], and reveal
important gaps in student knowledge [22]. Yet, instructors’
natural tendencies may not be to pose these questions, possibly
because other approaches seem more direct [9, 18].

The objective of the current work is to identify question-asking
principles that promote deep student learning through
instructional dialogue. We examine the natural question-asking
tendencies of untrained instructors and compare these approaches
to principles of effective question asking from the relevant
cognitive science, psychology, and computer science education
literature. The empirical basis for this research is a collection of
dialogues between human tutors and novice computing students
working to implement the solution to a programming exercise. We
have developed a novel question classification scheme and
applied it to the questions that occur in the dialogues. The results
of the question classification study, when contextualized with the
relevant literature, highlight several patterns of “what not to do”
for question asking during guided problem solving. The principles
of effective question asking described here have direct, practical
implications for computer science educators.

2. RELATED WORK
Several lines of research have investigated student questions in
the context of computer science education. For example, pair
programming students ask higher-level questions of the
instructors than solo programming students [15]. Intelligent agents
that monitor collaborative group activity may encourage students
to produce higher quality questions [21]. The instructional setting
also influences the nature and topic of student questions. For
example, students ask different types of questions in online
discussions than they do in class lectures [17].

Studying student questions can yield valuable insights into how
people come to understand computing. In a complementary vein,
investigating the impact of instructor questions can lead to more
effective question-asking practices on the part of educators.
Asking effective questions prompts students to engage in valuable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.

learning behaviors they might not otherwise have undertaken. For
example, one important role of questions is to encourage students
to self-explain, which has been shown to be highly beneficial for
learning [6], a possible source of the effectiveness of Socratic
dialogue [12]. With novice computer scientists, asking effective
questions during the early phases of planning a solution can
support the students’ comprehension and decomposition of the
problem at hand [14]. Asking targeted, specific questions is useful
for revealing knowledge gaps with novices, who are often unable
to articulate their questions [22].

Gaining confidence in asking effective questions is an important
step toward developing pedagogical expertise. Research in one-
on-one tutoring indicates that novice tutors ask far fewer
questions than expert tutors [9]. In addition to asking more
questions, skilled instructors recognize that the type of question
has important implications for student responses. For example, in
software engineering, open-ended questions have been found to
elicit a wide range of student responses that are valuable in
classroom discussion [19].

This paper builds on the related work noted above by examining
the types of questions present in a body of tutorial dialogue for
introductory computer science. The results illustrate specific ways
in which instructors can improve their question-asking approaches
to facilitate student learning.

3. METHODOLOGY
One-on-one tutoring is a valuable arena for conducting research
on instructional approaches [18]. The empirical results presented
in this paper are based on classifying the questions that occurred
naturally in tutoring dialogues between untrained tutors and
novice computer science students.

3.1 Tutoring Study Participants
The data consist of instructional dialogues that were recorded
during the course of two tutoring studies. Participants were 78
students enrolled in a university introductory computer science
class who participated in the study in exchange for a small amount
of class credit. The 17 tutors were graduate and upper-division
undergraduate students, all with research interests in computer
science education and varying degrees of experience in peer
tutoring. None of the tutors received formal training in tutoring.

3.2 Tutoring Session Format
Students and tutors reported to separate rooms to ensure
anonymity and complete capture of the instructional interaction.
They interacted through an Eclipse plug-in that facilitates real-
time remote collaboration with textual dialogue [3]. The tutor’s
interface featured a synchronized view of the students’
programming window, and the students and tutors engaged in
typed dialogue through a textual dialogue pane. All dialogue and
programming actions were recorded in a database.

The tutoring studies were conducted during weeks eight and nine
of a twelve-week semester. In both studies, the programming
exercise involved applying array data structures and for loops to
solve a programming problem using Java. Additional details about
the participants, programming problems, data collection, and
learning outcomes for the two studies are reported in [2, 4].

3.3 Data
The 78 tutoring sessions produced a data set of 10,179 textual
dialogue messages. Tutors account for 6,558, or 64.4%, of these
messages. This proportion of tutor and student dialogue turns is

consistent with data sets from other technical domains such as
physics [8]. Our previous research classified all the dialogue
messages as statements or questions. Of all the tutor dialogue
messages, 714 were classified as questions that were on-topic
(off-topic questions include “Is it hot in your room?” or “How are
you today?”) [2, 4]. This paper reports on the further classification
of these 714 questions according to a two-level classification
scheme that is intended to capture 1) the instructional goal that
motivated the question, and 2) the realized question type.

3.4 Question Classification
Existing literature on question asking has produced several
question classification schemes that have been applied to
instructional discourse in a variety of domains [10, 16]. We
adapted these taxonomies for application to the computer science
dialogues by adding several categories that facilitate classifying
problem-based and interactive dialogue questions. The iterative
process of creating the final question classification scheme
proceeded as follows. First, two researchers independently
classified the question goals and types in a training subset of the
data. Next, all questions that could not be adequately classified
with the existing categories were clustered to create new
categories. Finally, the revised scheme was tested on a previously
unseen subset of the data. This training and refinement loop
concluded when the two researchers classified the questions in a
training set with an acceptable level of inter-rater reliability [13],
indicating that the taxonomy was sufficiently reliable for the data
at hand. Table 1 displays the top level in the hierarchy, the
instructional goals. Each of these goals can be instantiated as
more than one question type. Table 2 displays these types, which
constitute the bottom level of the hierarchy.

Table 1. Instructional Goals for Question Asking
Plan: Establish a problem-solving plan. Ascertain what the
student wants, prefers, or intends to do.

Ascertain Student’s Knowledge: Find out whether the
student knows a particular factual or procedural concept.

Hint: Scaffold the student’s problem-solving effort.

Repair Communication: Disambiguate or correct a previous
statement or question.

Confirm Understanding: Confirm the student understands a
previous problem-solving step or previous tutor statement.

Engage Student: Elicit a response from the student either at
the beginning of the tutoring session or after prolonged
silence.

Remind/Focus: Direct the student’s attention toward a
previous statement or problem-solving step.

When the classification scheme had been finalized, an inter-
annotator agreement study was conducted. For both levels of the
classification scheme, one researcher classified the entire set of
714 tutor questions and a second researcher classified a subset of
approximately 17% that had not been used during the training and
refinement phase. The Kappa statistic for inter-rater agreement
was 0.85 for the question goal classification and 0.84, indicating
“very good” reliability [13].

4. RESULTS AND DISCUSSION
The results from classifying tutor questions according to the
above taxonomy suggest that the untrained tutors engaged in
notable examples of “what not to do” in their question-asking
approaches. We begin by examining the frequencies of question

types that occurred, and then consider excerpts from the dialogues
that illustrate the importance of some question-asking principles.

Table 2. Instructional Question types (* denotes category not
found in classification schemes of [10, 16])

Question Type Example
Assessment* Do you think we’re done?
Backchannel* Right?
Calculation What is 13 % 10?

Causal
Antecedent

Why are we getting that error?

Causal
Consequence

What if the digit is 10?

Clarification* What do you mean?
Confirmation* Does that make sense?

Feature/Concept
Completion

What do we want to put in digits[0]?

Definition What does that mean?
Enablement How are the digits represented as bar

codes?
Focus* See where the array is declared?
Free Creation What shall we call it?
Free Option Should the array be in this method or

should it be declared up with the other
private variables?

Goal Orientation Did you intend to declare a variable
there?

Hint* We didn’t declare it; should we do it now?
Improvement Can you see what we could do to fix that?
Judgment Would you prefer to use math or strings?
Justification Why are we getting that error?
Knowledge* Have you ever learned about arrays?

Plan What should we do next?
Procedural How do we get the ith element?
Quantification How many times will this loop repeat?
Status* Do you have any questions?

4.1 Question Type Frequencies
All of the questions from the introductory computer science
dialogues were classified according to the question’s goal and the
question type.

As depicted in Figure 1, the most common instructional goal was
to ascertain the student’s knowledge; this goal accounts for just
over one-third of the questions. Giving a hint to the student
through a question, which is likely an example of an indirect and
polite conversational strategy [5], also occurred frequently. This
instructional goal accounted for nearly one-fifth of the tutors’
questions.
Figure 2 displays the frequency of each question type. Hint
questions and procedural questions are the most common
question types, each accounting for nearly one-fifth of the tutors’
questions. The second most common questions are
feature/concept completion and knowledge questions. These
question types are both intended to gauge student knowledge, with
the former being a question directly about the subject matter,
while the latter asks whether the student believes he knows or
understands a topic.

Some types of questions are known to occur in tutoring from other
domains [10, 16], yet these question types are absent from the
introductory computer programming dialogues presented here.

Some examples of such questions include composition questions
that ask about the components of an item, comparison questions
that ask the student to compare items, example questions that ask
the student to give or interpret an example, and interpretation
questions that ask for a subjective viewpoint. The absence of these
questions may be due in part to the subject matter of the
instructional discourse. For example, relatively few introductory
computing questions would involve subjective interpretation. On
the other hand, some types of questions, such as examples, might
be effective in the computing context but were not utilized by the
untrained tutors in these studies.

Figure 1. Instructional Goal Frequencies (nquestions=714)

Figure 2. Question Type Frequencies (nquestions=714)

A small percentage, only 11% of the 6,558 tutor dialogue
messages, were questions. This ratio of tutor questions is
consistent with findings that untrained instructors, such as the
novice tutors used in these studies, tend to ask fewer questions
than more highly trained expert instructors [9]. This discrepancy
between expert and novice instructors highlights the importance
of research on question-asking techniques: effective approaches
may not come naturally, yet they hold the potential to improve
teaching effectiveness.

The remainder of this section presents excerpts from the data to
illustrate the tutors’ question asking in context as the student
worked to solve the introductory programming problem. For each
excerpt, we compare the untrained tutors’ question-asking
approaches with principles from the literature and discuss how
applying these principles may have improved the instructional
dialogue.

4.2 Encouraging Comprehension and
Decomposition of the Problem
Experienced computer scientists recognize the importance of
thoroughly understanding a problem before beginning to construct
a solution [14]. In contrast, novices may be more likely to begin
implementing a solution without an adequate understanding of the
requirements [7]. Figure 3 presents an excerpt that illustrates this
phenomenon. The instructional approach illustrated in this excerpt
does not encourage the student to think deeply about the problem
at hand before beginning to work on the solution; in fact, the tutor
encourages the student to move forward with implementation by
asking, “Where would you like to start?”

[Tutor and student greet each other]

Tutor 1: Ok, let me know when you’re ready to start.
Student 1: I think I’m ready.

Tutor 1: Ok.

Tutor 1: Where would you like to start?

 [Goal: Plan, Type: Plan]

Student 1: I guess with the extractDigits method.

Tutor 1: Sounds good.

Student 1: I’m already confused.

Figure 3. Not Encouraging Comprehension and
Decomposition of the Problem

Because the student had only just finished reading the problem
description and had likely not yet fully understood it, questioning
the student directly about a plan might have been premature. This
possibility is confirmed by what seems like a guess on the part of
the student, followed by immediate admission of confusion.

The tutor’s goal of establishing a problem-solving plan might
have been instantiated more productively as a different question
type. For example, a feature/concept completion question, (e.g,
“What are the main steps in completing this assignment?”) could
have encouraged the student to reflect on and discuss the
assignment first. In this context, a useful instructional principle is
that asking specific questions about a problem description can
facilitate a student’s thorough comprehension of the problem at
hand.

4.3 Eliciting Self-Explanations
At many junctures in instructional discourse, an instructor can
choose whether to tell a piece of information to the student or
whether to elicit that information by asking a question or a series
of questions. Research has shown that self-explaining, in which a
student express her own understanding, improves learning [6].
Despite the demonstrated effectiveness of active approaches such
as self-explanation, a natural tendency of instructors, especially
those with less pedagogical expertise, is to tell the student
information that is intended to fill gaps or correct misconceptions
in the student’s knowledge. Figure 4 illustrates this tendency in an
excerpt from the introductory programming dialogues.

Student 2: Ok so String z = “” + zipcode?
Tutor 2: Yeah.
Student 2: Then what?
Tutor 2: Ok so now we need somewhere to keep the
individual digits.

Figure 4. Tutor “Tells” Rather than Eliciting Student’s
Explanation

This tutoring session’s history has included the tutor giving
numerous hints to scaffold the student’s problem-solving efforts,
and this excerpt represents a transition point at which the tutor
could have chosen to ask the student to describe the most
reasonable next step (e.g., “Well, given what we’ve accomplished,
what do you think makes sense?”). Instead, the tutor chooses to
tell the student what to do next. This illustration of a natural
instructional tendency reminds us of the following principle:
Rather than telling the student, asking questions that prompt
student self-explanations can improve the student’s learning.

4.4 Asking Targeted Questions
The specificity of questions should be appropriate for the context,
which includes the student’s knowledge level. Novices often
believe they understand when in fact their knowledge is
incomplete or incorrect [22]. Figure 5 illustrates an excerpt in
which a tutor asks the student whether he has any questions, and
the student responds “No.” However, after reading a two-page
problem description whose solution will constitute his first
application of arrays and for loops, it is likely that the student has
significant knowledge gaps about the problem at hand. The
student’s lack of experience may render him unable to articulate
the questions he has, or he may prefer to begin implementing the
solution rather than to discuss his questions.

Tutor 3: Did you have any questions about what the lab
wants you to do?

[Goal: Knowledge, Type: Status]

Student 3: No.

Tutor 3: Ok, what method do you want to start with?

[Goal: Plan, Type: Judgment]

Figure 5. Tutor Asks a Vague Question
In this situation, the tutor could have asked the student to explain
a key component of the problem description, especially a point
that is a known trouble spot for students. For example, an
enablement question about mechanisms that allow certain
behaviors to occur could have been used to illuminate details of
the student’s understanding (e.g., “How do you think loops will be
used to solve this problem?”). Asking a specific content question
can reveal a student’s incomplete or incorrect knowledge so that
the instruction can proceed productively.

5. CONCLUSIONS AND FUTURE WORK
Asking effective questions is an important component of
pedagogical expertise. By examining tutorial dialogue exchanged
between untrained tutors and novice computer science students,
we have investigated some types of questions that untrained
instructors naturally ask. All of the tutors’ questions were
classified according to a two-level hierarchical question taxonomy
that was based on existing classification schemes enhanced to
capture the nuances of the instructional context. The results of this
question classification study revealed that the instructors’
question-asking approaches could have been improved by
applying principles from the relevant literature. We discussed
excerpts of tutorial dialogue that lack sophisticated question-
asking approaches. The findings illustrate the following
principles: 1) Facilitate comprehension and decomposition. In
problem-solving contexts such as software engineering and
programming, asking targeted questions can encourage students to
think deeply about the problem at hand. 2) Prompt for self-
explanation. Periodically asking students to explain their
reasoning or understanding results in self-explanation, which has
been shown to benefit student learning [6]. 3) Ask targeted
questions. Content-specific questions, especially questions that
focus on known problem areas in the material, are an excellent
means for identifying incorrect or incomplete student knowledge.
4) Ask questions frequently. Good questions stimulate students to
think deeply, explain themselves, and reveal gaps or
misconceptions in knowledge. An important component of
pedagogical expertise is to ask questions frequently [9].
The work presented here is based on data from tutoring studies.
Future work should include experiments designed to assess the
effectiveness of specific question-asking approaches. Such
experiments would be valuable for confirming the cross-domain
applicability of the question-asking principles presented here.
Additionally, targeted experiments can shed light on the
differences between question-asking approaches for various
instructional contexts.

6. ACKNOWLEDGEMENTS
The authors thank Andy Meneely for feedback on this manuscript.
This work is supported in part by the NCSU Department of
Computer Science along with the National Science Foundation
through Grants REC-0632450 and IIS-0812291, a Graduate
Research Fellowship, and the STARS Alliance Grant CNS-
0540523. Any opinions, findings, conclusions, or
recommendations expressed in this report are those of the
participants, and do not necessarily represent the official views,
opinions, or policy of the National Science Foundation.

7. REFERENCES
[1] Barker, L. J. and Garvin-Doxas, K. Making Visible the Behaviors

that Influence Learning Environment: A Qualitative Exploration
of Computer Science Classrooms. Computer Science Education,
14, 2 (2004), 119-145.

[2] Boyer, K. E., Phillips, R., Wallis, M. D., Vouk, M. A. and
Lester, J. C. Balancing Cognitive and Motivational Scaffolding in
Tutorial Dialogue. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems, 2008, 239-249.

[3] Boyer, K. E., Dwight, A. A., Fondren, R. T., Vouk, M. A. and
Lester, J. C. A Development Environment for Distributed
Synchronous Collaborative Programming. In Proceedings of the
13th Annual Conference on Innovation and Technology in
Computer Science Education, 2008, 158-162.

[4] Boyer, K. E., Vouk, M. A. and Lester, J. C. The Influence of
Learner Characteristics on Task-Oriented Tutorial Dialogue. In
Proceedings of the 13th International Conference on Artificial
Intelligence in Education, 2007, 365-372.

[5] Brown, P. and Levinson, S. Politeness: Some Universals in
Language Usage. Cambridge University Press, 1987.

[6] Chi, M. T. H., Leeuw, N., Chiu, M. H. and LaVancher, C.
Eliciting Self-Explanations Improves Understanding. Cognitive
Science, 18, 3 (1994), 439-477.

[7] Ehrlich, K. and Soloway, E. M. An Empirical Investigation of the
Tacit Plan Knowledge in Programming. In Thomas, J. and
Schneider, M. L. eds. Human Factors in Computer Systems.
Ablex, 1983.

[8] Forbes-Riley, K., Litman, D., Huettner, A. and Ward, A.
Dialogue-Learning Correlations in Spoken Dialogue Tutoring. In
Proceedings of the 12th International Conference on Artificial
Intelligence in Education, 2005, 225-232.

[9] Glass, M., Kim, J. H., Evens, M. W., Michael, J. A. and
Rovick, A. A. Novice vs. Expert Tutors: A Comparison of Style.
In the 10th Midwest Artificial Intelligence and Cognitive Science
Conference, 1999, 43-49.

[10] Graesser, A. C., McMahen, C. L. and Johnson, B. K. Question
Asking and Answering. In Gernsbacher, M. A. ed. Handbook of
Psycholinguistics. Academic Press, San Diego, CA, 1994, 517-
523.

[11] Graesser, A. C. and Person, N. K. Question Asking During
Tutoring. American Educational Research Journal, 31, 1 (1994),
104.

[12] Jones, J. S. Participatory Teaching Methods in Computer
Science. SIGCSE Bulletin, 19, 1 (1987), 155-160.

[13] Landis, J. R. and Koch, G. The Measurement of Observer
Agreement for Categorical Data. Biometrics, 33, 1 (1977), 159-
174.

[14] Lane, H. C. and VanLehn, K. Teaching the Tacit Knowledge of
Programming to Novices with Natural Language Tutoring.
Computer Science Education, 15, 3 (2005), 183-201.

[15] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K.,
Miller, C. and Balik, S. Improving the CS1 Experience with Pair
Programming. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, 2003, 359-362.

[16] Nielsen, R., Buckingham, J., Knoll, G., Marsh, B. and Palen, L.
A Taxonomy of Questions for Question Generation. In
Proceedings of the 1st Workshop on Question Generation, 2008.

[17] Postner, L. and Stevens, R. What Resources do CS1 Students Use
and How do They Use Them? Computer Science Education, 15, 3
(2005), 165-182.

[18] Ragonis, N. and Hazzan, O. Tutoring Model for Promoting
Teaching Skills of Computer Science Prospective Teachers. In
Proceedings of the 13th Annual Conference on Innovation and
Technology in Computer Science Education, 2008, 276-280.

[19] Razmov, V. and Anderson, R. Pedagogical Techniques
Supported by the use of Student Devices in Teaching Software
Engineering. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, 344-348.

[20] Sheard, J. Electronic Learning Communities: Strategies for
Establishment and Management. SIGCSE Bulletin, 36, 3 (2004),
37-41.

[21] Soh, L. K., Jiang, H. and Ansorge, C. Agent-Based Cooperative
Learning: A Proof-of-Concept Experiment. In Proceedings of the
35th SIGCSE Technical Symposium on Computer Science
Education, 2004, 368-372.

[22] Tenenberg, J. and Murphy, L. Knowing What I Know: An
Investigation of Undergraduate Knowledge and Self-Knowledge
of Data Structures. Computer Science Education, 15, 4 (2005),
297-315.

