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ABSTRACT 
In the quest to find instructional approaches that benefit student 
learning, engagement, and retention, evidence suggests providing 
students with hands-on practice is a worthwhile use of class time.  
This paper presents results from an exploratory study of two 
different instructional approaches that were encountered in a 
study of experienced human tutors working with novice 
computing students engaged in a programming exercise.  No 
difference in average learning gains was found between a 
moderate approach, in which students were given control of  
problem solving nearly half the time, and a proactive approach in 
which the tutor took initiative nearly three-fourths of the time.  
Implications of this finding for fine-grained instructional strategy, 
as well as for broader classroom management decisions, are 
discussed.  This paper also makes the case for the value of one-
on-one tutoring studies as an exploratory research methodology 
for the comparative evaluation of computer science teaching 
strategies. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computer Science Education 
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Design, Human Factors 

Keywords 
Computing education research, tutoring, research study, active 
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1. INTRODUCTION 
Computing educators have a plethora of instructional approaches 
at their disposal.  For a given course, they may choose among 
textbooks, presentation formats, programming languages, and 
communication platforms.  Beyond these instructional choices 
that often persist throughout the duration of a course lie the finer-
grained decisions of teaching.  Such decisions include the 
particular approach (e.g., lecture, discovery learning) that will be 
used to teach course material.   

It is helpful to have empirical results that highlight the differential 
effects of specific strategies in particular situations.  Because it 
has been established that active learning is a valuable classroom 
approach that can enhance student learning and motivation [6], 
one important teaching scenario for computing educators is 
hands-on practice time provided to students in a classroom 
setting.  Evidence suggests that introducing an active component 
to a computing course may benefit students, particularly with 
regard to engagement and retention [3].   

As with most instructional approaches, in-class practice activities 
involve pedagogical decisions such as when to intervene for 
students who appear to be struggling, and how to choose the 
specificity and elaborateness of answers to student questions.  
This paper presents the results of an empirical study that explores 
teaching strategies for helping students solve introductory 
programming problems.   

One-on-one instruction in computer science has been recognized 
as a technique in which effective teaching strategies can be 
applied [10].  This paper reports on a study that investigates the 
impact of two different instructional approaches that were 
employed in a controlled study of experienced human tutors 
working with novice computer science students who were 
engaged in a programming exercise.  The two instructional 
approaches differed with respect to the level of control and 
direction, or initiative [5], that the tutor exerted during the 
problem-solving activities.  It was found that for the two levels of 
instructor initiative studied here (73% and 55% instructor 
initiative, corresponding to 27% and 45% student initiative, 
respectively), there was no significant difference in student 
learning gains.  In addition to contributing to our understanding of 
instructional techniques for guiding problem solving, the findings 
highlight important future work on classroom management 
techniques for facilitating active learning in computer science. 

2. TUTORING STUDY 
This paper describes an exploratory research study conducted 
during a university CS1 course.  In the study, each student worked 
on a programming exercise while interacting with a dedicated 
human tutor via remote collaboration software.  

2.1 Participants 
Study participants consisted of 61 students enrolled in a university 
CS1 course.  Students were obtained on a volunteer basis through 
in-person visits by a researcher to course sections taught by three 
different instructors.  Students earned a small amount of extra 
course credit for participating in the study.  An alternate 
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assignment for extra credit was offered to students who did not 
participate in a tutoring session. 

2.2 Programming Exercise 
Each student in the experiment completed a programming 
exercise that focused on one-dimensional arrays, for loop 
constructs, and parameter passing.  These were all timely 
concepts for participants with respect to upcoming programming 
projects and exams in the class.  The programming problem was 
scaffolded with a fully-implemented graphical component that 
allowed students to test and see the results of their work visually.  
The context of the problem, which consisted of analyzing 
emergency call response times for a county that was considering 
replacing their fleet of ambulances, was designed with social 
relevance in mind [7].  The material required for the programming 
exercise had been presented in the students’ class lectures.       

2.3 Treatment Groups 
Students were assigned randomly to one of the two tutors.  These 
tutors, one female graduate student and one male undergraduate 
student, were both experienced in tutoring students in 
introductory programming.  The two tutors were chosen because 
of their demonstrated effectiveness in two prior pilot studies using 
numerous experienced tutors.  No instructional strategies were 
prescribed for the tutors.  As discussed in Section 3, analysis of 
the tutoring logs revealed the two tutors chose significantly 
different teaching strategies while working with the students. 

2.4 Logistics 
During the course of problem solving, the student constructed the 
solution in the programming interface while the tutor observed the 
student’s actions remotely in real time.  Tutors were not allowed 
to edit the student’s programming code.  The tutor and student 
engaged in dialogue through a textual chat message interface as 
part of a software tool designed to facilitate remote collaboration 
[2].  Tutors were not made aware of any student characteristics 
such as achievement level in the course, gender, or age.  
Reciprocally, no information about the tutor’s identity was 
provided to the student.   
Students completed a pre-survey and pretest upon arrival to the 
study, and were then shown a brief instructional video containing 
an orientation to the software.  After beginning work on the 
programming problem, the students were allowed to work until 
completion except for one subject who was stopped due to time 
constraints.  This subject was omitted from the analyses presented 
here, as were three subjects whose logs were incomplete due to 
technical difficulties.  At the end of the tutoring session, students 
completed a posttest with items identical to those in the pretest.   
Both the pretest and posttest consisted of free-response questions 
for which students wrote Java code using the same concepts that 
were relevant to the programming exercise.  Time to complete 
this free-response test ranged from 8 to 20 minutes.  The pretest 
and posttest scores are reported as percentages correct out of the 
total possible points on each test.  It should be noted that although 
there was likely a test-retest effect present from administering the 
same test before and after the instruction, this effect is present in 

both groups and therefore does not have a bearing on the 
differential analysis presented here. 1  

3. ANALYSIS AND RESULTS 
Over the course of the tutoring sessions, all programming actions 
and typed dialogue were logged to a database.  Because no 
pedagogical strategies had been prescribed, a preliminary 
qualitative analysis of the logs was conducted to search for 
strategies that appeared to differ systematically between tutors.  
The qualitative analysis led to the hypothesis that the tutors 
differed significantly in the percentage of time the student was 
allowed to direct and control the problem-solving task.  In 
dialogue analysis, control of the dialogue and problem-solving is 
referred to as initiative [5].  The dialogue data described here is of 
a mixed-initiative nature because both the student and the tutor are 
able to take and relinquish control during the tutoring session, 
within limits (i.e., the software interface permits the tutor only to 
view, not edit, the solution to the programming problem). 
In order to explore whether there was a significant difference in 
the teaching strategies with respect to initiative, the analysis 
employs a standard corpus annotation approach:  an annotation 
scheme was applied manually to the data, and quantitative 
methods were used to discover whether statistically significant 
differences were present in the resulting relative frequencies.  The 
remainder of this section describes the initiative annotation tags, 
provides example dialogue excerpts, and presents statistical 
results. 

3.1 Annotation for Tutor Approach 
In order to annotate the sessions as to whether the tutor or the 
student was leading the problem solving at a given time, the 
analysis employed two tags:  Student-Initiative and Tutor-
Initiative.  These tags were applied to groups of dialogue 
messages as well as student programming actions.   
Student-Initiative Mode.  In Student-Initiative mode the student 
maintains control and direction over the problem-solving effort.  
Student-Initiative mode is characterized by one or more of the 
following attributes: 1) the student states his/her plan and 
(optionally) asks the tutor for feedback, 2) the student reads the 
problem description or constructs a portion of the solution 
independently (as indicated by no dialogue exchanged while the 
student is conducting these problem-solving activities), or 3) the 
student asks content-based questions (e.g., “I should start this 
index at 0, right?”) as opposed to content-free questions (e.g., 
“What do I do now?”). 
Tutor-Initiative Mode.  In Tutor-Initiative mode the tutor directs 
the problem solving effort.  Only the student can construct 
program code in the problem-solving window, but the tutor can 
control and direct the student’s work through dialogue strategy 
choices.  Characteristics of the Tutor-Initiative mode include:  1) 
the tutor offers unsolicited advice or correction, 2) the tutor 
lectures on a concept, 3) the tutor explicitly suggests the next step 
in problem solving, or 4) the tutor poses questions to the student. 
To illustrate the different tutoring modes, consider two dialogue 
excerpts.  The first excerpt, from the moderate tutor, illustrates 
                                                                 
1 Identical pretest and posttests were chosen over isomorphic 

versions to avoid a mismatch in difficulty that might have 
inflated or masked learning results. 



Student-Initiative mode (Table 1).  In this excerpt, the student 
asks a content-based question indicating he knows the problem 
lies in a return statement.  The tutor provides an answer, the 
student acknowledges, and finally the student spends five minutes 
coding part of the problem solution.  Lengthy periods of 
independent student work are common in Student-Initiative mode.      
The second excerpt, from the proactive tutor, illustrates Tutor-
Initiative mode (Table 2).  In this excerpt, the tutor provides 
unsolicited advice and asks questions of the student.  The student 
spends a brief time repairing the problem solution, and the tutor 
once more provides unsolicited feedback.  As illustrated in this 
excerpt, brief periods of student work interspersed with frequent 
dialogue are common in Tutor-Initiative mode. 
 

Table 1:  Excerpt of Student-Initiative mode2 

Student: What am I not typing right in the return statement? 
Tutor:   You only need to return the identifier. 
Tutor: In other words, you just need to return newtimes 
Student:   Ok. 

[student works on solution independently for five minutes] 

 

Table 2:  Excerpt of Tutor-Initiative mode 
 

Tutor:  
 

Hmm, that doesn’t look quite right. 
Tutor:  Do you see the projected array output? 
Student: Yes. 
Tutor:  It looks like it’s only getting the first value… 

Tutor:  So your loop must be stopping before it’s done with its 
work. 

Tutor:  Do you see what might be causing that? 
[…tutor-led conversation continues…] 

Tutor:  But it’s coming out 1.0 instead of 4.3. 

Tutor:  Anything else look wrong on the graph, compared to 
the instructions? 

Student:  The second bar is not right 

Tutor:  I think fixing the length might be the only thing you 
need to change. 
[student works on solution for ten seconds] 

Tutor:  Much better. 
Student:  Yeah!! 
Tutor:  =) 

 

3.2 Proportion of Tutor-Led Problem Solving 
A total of 61 tutoring sessions were conducted.  Out of these, a 
subset of 30 (15 randomly selected from each treatment group) 
were annotated for initiative.  From the time stamps logged on 
each textual dialogue message and problem-solving action, 
boundaries between Student-Initiative and Tutor-Initiative mode 
were identifiable as points in time.  Total elapsed time in each 
mode was calculated for each session.  This calculation revealed 
                                                                 
2 In both excerpts, capitalization and punctuation have been added 

to textual dialogue messages for readability. 

that the two tutors did in fact take significantly different levels of 
initiative.  One tutor, whom we refer to as the proactive tutor, 
directed the problem solving an average of 73% of the time.  The 
second tutor, referred to here as the moderate tutor, took initiative 
only 55% of the time on average (Figure 1).  This difference in 
means is statistically significant with a two-sample t-test using 
pooled variance (p=0.029):  the moderate tutor allowed students 
to take initiative significantly more often than the proactive tutor.   

 
Figure 1:  Comparison of Tutor Initiative 

3.3 Random Distribution of Students 
One possible explanation for the difference in tutor approach 
might be that there was a systematic difference in the groups of 
students assigned to each tutor.  For instance, if the proactive tutor 
had been assigned weaker students than the moderate tutor, this 
could explain not only the need for more control on the part of the 
tutor, but also a lack of discrepancy in learning outcomes.  
However, there is no evidence of a systematic difference in the 
samples of students tutored.  Initially, students were randomly 
assigned to one of the two tutors.  To confirm that no systematic 
difference in student preparedness was created, we conducted a 
post hoc analysis of pretest scores (Figure 2).  The mean pretest 
score for students assigned to the moderate tutor was 79.5%, 
compared with a mean pretest score of 78.9% for students 
assigned to the proactive tutor.  A t-test with pooled variance 
indicates there is no evidence of a statistical difference in the 
pretest scores (p=0.930).   

3.4 Equivalence of Learning Gains 
Learning gain is calculated as the difference between posttest 
score and pretest score (in terms of percent correct).  Despite a 
significant difference in the mean level of tutor initiative between 
treatment groups, there was no significant difference between the 
mean learning gains for the two groups (Figure 3).  Students who 
worked with the moderate tutor had an average learning gain of 
6.9 percentage points.  Students who worked with the proactive 
tutor had an average 6.0 percentage point learning gain.  This 
difference is not statistically significant (p=0.796).   



 
Figure 2:  Comparison of Student Pretest Score by Tutor 

 
Figure 3:  Student Learning Gains by Tutor 

4. DISCUSSION  
It was found that there was no significant difference in student 
learning gains between proactive instruction, in which the tutor 
retained control and direction of problem solving 73% of the time, 
compared to moderate instruction in which the tutor led the 
problem solving only 55% of the time.  The findings of this 
exploratory study have important implications at both a fine-
grained teaching-strategy level and a broader classroom-
management level.  This section discusses those implications and 
addresses limitations of the study.     

4.1 Tutoring Methodology 
While it is the case that most college and university-level 
computing education takes place in group instruction settings, 
studying one-on-one tutoring is a valuable research methodology 
for exploring the effects of different instructional strategies.  First, 
tutoring studies permit experimental control:  by collecting data 
involving one instructor and one student, investigators can 
achieve control beyond what is easily attained if data is collected 
at the classroom level only (e.g., when instructors vary their 

teaching methods between classes and then compare aggregate 
data by class to discern the differential impact of the teaching 
methods).  Second, because tutor-student interactions can be 
readily recorded using basic logging techniques, tutoring studies 
facilitate data capture.  Finally, because each learner is provided 
with what the tutor deems the most suitable instructional 
approach, one-on-one instruction permits greater coverage of 
teaching strategies.  In addition, a greater number of different 
instructors can be observed teaching the same material compared 
to what would be feasible in classroom implementation.  
Particularly in exploratory studies where it may not be necessary 
to have classroom-sized samples of individual students for each 
tutor, a one-on-one research approach can reveal trends and 
patterns worthy of future investigation. 

By aggregating tutoring data based on certain factors (e.g., 
instructional technique), we can discover differential implications 
of the factor levels for the entire sample of students, which can be 
extrapolated to the student population as a whole.  This type of 
inference is used regularly in whole-class educational research, 
and many issues (e.g., representativeness of the student sample, 
hidden individual differences) are shared between whole-class 
and one-on-one research situations.  In both cases, such 
confounding factors are important to address.   

4.2 Threats to Validity 
One artifact of the design of this exploratory study is that because 
different tutors were used, it is plausible that the difference in 
instructor initiative did have an effect on student learning, but that 
unseen differences between tutors offset the impact of the 
different levels of initiative.  This potential threat to validity is 
necessary in such an exploratory study because had only a single 
tutor been utilized, the study could not have revealed the 
systematic differences in the individual tutors’ natural strategies.  
A more controlled design can be implemented in subsequent 
confirmatory experiments.   

A second possible confound pertains to making extrapolations to 
group teaching strategies based on tutoring data.  One-on-one 
instruction provides highly contextualized, individualized 
assistance.  This constant source of effective help is part of the 
power of human tutoring, and is at least partially responsible for 
the dramatic learning results achieved in some tutoring studies 
that compare one-on-one instruction to group instruction [1].  For 
this reason, among others, it is not reasonable to suggest replacing 
whole-class research studies with one-on-one tutoring studies.  
However, because of the control, capture, and coverage that are 
readily achievable in tutoring studies, we can use this approach to 
identify important patterns that warrant whole-class studies.  The 
results reported here are an example of just such a pattern. 

4.3 Open Questions 
This study of initiative raises an important hypothesis worthy of 
future investigation.  With the proactive tutor, the student was in 
control of the problem solving an average of 27% of the time.  
With the moderate tutor, the student directed the problem solving 
significantly more often:  45% of the time, with no significant 
increases in learning gains observed.  This result, in which higher 
student initiative did not translate into higher learning gains, can 
be contextualized with other research in which student initiative is 
allowed to vary.  For example, in the very different context of pair 
programming (e.g., [8, 9]), it has been found that when students 



complete projects in pairs (presumably dividing the possible 
100% initiative between both students since only one student is in 
control at a given time), learning gains over the semester are as 
good or better than students who completed the projects 
individually (close to 100% initiative on the part of the student).  
These findings suggest that the level of student initiative has an 
interaction effect with other aspects of the instructional setting, 
and that further investigation is warranted to fully understand 
these phenomena. 
In a large tutoring study with the investigation of learning in 
multiple disciplines, results suggest the effectiveness of tutoring 
lies not solely with a tutor’s skill in what to say and when, nor 
solely in the student’s active construction of knowledge, but 
rather with the interaction between the two parties [4].  
Interactivity as a catalyst for student learning has also been 
studied by proponents of active learning [6], who find a strictly 
lecture format (presumably close to 0% student initiative) is not 
as desirable as classroom approaches that do allow some level of 
student initiative.  Our results suggest there may be a “plateau” 
effect of sorts, in which providing room for a modest level of 
student initiative could have appreciable benefits for student 
learning.  This hypothesis can be further investigated using 
tutoring experiments as well as whole-class comparison studies. 
A final noteworthy benefit of using one-on-one instruction as a 
research methodology for the comparative evaluation of teaching 
strategies is that tutoring is known to increase the skill of the 
tutors as well as the students [4].  Utilizing tutoring as a 
pedagogical training ground for new computer science teachers is 
an active area of application and research [10].  By capturing 
multiple tutoring sessions, it may be possible to investigate how 
the tutor’s pedagogical style changes over time and the 
corresponding impact on student learning.   

5. CONCLUSIONS & FUTURE WORK 
Hands-on practice in class is a promising instructional approach 
in which empirical results such as those presented here can help 
the computing education community understand the impact of 
alternative instructional approaches.  One-on-one human tutoring 
is a viable exploratory research approach for investigating 
teaching strategies because it readily lends itself to control of 
confounding factors, capture of the complete instructional 
interaction, and coverage of a variety of instructors and teaching 
strategies.  In the study reported here, it was found that a 
moderate approach, in which the tutor holds the initiative just 
over half the time, yielded learning gains comparable to a 
proactive approach in which the tutor directed the problem 
solving nearly three-fourths of the time.   
Conducting a confirmatory tutoring experiment, as well as whole-
class research studies with prescribed levels of instructor 
initiative, are  promising directions for future work.  These 
investigations can shed light on the fine-grained cognitive and 
affective processes at work as students acquire computing 
concepts and skills. 
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