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Abstract.  Self-efficacy is an individual’s belief about her ability to perform well in a given situation.  Because self-
efficacious students are effective learners, endowing intelligent tutoring systems with the ability to diagnose self-
efficacy could lead to improved pedagogy.  Self-efficacy is influenced by (and influences) affective state.  Thus, 
physiological data might be used to predict a student’s level of self-efficacy.  This article investigates an inductive 
approach to automatically constructing models of self-efficacy that can be used at runtime to inform pedagogical 
decisions.  It reports on two complementary empirical studies.  In the first study, two families of self-efficacy 
models were induced: a static self-efficacy model, learned solely from pre-test (non-intrusively collected) data, and a 
dynamic self-efficacy model, learned from both pre-test data as well as runtime physiological data collected with a 
biofeedback apparatus.  In the second empirical study, a similar experimental design was applied to an interactive 
narrative-centered learning environment.  Self-efficacy models were induced from combinations of static and 
dynamic information including pre-test data, physiological data, and observations of student behavior in the learning 
environment.  The highest performing induced naïve Bayes models correctly classified 85.2% of instances in the 
first empirical study and 82.1% of instances in the second empirical study.  The highest performing decision tree 
models correctly classified 86.9% of instances in the first study and 87.3% of instances in the second study. 
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1. Introduction 
Affect has begun to play an increasingly important role in intelligent tutoring systems.  Recent 
years have seen the emergence of work on affective student modeling (Conati and Maclaren, 
2005), detecting frustration and stress (Burleson and Picard, 2004; Prendinger and Ishizuka, 
2005), modeling agents’ affective states (André and Mueller, 2003; Gratch and Marsella, 2004; 
Lester et al., 1999), devising affectively informed models of social interaction (Johnson and 
Rizzo, 2004; Paiva et al., 2005; Porayska-Pomsta and Pain, 2004), and detecting student 
motivation (de Vicente and Pain, 2002).  All of this work seeks to increase the fidelity with 
which affective and motivational processes are modeled in intelligent tutoring systems in an 
effort to increase the effectiveness of tutorial interactions and, ultimately, learning. 

Self-efficacy is an affective construct that has been found to be a highly accurate predictor of 
students’ motivational state and their learning effectiveness (Zimmerman, 2000).  Defined as 
“the belief in one’s capabilities to organize and execute the courses of action required to manage 
prospective situations” (Bandura, 1995), self-efficacy has been repeatedly demonstrated to 
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directly influence students’ affective, cognitive, and motivational processes (Bandura, 1997).  
Self-efficacy holds much promise for intelligent tutoring systems (ITSs).  Foundational work has 
begun on using models of self-efficacy for tutorial action selection (Beal and Lee, 2005) and 
investigating the impact of pedagogical agents on students’ self-efficacy (Baylor and Kim, 2004; 
Kim, 2005).  Self-efficacy is useful for predicting which problems and sub-problems a student 
will select to solve, how long a student will persist on a problem, how much overall effort they 
will expend, as well as motivational traits such as level of engagement (Schunk and Pajares, 
2002; Zimmerman, 2000).  If ITSs could increase students’ self-efficacy, then students might be 
more actively involved in learning, expend more effort, and be more persistent; it might also 
promote student coping behaviors when they experience learning impasses (Bandura, 1997). 

To effectively reason about a student’s self-efficacy, ITSs need to accurately model self-
efficacy.  Self-efficacy diagnosis should satisfy three requirements.  First, it should be realized in 
a computational mechanism that operates at runtime.  Self-efficacy may vary throughout a 
learning episode, so pre-learning self-efficacy instruments may or may not be predictive of self-
efficacy at specific junctures in a learning episode.  Second, self-efficacy diagnosis should be 
efficient.  It should satisfy the real-time demands of interactive learning.  Third, self-efficacy 
diagnosis should avoid interrupting the learning process.  A common approach to obtaining 
information about a student’s self-efficacy is directly posing questions to them throughout a 
learning episode.  However, periodic self-reports are disruptive.  

This article details the design and evaluation of an empirical approach to computational self-
efficacy models.  The empirical approach calls for a data-driven framework for modeling self-
efficacy.  The article proposes SELF (Self-Efficacy Learning Framework), a data-driven affective 
architecture and methodology for learning empirically informed models of self-efficacy from 
observation of student interactions.  SELF has been evaluated in two experiments that investigate 
inductive approaches (naïve Bayes classifiers and decision tree classifiers) to constructing 
models of self-efficacy.  In the foundational evaluation students interacted with the online 
tutorial system in the domain of genetics.  In this experiment two families of self-efficacy models 
were induced: the model learner constructed (1) static models, which are based on demographic 
data and a validated problem-solving self-efficacy instrument (Bandura, 2006), and (2) dynamic 
models, which extend static models by also incorporating real-time physiological data.  In the 
experiment, 33 students provided demographic data and were given an online tutorial in the 
domain of genetics.  Next, they were given a validated problem-solving self-efficacy instrument, 
and they were outfitted with a biofeedback device that measured heart rate and galvanic skin 
response.  Physiological signals were then monitored while students were tested on concepts 
presented in the tutorial.  After solving each problem, students rated their level of confidence in 
their response with a “self-efficacy slider.”  Both families of resulting models, induced from 
collected data, operate at runtime, are efficient, and do not interrupt the learning process.  The 
static models are able to predict students’ real-time levels of self-efficacy with 82.9% accuracy, 
and the resulting dynamic models are able to achieve 86.9% predictive accuracy.  Thus, the 
predictive power of non-intrusive static models can be increased by further enriching them with 
physiological data (dynamic models).   

The results of the foundational evaluation of SELF-constructed models of self-efficacy in the 
online tutorial system indicated that an inductive approach offered potential as a method for 
modeling self-efficacy and called for further investigation of the techniques.  The design of a 
second experiment was motivated by three factors: explicitly controlling the challenge levels of 
the learning environment; exploiting task structure to study self-efficacy with an appraisal-
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theoretic (Lazarus, 1991) framework; and increasing the complexity of the learning environment 
and, therefore the dimensionality of the induction problem.  In the second experiment, dynamic 
models (including real-time physiological data) of self-efficacy were induced.  In the experiment, 
42 students provided demographic data and were given an online tutorial in the domain of 
genetics.  Next, they were given a validated problem-solving self-efficacy instrument, and they 
were outfitted with a biofeedback device that measured heart rate and galvanic skin response.  
Next students entered CRYSTAL ISLAND, an interactive learning environment in which the student 
plays the role of detective in a science mystery in the domain of genetics.  Students used their 
recently acquired knowledge of genetics to solve the mystery.  They periodically provided self-
reports of self-efficacy via popup dialog boxes throughout their interaction.  Resulting models 
are reasonably accurate, operate at runtime, are efficient, and do not interrupt the learning 
process. 

This article is structured as follows.  Section 2 discusses the role of self-efficacy in learning.  
Section 3 presents the SELF architecture and methodology, describing how SELF models of self-
efficacy are induced.  The foundational evaluation with the online tutorial system is described in 
Section 4.  Section 5 then presents an evaluation of SELF in a rich, interactive narrative-centered 
learning environment, CRYSTAL ISLAND.  Section 6 discusses the findings and associated design 
implications, and Section 7 offers concluding remarks and suggests directions for future work. 

2.  Affect and Self-efficacy 
Founded in perception and decision-making, affect is a central component of human cognition.  
Affective reasoning has been the subject of increasing attention among cognitive scientists in 
recent years, and the study of affective computing is becoming a field in its own right.  Affective 
computing investigates techniques for enabling computers to recognize, model, understand, 
express, and respond to emotion effectively.  Such skills have been recognized as key 
components of human emotional intelligence essential to natural interaction (Goleman, 1995).  
Affect influences humans’ interactions with one another, their behaviors, and cognitive 
processes, and it can contribute in important ways to a broad range of computational tasks 
(Picard, 1997).  In particular, incorporating affective reasoning into education, training, and 
entertainment systems could enable them to create more effective, interesting, and engaging 
experiences for their users. 

2.1. Affect Recognition 
The complementary processes of affect synthesis and affect recognition have been studied 
extensively in the context of virtual environments.  Work on affect synthesis has been done to 
control expressive models of embodied cognition and behavior in animated agents (André and 
Mueller, 2003; Gratch and Marsella, 2004; Paiva et al., 2005) and pedagogical agents that 
support emotive expression in intelligent tutoring systems (Johnson and Rizzo, 2004; Porayska-
Pomsta and Pain, 2004).  Affect recognition (Picard, 1997) is the task of identifying the affective 
state of an individual from a variety of physical cues, which are produced in response to affective 
changes in the individual.  These include visually observable cues such as body and head 
posture, facial expressions, and posture, and changes in physiological signals such as heart rate, 
skin conductivity, temperature, and respiration (Allanson and Fairclough, 2004; Frijda, 1986).  
Psychologists have used electroencephalograms (EEG) to monitor users’ brain activity for 
detection of task engagement (Pope et al., 1995) and user attention (Mekeig and Inlow, 1993), 
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electromyograms (EMG) to detect electrical activity in muscles to obtain measurements of users’ 
sense of presence in virtual environments (Weiderhold et al., 2003), and eye tracking devices to 
measure pupil responses to emotional stimulations (Partala and Surakka, 2003).  Heart rate 
measurements have been used to adapt challenge levels in computer games (Gilleade and 
Allanson, 2003), detect frustration and stress (Prendinger et al., 2005), and monitor anxiety and 
stress (Healey, 2000).  Galvanic skin response (GSR) has been correlated with cognitive load 
(Verwey and Veltman, 1996) and used to sense user affective states, such as stress (Healey, 
2000), student frustration for learning companion adaptation (Burleson, 2006), frustration for 
life-like character adaptation in a mathematical game (Prendinger et al., 2005), and multiple user 
emotions in an educational game (Conati, 2002).  Heart rate and GSR have jointly been used to 
determine user affect (Prendinger and Ishizuka, 2005) based on the model of Lang (1995), which 
characterizes emotions in a two-dimensional space of valence (positive to negative) and arousal 
(low to high). 
 Affect recognition work has explored emotion classification from self reports (Beal and Lee, 
2005), post-hoc reports (de Vicente and Pain, 2002), self-reports, peer reports, and judges’ 
reports trained to recognize emotion in the face based on the work of Ekman and Friesen (1978) 
(Graesser et al., 2006), posture (Mota and Picard, 2003), and multimodal classifications 
including combinations of visual cues and physiological signals (Burleson, 2006; Burleson and 
Picard, 2004; Picard et al., 2001), and facial and head gestures, posture, and task information 
(Kapoor and Picard, 2005).  Recent investigations have also begun to investigate linguistic 
features for prediction of affective states (Litman and Forbes-Riley, 2006) and comprehensive 
world models for predicting user physiological response to reduce the need for biofeedback 
apparatus in runtime environments (McQuiggan et al., 2006).  Collectively, this body of work 
serves as a springboard for research described in this article, which, in part, reports on the use of 
measurements of user physiological response as a predictor of self-efficacy levels.  Because 
users’ physiological responses follow directly from their affective states, which are known to be 
correlated with levels of self-efficacy (Zimmerman, 2000), accurate measurements of 
physiological response could be used to enable interactive environments to effectively predict 
user levels of self-efficacy in order to guide customized interactions. 

2.2. Self-efficacy 
Self-efficacy2 influences students’ reasoning, their level of effort, their persistence, and how they 
feel; it shapes how they make choices, how much resilience they exhibit when confronted with 
failure, and what level of success they are likely to achieve (Bandura, 1995; Schunk and Pajares, 
2002; Zimmerman, 2000).  While it has not been conclusively demonstrated, many conjecture 
that given two students of equal abilities, the one with higher self-efficacy is more likely to 
perform better than the other over time.  Highly efficacious students exhibit more control over 
their future through their actions, thinking, and feelings than inefficacious students (Bandura, 
1986). Self-efficacy is intimately related to motivation, which controls the effort and persistence 
with which a student approaches a task (Lepper et al., 1993).  Effort and persistence are 
themselves influenced by the belief the student has that she will be able to achieve a desired 
outcome (Bandura, 1997).  Students with low self-efficacy perceive tasks to be more challenging 

                                                 
2 Self-efficacy is closely related to the popular notion of confidence.  To distinguish them, consider the situation in which a 

student is very confident that she will fail at a given task.  This represents high confidence but low self-efficacy, i.e., she is 
exhibiting a strong belief in her inability (Bandura, 1997). 



5 

than they actually are, often leading to feelings of anxiety, frustration and stress (Bandura, 1986). 
In contrast, students with high self-efficacy view challenge as a motivator (Bandura, 1986; 
Malone and Lepper, 1987). Self-efficacy has been studied in many domains with significant 
work having been done in computer literacy (Delcourt and Kinzie, 1993) and mathematics 
education (Pajares and Kranzler, 1995).  It is widely believed that self-efficacy is domain-
specific; whether it crosses domains remains an open question.  For instance, students with high 
self-efficacy in mathematics may be inefficacious in science, or a highly efficacious student in 
geometry may experience low efficacy in algebra. 

A student’s self-efficacy is influenced by four types of effectors (Bandura, 1997; 
Zimmerman, 2000).  First, in enactive mastery experiences, the student performs actions and 
experiences outcomes directly.  These are typically considered the most influential category as 
successful experiences typically raise self-efficacy, while unsuccessful experiences tend to lower 
self-efficacy.  However, easy successes often encourage expectations of quick successes leading 
to a reduction in student resilience when faced with challenges.  Second, in vicarious 
experiences, the student models her beliefs based on comparisons with others.  These can include 
peers, tutors, and teachers, especially those with similarly perceived capabilities.  Thus, seeing a 
perceived parallel peer succeed at a task typically increases self-efficacy.  Vicarious experiences 
are particularly useful when the only way to gauge adequacy is to relate personal results with the 
performance of others.  For instance, a student who completes a timed math test in 53 seconds 
has to gauge her performance by comparing completion times of her peers.  Third, in verbal 
persuasion, the student experiences an outcome via a persuader’s description.  For example, she 
may be encouraged by the persuader, who may praise the student for performing well or 
comment on the difficulty of a problem.   Her interpretation will be affected by the credibility 
she ascribes to the persuader.  Thus, it is pedagogically constructive to suggest a student has the 
capabilities to succeed at a given task verbally, likely raising the student’s self-efficacy.  Verbal 
persuasion is particularly useful in enabling students to overcome self-doubt.  Although verbal 
persuasion does not have a large impact on lasting student persistence it can encourage 
immediate action and effort.  Fourth, with physiological and emotional effects, the student 
responds affectively to situations and their anticipation.  These experiences, which often induce 
stress and anxiety, are manifested in physiological responses, such as increased heart rate and 
sweaty palms, call for emotional support and motivational feedback since they can be 
detrimental to success. 

Student self-efficacy beliefs regulate human behavior through four major processes central to 
human performance (Bandura, 1997): 
• Cognitive Processes. Self-efficacy affects student reasoning and problem-solving (Bandura, 

1995; Schunk and Pajares, 2002; Zimmerman, 2000) to the point that performance can be 
elevated or impaired.  High self-efficacy affords students the abilities to set ambitious future 
goals and a rigid commitment to achieve them.  Furthermore, self-efficacious students are 
better able to select favorable problem-solving strategies and more quickly disregard 
inadequate approaches.  On the other hand, low self-efficacy reduces the payoff of 
achieving weakly structured goals and elicits an inability to select optimal problem-solving 
strategies. 

• Motivational Processes.  Students with high self-efficacy are more likely to visualize 
successful outcomes.  Setting challenging goals in turn yields elevated levels of motivation 
(Lepper et al., 1993), another construct affected by self-efficacy.  Low self-efficacy 
interferes with visualizing, thereby reducing resilience and persistence abilities. 
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• Selective Processes.  The activities that students choose to engage in significantly affects 
their potential to achieve.  Students with high self-efficacy select challenging activities and 
environments that regularly present opportunities to exhibit persistence.  Students with low 
self-efficacy tend to select activities and environments that present little or no challenge and 
can often be detrimental to the development of cognitive and social skills. 

• Affective Processes.  Self-efficacy influences students’ abilities to regulate their own 
affective states.  There are three fundamental ways in which self-efficacy influences 
affective state:  self-control over thought, action, and affect (Bandura, 1997).  First, thought-
oriented mode refers to cognitive processes that are emotionally arousing and the ability to 
self-regulate such thoughts.  Self-efficacy beliefs about one’s ability to overcome risks and 
to persist through or avoid emotionally disturbing thoughts have great influence on 
behavior.  Second, action-oriented mode refers to taking courses of action that effect change 
in the environment so that there is an increased potential for desirable affective outcomes. 
Third, affect-oriented mode refers to one’s abilities to conceive adverse affective states 
when faced with adverse-emotion-invoking situations.  Self-relaxation, calming inner 
monologue and controlled breathing are techniques often used to reduce undesirable 
emotional arousal. 

Predicting self-efficacy holds great promise for intelligent tutoring systems and educational 
software in general. Self-efficacy beliefs have a stronger correlation with desired behavioral 
outcomes than many other motivational constructs (Graham and Weiner, 1996), and it has been 
recognized in multiple educational settings that self-efficacy can predict both motivation and 
learning effectiveness (Zimmerman, 2000).  Thus, if it were possible to enable ITSs to accurately 
model self-efficacy, they might be able to leverage it to increase students’ academic 
performance.  Two recent efforts have explored the role of self-efficacy in ITSs.  One introduced 
techniques for incorporating knowledge of self-efficacy in pedagogical decision making (Beal 
and Lee, 2005).  Using a pre-test instrument and knowledge of problem-solving success and 
failure, instruction is adapted based on changes in motivational and cognitive factors.  The 
second explored the effects of pedagogical agent design on students’ traits, which included self-
efficacy (Baylor and Kim, 2004; Kim, 2005).  The focus of the experiments reported in this 
article is on the automated induction of self-efficacy models for runtime use by ITSs. 

One can distinguish two fundamental approaches to modeling self-efficacy: analytical and 
empirical.  In the analytical approach, models of self-efficacy can be constructed by analyzing 
the findings of the educational psychology literature.  However, self-efficacy is not well 
understood computationally, i.e., the literature has not produced a set of rules defining precise 
characteristics of particular levels of self-efficacy.  While we do have expressive computational 
models of affect, e.g., the OCC model (Ortony et al., 1988) and EMA (Gratch and Marsella, 
2004) based on the Smith and Lazarus’ appraisal theory of emotion (Lazarus, 1991), we do not 
have similarly rich, comprehensive models of self-efficacy.  Moreover, because self-efficacy 
reasoning requires drawing inferences about a student’s past experiences, her beliefs, her 
intentions, her affective state, her current situational context, and her capabilities, devising a 
complete and universal model of self-efficacy seems to be well beyond our grasp at the current 
juncture.   

An alternative to analytically devising models of self-efficacy for intelligent tutoring systems 
is the empirical approach.  If somehow we could create models of self-efficacy that were derived 
directly from observations of “efficacy in action,” we could create empirically grounded models 
based on student behaviors exhibited during the performance of a specific task within a given 
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domain.  While it is not apparent that this approach could produce a universal model of self-
efficacy—a universal model may not even be achievable, at least in the near term—the empirical 
approach could nonetheless generate models of self-efficacy that significantly extend the 
pedagogical capabilities present in current educational software and intelligent tutoring systems.  

3.  Data-driven Self-efficacy Modeling  
The prospect of creating a “self-efficacy learner” that can induce empirically grounded models of 
self-efficacy from observations of student interactions holds much appeal.  To this end, we 
propose SELF, an affective data-driven paradigm that learns models of self-efficacy.  SELF 
consists of a trainable architecture and a two-phase methodology of training and learning. 

3.1. The SELF Architecture 
The SELF framework operates in two modes: self-efficacy model induction in which the 
architecture interacts with a student trainer to gather data and runtime operation, in which it 
monitors student levels of self-efficacy based on observations of student interaction.   

Self-Efficacy Learner

Interactive
Environment

Naïve Bayes / Decision Tree

Self-Efficacy Model

Observational Attribute Vector

Temporal 
Attributes

Locational 
Attributes

Intentional 
Attributes

Runtime, Non-Interruptive Self-
Efficacy Diagnosis Control

User Interface

Training 
Interface

End User

Biofeedback

Training User

Physiological
Response

 

Figure 1.  The SELF architecture.  Dashed arcs represent self-efficacy model induction mode and solid arcs represent 

the runtime operation mode. 
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• Self-efficacy Model Induction.  During model induction (depicted in Figure 1 with dashed 
arcs), SELF acquires training data and learns models of self-efficacy from training users 
interacting with the learning environment.  The training user is outfitted with biofeedback 
equipment which monitors her heart rate and galvanic skin response.  Biofeedback signals 
are recorded in training logs via the interactive environment, which also records an event 
stream produced by the training users’ behaviors in the environment.  In the online tutorial 
system this event stream included responses to the genetics questions, self-reports of self-
efficacy, and temporal features, such as how long the student spent on the question.  The 
interactive learning environment event stream also includes information regarding location 
and intention of the student in the 3D interactive environment.  Together, the biofeedback 
signals and the corresponding elements in the event stream are assembled in temporal order 
into the observational attribute vector.  After training sessions (typically involving multiple 
training users) are complete, the self-efficacy learner induces models from the observed 
situational data and physiological data.  The students’ self-reported self-efficacy levels 
serve as class labels for the training instances.  The students are presented a “self-efficacy 
slider” with a scale ranging from 0 (low) to 100 (high).  Students report their perceived 
levels of efficacy using this scale. 

• Runtime Operation.  During runtime operation (represented in Figure 1 with solid arcs), 
which is the mode employed when students interact with fielded learning environments, the 
induced models inform the pedagogical decision making of SELF-enhanced runtime 
components by predicting end-users’ levels of self-efficacy.  The learning environment 
again tracks all activities in the world and monitors the same observable attributes reported 
to the self-efficacy learner during self-efficacy model induction.  The induced model is used 
by the self-efficacy diagnosis controller to (1) assess the situation to determine what level of 
self-efficacy the student is experiencing, and (2) determine which learning environment 
modules need to be informed of the changes (if any changes exist) in the students’ level of 
self-efficacy.  In runtime operation mode students may don biofeedback equipment if the 
model being used is a dynamic model, in which case the observational attribute vector 
expects to have a continuous feed of heart rate and skin conductance data. 

3.2. Training Data Acquisition 
To accurately model self-efficacy, an instrument needs to be devised that can provide a metric 
for the construct and that can be used by the induced models for prediction.  Recall from Section 
2 that a growing body of work reports on efforts to detect and recognize user affect from a 
variety of information sources including self-reports, peer reports, judges’ reports, physiological 
response, body posture, eye tracking, and linguistic features of interactions.  While sophisticated 
techniques have been developed for third-party detection of affect, e.g., analyzing recordings of 
facial expression (Ekman and Friesen, 1978), and a multitude of validated instruments have been 
devised for a broad range of affective phenomena, analogous techniques and instruments have 
not yet emerged for self-efficacy detection and measure.  To date, self-reports have been the 
most widely used method for obtaining quantitative self-efficacy measurements (Baylor and 
Kim, 2004; Beal and Lee, 2005; Kim, 2005)3.  Self-efficacy was therefore modeled with self-
                                                 
3 One approach to validating self-reports of efficacy is the test-retest method and the subsequent analysis to determine the 

reliability between self-reports for like questions.  While this method is common in survey instruments for obtaining self-
efficacy measurements, similar methodologies have yet to be devised for validating self-reports of efficacy gathered in real-
time environments. 
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reports, which were represented with a 100 point scale.  In the learning phase, self-report data 
were translated into multiple levels of granularity (2, 3, 4, and 5-level efficacy scales).   

In addition, accurately modeling self-efficacy requires a representation of the situational 
context that satisfies two requirements: it must be sufficiently rich to support assessment of 
changing levels of self-efficacy, and it must be encoded with features that are readily observable 
at runtime.  Because affect is fundamentally a cognitive process in which the user appraises the 
relationship between herself and her environment (Gratch and Marsella, 2004; Smith and 
Lazarus, 1990) and similarly, self-efficacy beliefs draw heavily on a student’s appraisal of the 
situation at hand, affect recognition models (and models of self-efficacy) should take into 
account both physiological and environmental information.  For task-oriented learning 
environments, self-efficacy models can leverage knowledge of task structure and the state of the 
student in the learning environment to effectively reason about students’ efficacy levels.  In 
particular, for such learning environments, self-efficacy models can employ concepts from 
appraisal theory (Lazarus, 1991) to recognize student efficacy levels generated from their 
assessment of how their abilities relate to the current learning objective and task.  Thus, self-
efficacy models can leverage representations of the information observable in the learning 
environment – note that this refers to the same information that students may use in their own 
appraisals – to predict student efficacy levels.  The SELF framework therefore employs an 
expressive representation of all activities in the learning environment, including those controlled 
by users and the interactive system, by encoding them in an observational attribute vector, which 
is used in both the model induction mode and model usage mode of operation.  During model 
induction, the observational attribute vector is passed to the self-efficacy learner for model 
generation; during runtime operation, the attribute vector is monitored by a SELF-enhanced 
runtime component that utilizes knowledge of user self-efficacy levels to inform effective 
pedagogical decisions.  The observable attribute vector (Table 1) represents four interrelated 
categories of features for making decisions: 
• Temporal Features: In the online tutorial system, SELF monitors the amount of time 

students spend on each question and how long the cursor resides in particular locations of 
the interface, since users tend to move their mouse according to the focus of their attention 
(Chen et al., 2001).  In the interactive learning environment, SELF continuously tracks the 
amount of time that has elapsed since the student arrived at the current location, since the 
student achieved a goal, and since the student was last presented with an opportunity to 
achieve a goal.  Temporal features are useful for measuring the persistence of the student on 
the current and past tasks. 

• Locational Features: SELF tracks the location of the student’s cursor in the online tutorial 
system.  In the interactive learning environment, SELF continuously monitors the location of 
the student’s character.  It monitors locations visited in the past, locations recently visited, 
locations not visited, and locations being approached.  There are 45 designated locations in 
the interactive learning environment (e.g., the laboratory, the living room of the men’s 
quarters, and the area surrounding the waterfall).  Locational features are useful for tracking 
whether students are in locations where learning tasks and current goals are achievable.  
When a student arrives in a location where a learning objective can be completed combined 
temporal attributes and locational features can aid in the prediction of the student exhibiting 
command of the learning task and associated levels of efficacy. 
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Table 1. Representative observational attributes monitored in the online tutorial system (OTS) and interactive 

learning environment (ILE), including temporal, locational, intentional and physiological features. 

Observational 
Attribute

Attribute Description
a

Possible Values
a

Question Time
A
a

Time in Current 
Location

Time on Current 
Learning Goal
a

The amount of time that has elapsed 
since the question was first displayed 
to the student

How does the amount of time the student 
has spent on the current question 
compare to the average time spent on 
previous questions (less or more)

The amount of time that the student has 
spent in a defined location of the interface

The amount of time that the student has 
spent on current learning goal being 
attempted

Positive real values
A
a

Positive and negative 
real values
A
a

Positive real values
a

Positive real values
A
a

Applicable Environments
OTS ILE

Temporal Features
A
a

Difference from 
Average Question Time
A
a

Locational Features

Intentional Features

Physiological Features

Comprehensive 
Learning Time

The amount of time that has passed since 
the student began interacting

Positive real values

Current Location The defined area in which the student’s 
cursor is located (OTS) or the area in 
which the student’s embodied character 
is located (ILE)

OTS areas: Question, Answer, 
Self-efficacy Slider, Submit
ILE areas: Dining Hall, 
Waterfall, Lab Testing Area, 
Lab Reading Room, etc.

Goal Achievable in 
Current Location

Whether or not the learning goal is 
achievable in the student’s current 
location

True or False
A
a

Previous Location

Visited Location L Whether or not the student has visited the 
particular location, L, for all locations, as 
designated by cursor location (OTS) and 
embodied character location (ILE)

True or False

The defined area in which the student’s 
cursor was located (OTS) or the area in 
which the student’s embodied character 
was located (ILE) immediately before the 
Current Location.

Same as “Current 
Location” Observational 
Attribute above

Problem/Goal Identifier corresponding to individual 
problems (OTS) and learning goals (ILE)

OTS: Problem number (1-20)
ILE: Goal name (test-milk, talk-
to-Jin, locate-ill-characters, etc.)

Progression Number of problems/ goals solved Positive integer values

Progression Rate Average amount of time required to solve 
problems and achieve goals

Positive real values

Number of Locations 
Visited in Goal Pursuit

Average amount of time required to solve 
problems and achieve goals

Positive integer values

Number of visits to 
Location L

The number of times the student has 
visited the particular location, L, for all 
locations, as designated by cursor 
location (OTS) and embodied character 
location (ILE)

Positive integer values 
(values reset to 0 after each 
problem/goal)

Heart Rate The student’s beats per minute as 
measured by the interval between the last 
two heart beats

Positive real values

Galvanic Skin Response The electrical resistance of the student’s 
skin as measured by the biofeedback 
apparatus

Positive real values

Average HR and GSR The student’s average heart rate and 
galvanic skin response measured from 
the start of interaction

Positive real values

Problem/Goal HR and 
GSR

The student’s average heart rate and 
galvanic skin response measured from 
the start of the current problem/goal

Positive real values

Sliding Window HR and 
GSR Averages

The student’s average heart rate and 
galvanic skin response measured across 
multiple intervals of 5, 10, 15, 20, 30, 45 
and 60 seconds

Positive real values

Sliding Window HR and 
GSR Differences

The change in student’s average heart 
rate and galvanic skin response 
measured across multiple intervals of 5, 
10, 15, 20, 30, 45 and 60 seconds from 
the previous interval’s window

Increasing, Decreasing, 
Same
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• Intentional Features: In the interactive learning environment, SELF continuously tracks 
goals being attempted (as inferred from locational and temporal features, e.g., approaching a 
location where a goal can be achieved), goals achieved, the rate of goal achievement, and 
the effort expended to achieve a goal (as inferred from recent exploratory activities and 
locational features).  These features enable models to incorporate knowledge of potential 
and student-perceived valence (positive and negative perceptions) of a given situation.  
Intentional features, such as goal progression, are useful for measuring how a student’s 
abilities match the demands of the learning tasks.  For example, a student that is rapidly 
achieving goals is more likely to be confident in their abilities to drive themselves towards 
success. 

• Physiological Response:  SELF continuously tracks readings from a biofeedback apparatus 
attached to the student’s hand.  Blood volume pulse and galvanic skin response readings are 
monitored at a rate of approximately 30 readings/second to accurately track changes in the 
student’s physiological response.  Blood volume pulse readings are used to compute 
student’s heart rate and changes in their heart rate.  SELF monitors trends in both student 
heart rate and galvanic skin response over a variety of fixed and sliding windows in addition 
to moment-to-moment readings.  For instance, several fixed width averages of HR and GSR 
are monitored over the entire learning episode, for individual questions in the online 
tutoring system, fixed by the time the student takes to complete the question), and across 
individual learning objectives in the interactive learning environment, fixed by the time the 
student takes to complete the learning objective.  SELF monitors HR and GSR trends in 
several sliding window frames of 5, 10, 15, 20, 30, 45, and 60 seconds.  These sliding 
windows allow self-efficacy models to isolate changes in physiological response in the 
smaller windows that have little or no impact to the trends tracked in the longer windows.  
Other physiological response features include comparison attributes that monitor the change 
between current and past windows; summarizing the transition between the windows, i.e., 
whether HR and GSR are going up or down, and determining the rate of change between 
the windows. 

In the SELF implementation for the online tutorial system, the observational attribute vector 
encodes nearly 150 features while in the interactive learning environment, CRYSTAL ISLAND, the 
observational attribute vector encodes 283 features.  During model induction, a continuous 
stream of physiological data is collected and logged approximately 30 times per second.  In 
addition, an instance of the observational attribute vector is logged every time a significant event 
occurs, yielding, on average, hundreds of vector instances each minute.  We define a significant 
event to be a manipulation of the environment that causes one or more features of the 
observational attribute vector to take on new values. At runtime, the same features are 
continuously monitored by the respective environment.  This may or may not include 
physiological response data depending on the incorporated model type, static or dynamic. 

3.3. Learning SELF Models 
During SELF model induction, the framework learns models of self-efficacy from the 
observational attribute vectors.  Many types of models can be learned.  Work to date has 
investigated two families: rule-based models (decision trees) and probabilistic models (naïve 
Bayes).  Naïve Bayes and decision tree classifiers are effective machine learning techniques for 
generating preliminary predictive models.  Naïve Bayes classification approaches produce 
probability tables that can be incorporated into runtime systems and used to continually update 
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probabilities for predicting self-efficacy.  Naïve Bayes classifiers make an unsupported 
assumption (referred to as the “naïve assumption”) that the attributes of the observational 
attribute vector are conditionally independent.  Thus, the probability of two conditionally 
independent events, A and B both occurring is P(A and B | C) = P(A | C)P(B | C), where C is an 
observed event.  Under the naïve assumption, gaining knowledge of event A occurring, given 
that we already know C, has no effect on the probability of event B occurring, and vice versa 
(Russell and Norvig, 2003).  This assumption does not hold in the environments described in this 
article.  For example, in the interactive learning environment there are many actions that are 
dependent on the location of the student’s character (i.e., experiments can only be run in the 
laboratory).  Despite the inaccurate assumption that all observable attributes are conditionally 
independent, it has been found that naïve Bayes classifiers can nevertheless perform well and 
often with performance comparable to other classification methods (Han and Kamber, 2005). 

Decision trees provide interpretable rules that support runtime pedagogical decision making.  
The decision trees induced in this work make use of the well known C4.5 software extension of 
the ID3 decision tree induction algorithm (Quinlan, 1986), which has been incorporated in the 
WEKA machine learning toolkit as the J48 algorithm (Witten and Frank, 2005).  The decision 
tree induction algorithm makes use of a top-down, divide-and-conquer approach.  At each node, 
an information gain analysis is used to select the attribute with the highest information gain, thus 
reducing the amount of information needed, to a minimum, to make classifications in the node’s 
sub-tree (Han and Kamber, 2005). 

With both naïve Bayes and decision tree classifiers, SELF-enhanced runtime tutorial control 
components can monitor the state of the attributes in the probability tables (for naïve Bayes) or 
rules (for decision trees) to determine when conditions are met for predicting particular varying 
levels of self-efficacy.  Both naïve Bayes and decision tree classification techniques are useful 
for preliminary predictive model induction for large multidimensional data, such as the 278-
attributes taken from the 283-observed attribute vector used for learning in the interactive 
learning environment.  Two approaches can be distinguished in learning techniques: those that 
are completely automated, and those that require the knowledge provided by a domain expert.  
SELF experiments reported below focus on fully automated learning approaches.  SELF model 
induction proceeds in four phases: 
• Data Construction: Each training log is first translated into a full observational attribute 

vector.  For example, blood volume pulse (BVP) and galvanic skin response (GSR) 
readings were taken nearly 30 times every second reflecting changes in both heart rate and 
skin conductivity.  The 278 attributes observed directly in the environment were combined 
with the selected self-reported levels of self-efficacy class labels, since only one class label 
can be used.  Thus, 4 datasets are constructed; one for each level of granularity.  Consider 
observable attributes a1, a2, …, a278, and class labels c279, c280, c281, c282, c283 (c279 
corresponds to the raw self-efficacy reports, c280 corresponds to two-level self-efficacy self-
reports, c281 corresponds to three-level, c282 corresponds to four-level, and c283 corresponds 
to five-level self-efficacy self-reports).  Each constructed dataset consists of all observable 
attributes, a1, …, a278, and one non-raw self-efficacy self-report class label. 

• Data Cleansing: After data are converted into an attribute vector format a dataset is 
generated that contains only instances in which the biofeedback equipment was able to 
successfully monitor BVP and GSR throughout the entire learning session.  For example, in 
the foundational evaluation described below, data from two sessions had to be discarded for 
this reason: BVP (used for monitoring heart rate) readings were difficult to obtain from this 
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participant.  Two sessions did not satisfy these requirements and were subsequently 
removed from the interactive learning environment evaluation. 

• Naïve Bayes Classifier and Decision Tree Learning: Once the dataset is prepared, it is 
passed to the learning systems.  Each dataset was loaded into the WEKA machine learning 
toolkit (Witten and Frank, 2005), a naïve Bayes classifier and decision tree were learned, 
and tenfold cross-validation analyses were run on the resulting models (See Section 4.3.1 
for details).  The entire dataset was used to generate several types of self-efficacy models.  
These included models with different granularities of self-efficacy level representations. 

The following section will present a foundational evaluation of SELF in an online tutorial system.  
Then after an introduction to CRYSTAL ISLAND, a second empirical study is presented in which 
SELF was again evaluated in a rich, narrative-centered, interactive learning environment. 

4.  Online Tutorial System Evaluation 
In this experiment, two families of self-efficacy models were induced: the model learner 
constructed (1) static models, which are based on demographic data and a validated problem-
solving self-efficacy instrument (Bandura, 2006), and (2) dynamic models, which extend static 
models by also incorporating real-time physiological data.  Both families of resulting models 
operate at runtime, are efficient, and do not interrupt the learning process. 

4.1. Method 

4.1.1. Participants and Design 
In a formal evaluation, data was gathered from thirty-three subjects in an Institutional Review 
Board (IRB) of North Carolina State University approved user study.  There were 6 female and 
27 male participants varying in age, race, and marital status.  Approximately 12 (36%) of the 
participants were Asian, 20 (60%) were Caucasian, and 1 (3%) was Black or African-American.  
27% of the participants were married.  Participants average age was 26.15 (SD=5.32). 

4.1.2. Materials and Apparatus 
The pre-experiment paper-and-pencil materials for each participant consisted of a demographic 
survey, tutorial instructions, Bandura’s Problem-solving Self-Efficacy Scale (Bandura, 2006), 
and the problem-solving system directions.  Post-experiment paper-and-pencil materials 
consisted of a general survey.  The demographic survey collected basic information such as 
gender, age, ethnicity, and marital status.  The tutorial instructions explained to participants the 
details of the task, such as how to navigate through the tutorial and an explanation of the target 
domain.  Bandura’s validated Problem-solving Self-Efficacy Scale (Bandura, 2006), which was 
administered after participants completed a tutorial in the domain of genetics, asked them to rate 
how certain they were in their ability to successfully complete the upcoming problems (which 
they had not yet seen).  The problem-solving system directions supplied detailed task direction to 
participants, as well as screenshots highlighting important features of the system display, such as 
the “self-efficacy slider.” 

The computer-based materials consisted of an online genetics tutorial and an online genetics 
problem-solving system.  The online genetics tutorial consisted of an illustrated 15-page web 
document which included some animation and whose content was drawn primarily from a 
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middle school biology textbook (Padilla et al., 2000).  The online genetics problem-solving 
system consisted of 20 questions, which covered material in the online genetics tutorial.  The 
problem-solving system presented each multiple-choice question individually and required 
participants to rate their confidence, using the “self-efficacy slider,” in their answer before 
proceeding to the next question.  

Apparati consisted of a Gateway 7510GX laptop with a 2.4 GHz processor, 1.0 GB of RAM, 
15-in. monitor and biofeedback equipment for monitoring blood volume pulse (one sensor on the 
left middle finger) and galvanic skin response (two sensors on the left first and third fingers).  
Participants’ right hands were free from equipment so they could make effective use of the 
mouse in problem-solving activities. 

4.2. Procedure 
Each participant entered the experimental environment (a conference room) and was seated in 
front of the laptop computer.  First, participants completed the demographic survey at their own 
rate.  Next, participants read over the online genetics tutorial directions before proceeding to the 
online tutorial.  On average, participants took 17.67 (SD = 2.91) minutes to read through the 
genetics online tutorial.  Following the tutorial, participants were asked to complete the Problem-
Solving Self-Efficacy Scale considering their experience with the material encountered in the 
genetics tutorial.  The instrument asked participants to rate their level of confidence in their 
ability to successfully complete certain percentages of the upcoming problems in the problem-
solving system. Participants did not have any additional information about the type of questions 
or the domain of the questions contained in forthcoming problems.  Participants were then 
outfitted with biofeedback equipment on their left hand while the problem-solving system was 
loaded.  Once the system was loaded, participants entered the calibration period in which they 
read through the problem-solving system directions.  This allowed the system to obtain initial 
readings on the temporal attributes being monitored, in effect establishing a baseline for HR and 
GSR.  

The problem-solving system presented randomly selected, multiple-choice questions to each 
participant.  The participants selected an answer and then manipulated the self-efficacy slider 
representing the strength of their belief in their answer being correct.  Participants completed 20 
questions.  They averaged 8.15 minutes (SD = 2.37) to complete the problem-solving system.  
Finally, they were asked to complete the post-experiment survey at their own rate before 
concluding the session. 

After all participants’ sessions were completed, the procedure (described in Section 3.3 was 
used to induce models of self-efficacy ratings from the training sessions (Figure 2).  Each session 
log, containing on average 14,645.42 (SD = 4,010.57) observation changes (e.g., a change in 
location, student heart beat detected, or changes in selected answer), was first translated into a 
full observational attribute vector.  For example, BVP and GSR readings were taken nearly 30 
times every second reflecting changes in both heart rate and skin conductivity.  Blood volume 
pulse (used for monitoring HR) readings were difficult to obtain from two participants resulting 
in the elimination of that data.  The entire dataset was used to generate several types of self-
efficacy models, each predicting self-efficacy with varying degrees of granularity.  These 
included two-level models (Low, High), three-level models (Low, Medium, High), four-level 
models (Very Low, Low, High, Very High), and five-level models (Very Low, Low, Medium, 
High, Very High).  
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4.3. Results 
Below we present the results of the naïve Bayes and decision tree classification models and 
provide analyses of the collected data.  Various ANOVA statistics are presented for results that 
are statistically significant.  Because the tests reported here were performed on discrete data, we 
report Chi-square test statistics (χ2), including both likelihood ratio Chi-square and the Pearson 
Chi-square values.  Fisher’s Exact Test is used to find significant p-values at the 95% confidence 
level (p < .05). 

4.3.1. Model Results 
Naïve Bayes and decision tree classifiers are effective machine learning techniques for 
generating preliminary predictive models.  Naïve Bayes classification approaches produce 
probability tables that can be implemented into runtime systems and used to continually update 
probabilities for assessing student self-efficacy levels.  Decision trees provide interpretable rules 
that support runtime decision making.  The runtime system monitors the condition of the 
attributes in the rules to determine when conditions are met for assigning particular values of 
student self-efficacy.  Both the naïve Bayes and decision tree machine learning classification 
techniques are useful for preliminary predictive model induction for large multidimensional data, 
such as the 144-attribute vector used in this experiment.  Because it is unclear precisely which 
runtime variables are likely to be the most predictive, naïve Bayes and decision tree modeling 
provide useful analyses that can inform more expressive machine learning techniques (e.g., 
Bayesian networks) that also leverage domain experts’ knowledge.  Both static and dynamic 
models of self-efficacy were induced using naïve Bayes and decision tree classification 
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Self-Efficacy Models
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Runtime, Non-interruptive Self-
Efficacy Diagnosis Control
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Decision Tree 
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Attribute 
Vector Data 
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Figure 2.  Online tutorial system foundational evaluation data flow. 
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techniques.  Dynamic models were induced from all observable attributes, while static models 
excluded physiological response data.   

All models were constructed using a tenfold cross-validation scheme.  In this scheme, data is 
decomposed into ten equal partitions, nine of which are used for training and one used for 
testing.  The equal parts are swapped between training and testing sets until each partition has 
been used for both training and testing.  Tenfold cross-validation is widely used for obtaining the 
best estimate of error (Witten and Frank, 2005).  

Cross-validated ROC curves are useful for presenting the performance of classification 
algorithms for two reasons.  First, they represent positive classifications, included in a sample, as 
a percentage of the total number of positives, against negative classifications as a percentage of 
the total number of negatives (Witten and Frank, 2005).  Second, the area under ROC curves is 
widely accepted as a generalization of the measure of the probability of correctly classifying an 
instance (Hanley and McNeil, 1982). 

The ROC curves depicted in Figure 3 show the results of both a naïve Bayes and decision 
tree three-level model.  Low-confidence was noted by a student self-efficacy rating lower than 
33 (on a 0 to 100 scale).  Medium-confidence was determined by rating between 33 and 67, 
while High-confidence was represented all ratings greater than 67.  The smoothness of the curve 
in Figure 3(a) indicates that the data collected seems to have sufficiently covered the 
multidimensional space for inducing naïve Bayes models.  The jaggedness of the curves in 
Figure 3(b) indicates that training data did not cover the entirety of the instance space.  While 
sufficient data was collected for the induction process and modeling the phenomena of self-
efficacy, further training may be useful to obtain complete coverage of the multidimensional 
space.  In particular, further investigation will be required to gather data from situations in which 
there are more opportunities for students to experience low self-efficacy.  Although training data 
did not cover all possible instances in the multidimensional space (notice how the ROC curves 
for induced decision tree models do not extend to the axis in Figure 3b), the decision tree model 
performed significantly better than the naïve Bayes model (likelihood ratio, χ2 = 21.64, Pearson, 
χ2 = 21.47, p < .05).  The highest performing model induced from all data was the two-level 
decision-tree based dynamic model, which performed significantly better than the highest 
performing static model, which was a two-level decision tree model (likelihood ratio, χ2 = 3.99, 

           
                                             (a)                                                                                        (b) 

Figure 3. ROC curves for naïve Bayes (a) and decision tree (b) three-level models of self-efficacy.  Overall the 

naïve Bayes model correctly classified 72% of the instances while the decision tree was able to correctly classify 

83%. 
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Pearson, χ2 = 3.97, p < .05).  The three-level dynamic decision tree model was also significantly 
better than the static three-level decision tree (likelihood ratio, χ2 = 18.26, Pearson, χ2 = 18.13, p 
< .05). All model results are presented in Table 2. 

The performance of two dynamic naïve Bayes models proved to be significantly better than 
baseline models.  Both of the dynamic two-level model (likelihood ratio, χ2 = 4.272, p = 3.87 × 
10-2, and Pearson, χ2 = 4.26, p = 3.9 × 10-2, df = 1) and the dynamic four-level model (likelihood 
ratio, χ2 = 10.647, p = 1.1 × 10-3, and Pearson, χ2 = 10.615, p = 1.1 × 10-3, df = 1) yielded 
significant improvements over the baseline models.  No static naïve Bayes models’ performance 
was significantly better than baseline models.  The performance of static decision tree models 
also did not produce significant results over baseline performance.  However, all dynamic 
decision tree models did perform significantly better than baseline models (Table 3). 

 
Table 2. Model accuracy results (area under ROC curves).  Static models were induced from non-intrusive 

demographic and Problem-Solving Self-Efficacy data.  Dynamic models were also based on physiological data.  

Baseline models report the portion of the distribution pertaining to the most reported efficacy level (i.e., 80.6% of 

self-efficacy reports for the two-level models were High).  * Value represents model performance statistically 

significant from baseline performance. 

Naïve Bayes

Decision Tree

Accuracy

82.2%

82.9%

70.1%

73.4%

68.8%

Naïve Bayes

Decision Tree

Naïve Bayes

Decision Tree

Naïve Bayes

Decision Tree

Static Model

Two-level

Three-level

Four-level

Five-level

Models

Models

Models

Models

69.0%

63.4%

63.9%

Accuracy

85.2%*

86.9%*

71.8%

83.4%*

74.7%*

Dynamic Model

78.9%*

64.2%

75.3%*

Baseline (High) 80.6% 80.6%

Baseline (High) 69.8% 69.8%

Baseline (Very High) 65.4% 65.4%

Baseline (Very High) 60.9% 60.9%

 

Table 3.  Dynamic decision tree model improvements were statistically significant over baseline model accuracies. 
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4.3.2. Model Attribute Effects on Self-efficacy 
Heart rate and galvanic skin response had significant effects on self-efficacy predictions (Table 
4).  Participants’ age was the only demographic attribute to have a significant effect on all levels 
of self-efficacy models.  Table 4 presents several effects of physiological response and pre-
experiment survey data, including demographic information and Bandura’s problem-solving self-
efficacy scale, on self-efficacy predictions.  These results suggest that when modeling self-
efficacy at higher-granularity it becomes more important to account for student demographics. 
Two-level self-efficacy models have the least significant effectors.  This is likely due to the 
results of the two-level baseline model, in which 80.6% of the efficacy self-reports are classified 
with the label, “High”. 
 
Table 4. Chi-squared values representing the significance effects of physiological signals, demographics, and 

Bandura’s problem-solving self-efficacy scale instrument on dynamic self-efficacy models (p < 0.5).   
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4.4. Discussion 
Self-efficacy is closely associated with motivational and affective constructs that both influence 
(and are influenced by) a student’s physiological state.  It is therefore not unexpected that a 
student’s physiological state can be used to more accurately predict her self-efficacy.  For 
example, Figure 4 shows the heart rates for one participant in the study over the course of 
solving two problems.   In Figure 4, in the upper left image, the participant reported high levels 
of self-efficacy for a particular question, while the same participant whose heart rate progression 
is also shown in the upper right image of Figure 4 reported a low level of self-efficacy for 
another question.  The heart rate for the student reporting high self-efficacy gradually drops as 
they encounter a new question, presumably because of their confidence in their ability to 
successfully solve the problem.  In contrast, the heart rate for the same student reporting low 
self-efficacy spikes dramatically, an increase of 5 beats per minute in less than 2 seconds, when 
the student selects an incorrect answer.  This phenomenon is noteworthy since the students were 
in fact not given feedback about whether or not their responses were correct.  Instead the 
student’s self-appraisal seems to lead to the determination of low efficacy, an inability to 
successfully achieve at the current task, without a requirement of confirmation of their 
assessment.  It appears that through some combination of cognitive and affective processes the 
student’s uneasiness with her response, even in the absence of direct feedback, was enough to 
bring about a significant physiologically manifested reaction.  Curiously, there is a subsequent 
drop in heart rate after the student reports her low level of self-efficacy.  In this instance, it seems 
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Figure 4.  Heart rate for student reporting high self-efficacy (upper left image), heart rate for same student reporting 

low self-efficacy on a different problem (upper right image), and the student’s heart rates combined (lower image). 
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that providing an opportunity to acknowledge a lack of ability and knowledge to perform may 
itself reduce anxiety. 

The experiment has two important implications for the design of runtime self-efficacy 
modeling.  First, even without access to physiological data, induced decision-tree models can 
make predictions about students’ self-efficacy that are more accurate than baseline models.  
Sometimes physiological data is unavailable or it would be too intrusive to obtain the data.  In 
these situations, decision-tree models that learn from demographic data and data gathered with a 
validated self-efficacy instrument administered prior to problem solving and learning episodes, 
can model self-efficacy.  Second, if runtime physiological data are available, they can 
significantly enhance self-efficacy modeling.  Given access to HR and GSR, self-efficacy can be 
predicted more accurately. 

In summary, the static models are able to predict students’ real-time levels of self-efficacy 
with 73% accuracy, and the resulting dynamic models are able to achieve 83% predictive 
accuracy.  Thus, non-intrusive static models achieve a statistically significant improvement over 
baseline performance, and their predictive power can be increased by further enriching them with 
physiological data at varying levels of granularity. 

5.  Interactive Learning Environment Evaluation  
The results of the foundational evaluation reported in Section 4 indicated that an inductive 
approach offered potential as a method for modeling self-efficacy and called for further 
investigation of the techniques.  The design of the second experiment was motivated by three 
factors: explicitly controlling the challenge levels of the learning environment; exploiting task 
structure to study self-efficacy with an appraisal-theoretic (Lazarus, 1991) framework; and 
increasing the complexity of the learning environment and, therefore the dimensionality of the 
induction problem. 

1. Explicitly controlling the level of challenge of learning tasks in an effort to increase the 
frequencies of reported low self-efficacy.  In the first evaluation the majority of reported 
levels of self-efficacy were classified as “high” (see baseline model results in Section 4, 
Table 2).  The dynamic nature of an interactive learning environment would allow for the 
design of tasks of varying degrees of difficulty, presenting a variety of challenge levels to 
study participants.  Individual tasks could be designed to be more complicated, require 
more actions to complete, and elicit student persistence to reach achievement. 

2. Exploiting task structure and notions from appraisal theory (Lazarus, 1991) to model 
self-efficacy. An immersive, visually-rich interactive learning environment would offer 
an ideal testbed in which to study the interaction between student self-appraisals and self-
efficacy.  Recall that self-efficacy beliefs arise from one’s appraisal of the environment 
and the current situation in conjunction with appraisals of one’s abilities to achieve goals 
given the current and possible future states of the surrounding environment.  Thus, it is 
likely that a rich learning environment would elicit patterns of self-efficacy in response to 
student appraisals of unfolding events in learning episodes.  In turn, the representation of 
the environment should then enable induced models to accurately predict student self-
efficacy. 

3. Automatically inducing models of self-efficacy from observations in an increasingly 
complex interactive narrative-centered learning environment.  The induction task 
becomes increasingly difficult as more dimensions are added to represent more complex 
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learning environments.  The second empirical study was designed to investigate the 
potential and the value of creating models of self-efficacy in more complex interactive 
learning environments, and to “stress-test” the induction approach in higher dimensions. 

Together, these factors motivated the second experiment investigating SELF model induction in a 
rich interactive learning environment. 

5.1. Interactive Narrative-Centered Learning Environments  

Narrative is central to human cognition.  Because of the motivational force of narrative, it has 
long been believed that story-based education can be both engaging and effective.  Much 
educational software has been devised for story-based learning.  These systems include both 
research prototypes and a long line of commercially available software.  However, this software 
relied on scripted forms of narrative: they employed either predefined linear plot structures or 
simple branching storylines.  In contrast, one can imagine a much richer form of narrative 
learning environment that dynamically crafts customized stories for individual students at 
runtime.  Recent years have seen the emergence of a growing body of work on dynamic narrative 
generation (Cavazza et al., 2002; Riedl and Young, 2004; Si et al., 2005), and narrative has 
begun to play an increasingly important role in intelligent tutoring systems (Machado et al., 
2001; Mott and Lester, 2006b; Riedl et al., 2005). 

Narrative experiences are powerful.  In his work on cognitive processes in narrative 
comprehension, Gerrig identifies two properties of reader’s narrative experiences (1993).  First, 
readers are transported, i.e., they are somehow taken to another place and time in a manner that 
is so compelling it seems real.  Second, they perform the narrative.  Like actors in a play, they 
actively draw inferences and experience emotions as if their experiences were somehow real.  It 
is becoming apparent that narrative can be used as an effective tool for exploring the structure 
and process of “meaning making.”  For example, narrative analysis is being adopted by those 
seeking to extend the foundations of psychology (Bruner, 1990) and film theory (Branigan, 
1992). 

Learning environments may utilize narrative to their advantage.  One can imagine narrative-
centered curricula that leverage a student’s innate metacognitive apparatus for understanding and 
crafting stories.  This insight has led educators to recognize the potential of contextualizing all 
learning within narrative (Wells, 1986).  Because of the active nature of narrative, by immersing 
learners in a captivating world populated by intriguing characters, narrative-centered learning 
environments can enable learners to participate in the construction of narratives, to engage in 
active problem solving, and to reflect on narrative experiences (Mott et al., 1999).  These 
activities are particularly relevant to inquiry-based learning.  Inquiry-based learning emphasizes 
the student’s role in the learning process via concept building (Zachos et al., 2000) and 
hypothesis formation, data collection, and testing (Glaser et al., 1992).  For example, a narrative-
centered inquiry-based learning environment for science education could foster an in-depth 
understanding of how real-world science plays out by featuring science mysteries whose plots 
are dynamically created for individual students. 

5.1.1. Affect and Motivation in Narrative-centered Inquiry-based Learning 

Narrative-centered inquiry-based learning environments may also offer motivational benefits.  
Motivation is critical in learning environments, for it is clear that from a practical perspective, 
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educational software that fails to engage students will go unused.   Game playing experiences 
and educational experiences that are extrinsically motivating can be distinguished from those that 
are intrinsically motivating (Malone, 1981).  In contrast to extrinsic motivation, intrinsic 
motivation stems from the desire to undertake activities sheerly for the prospective reward.  
Narrative-centered discovery learning could provide the four key intrinsic motivators identified 
in the classic work on motivation in computer games and educational software (Malone and 
Lepper, 1987): challenge, curiosity, control, and fantasy.   

Narrative-centered inquiry-based learning should feature challenging tasks of intermediate 
levels of difficulty, i.e., tasks that are not too easy and not too difficult, targeting desirable levels 
of student intrinsic motivation.  Dynamically created narratives can feature problem-solving 
episodes whose level of difficulty is customized for individual students.  In inquiry-based 
approaches, learning is inherently presented as a challenge, a series of problem-solving goals, 
that once achieved provide a deeper understanding of the domain.  Devising narratives and 
providing tutorial feedback that both maintain a delicate level of uncertainty about the possibility 
of attaining each goal and sufficient reporting of student performance and progress is critical to 
sustaining effective levels of challenge.   

Curiosity plays a central role in successful learning in narrative-centered inquiry-based 
learning environments.  Since inquiry-based learning compels students to obtain knowledge 
throughout learning episodes on their own (materials are not provided explicitly prior to 
interaction) students are likely to question the completeness of their acquired knowledge as they 
progress, searching for new answers, stimulating their curiosity.     

Narrative-centered inquiry-based learning environments can empower students to take 
control of their learning experiences; students can choose their own paths, both figuratively 
(through the solution space) and literally (through the storyworld), while being afforded 
significant guidance crafted specifically for them.  The narrative structure of inquiry-based 
learning can provide unobtrusive direction by indirectly highlighting a subset of possible goals 
(i.e., blinking lights in a particular room in the environment, or a character audibly coughing in 
the student’s right audio channel) for the student’s next action consideration, maintaining the 
student’s perception of control.   

Narrative-centered inquiry-based learning is innately fantasy-based.  Fantasy refers to a 
student’s identification with characters in the interactive narrative and the imaginative situations 
created internally and off-screen by the student.  All narrative elements ranging from plot and 
characters to suspense and pacing can contribute to vivid imaginative experiences.  The openness 
of discovery learning provides scaffolding to support all levels of student imagination, increasing 
motivation and engagement.  Effective narrative tutorials will engage characters in the 
storyworld that either the individual students perceive as possessing some cognitive, emotional, 
or physical similarities with themselves, or that the individual student admires, expresses feelings 
of compassion towards, or for which the student conveys empathetic feelings.  In short, narrative 
can provide the guidance essential for effective inquiry-based learning and the “affective 
scaffolding” for achieving high levels of motivation and engagement. 

5.1.2. The CRYSTAL ISLAND Learning Environment 

In our laboratory we are developing a narrative-centered inquiry-based learning environment.  
Some components are fully designed and implemented while others are in the early stages of 
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design.  The prototype learning environment, CRYSTAL ISLAND (Mott et al., 2006), is being 
created in the domains of microbiology and genetics for middle school students (Figure 5). 

CRYSTAL ISLAND features a science mystery set on a recently discovered volcanic island 
where a research station has been established to study the unique flora and fauna.  The user plays 
the protagonist attempting to discover the genetic makeup of the chickens whose eggs are 
carrying an unidentified infectious disease at the research station.  The story opens by 
introducing her to the island and the members of the research team for which her father serves as 
the lead scientist.  As members of the research team fall ill, it is her task to discover the cause of 
the specific source of the outbreak.  She is free to explore the world and interact with other 
characters while forming questions, generating hypotheses, collecting data, and testing her 
hypotheses.  Throughout the mystery, she can walk around the island and visit the infirmary, the 
lab, the dining hall, and the living quarters of each member of the team.  She can pick up and 
manipulate objects, and she can talk with characters to gather clues about the source of the 
disease.  In the course of her adventure she must gather enough evidence to correctly choose 
which breeds of chickens need to be banned from the island. 

The virtual world of CRYSTAL ISLAND, the semi-autonomous characters that inhabit it, and 
the user interface were implemented with Valve Software’s Source™ engine, the 3D game 
platform for Half-Life 2.  The Source engine also provides much of the low-level (reactive) 
character behavior control.  The character behaviors and artifacts in the storyworld are the 
subject of continued work.  The narrative planner of CRYSTAL ISLAND has been implemented 
with an HTN planner that is based on the SHOP2 planner (Nau et al., 2001).  For efficiency, the 
planner was designed as an embeddable C++ library to facilitate its integration into high-
performance 3D gaming engines.  A decision-theoretic “director” agent based on dynamic 
decision networks has been implemented to guide the narrative in the face of uncertain user 
actions (Mott and Lester, 2006a), and the method and operator libraries for the genetics and 
microbiology domains are currently being constructed. 

 
Figure 5:  CRYSTAL ISLAND. 



24 

To illustrate the behavior of the CRYSTAL ISLAND learning environment, consider the 
following situation.  Suppose a student has been interacting within the storyworld and learning 
about infectious diseases, genetic crosses and related topics.  In the course of having members of 
her research team become ill, she has learned that an infectious disease is an illness that can be 
transmitted from one organism to another.  As she concludes her introduction to infectious 
diseases, she learns from the camp nurse that the mystery illness seems to be coming from eggs 
laid by certain chickens and that the source or sources of the disease must be identified.  The 
student is introduced to several characters.  Some characters are able to help identify which eggs 
come from which chickens while other characters, with a scientific background, are able to 
provide helpful genetics information (Figure 6).  The student discovers through a series of tests 
that the bad eggs seem to be coming from chickens with white-feathers.  The student then learns 
that this is a codominant trait and determines that any chicken containing the allele for white-
feathers must be banned from the island immediately to stop the spread of the disease.  The 
student reports her findings back to the camp nurse. 

5.2. Method 

5.2.1. Participants and Design 
In a formal evaluation, data was gathered from 42 subjects in an Institutional Review Board 
(IRB) of North Carolina State University approved user study.  There were 5 female and 37 male 
participants.  Participants average age was 21.2 (SD = 1.96). 

5.2.2. Materials and Apparatus 
The pre-experiment materials for each participant consisted of an online demographic survey and 
Bandura’s Self-Efficacy Scale (Bandura, 2006).  The experiment materials consisted of the 
following: tutorial directions, the online genetics tutorial, the CRYSTAL ISLAND backstory and 
directions, the CRYSTAL ISLAND interactive environment control sheet, the CRYSTAL ISLAND 

 
Figure 6:  CRYSTAL ISLAND character located in the laboratory. 
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character profiles and world map, the genetics problem-solving self-efficacy questionnaire 
(Bandura, 2006), the genetics problem-solving system directions, the online problem-solving 
system, and a post-experiment survey.  The demographic survey collected participant 
information such as age, gender, race and ethnicity.  Bandura’s Self-Efficacy Scale rates the 
participants’ self-efficacy in a variety of more general domains.  The tutorial directions described 
the simple navigation controls and lack of time constraints for reading through the genetics 
tutorial.  The CRYSTAL ISLAND backstory and directions presented the participant’s task and 
some background information about their character.  The controls reference sheet described 
which keys and mouse movements would be needed to manipulate their agent in the training 
task.  The character profiles provided pictures with associated names and job descriptions of 
characters the participant might meet on the island.  The CRYSTAL ISLAND map was a tool to help 
the participants maintain orientation within the environment and provide navigational assistance.  
The genetics problem-solving self-efficacy questionnaire was administered to gauge the 
participants’ self-efficacy with respect to solving genetics problems after completing both the 
tutorial and CRYSTAL ISLAND interaction.  The post survey was used to determine how 
participants would feel about using similar software in educational settings and their thoughts on 
affect and self-efficacy uses in videogames and educational software. 

Apparati consisted of a Gateway 7510GX laptop with a 2.4 GHz processor, 1.0 GB of RAM, 
15-in. monitor and biofeedback equipment for monitoring blood volume pulse (one sensor on the 
right ring finger) and galvanic skin response (two sensors on the right middle and little fingers). 

5.3. Procedure 
First participants completed the online demographic survey and the online general self-efficacy 
questionnaire (Bandura, 2006).  Participants then completed the genetics tutorial which took 
anywhere from 5 minutes to 25 minutes.  Next, participants were wired with biofeedback sensors 
similar to those worn by the user in Figure 7.  The practice task was then completed allowing 

 

Figure 7. Interactive learning environment user outfitted with biofeedback apparatus. 
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participants to become familiar with the controls for CRYSTAL ISLAND.  Participants were then 
presented the CRYSTAL ISLAND materials (backstory, controls, map, and character profiles) while 
the virtual environment was loaded.  Once participants indicated they were prepared and had any 
questions answered by the research assistant, they began their interaction in CRYSTAL ISLAND.  
As participants solved the genetics mystery on CRYSTAL ISLAND, they were periodically asked to 
rate their current level of self-efficacy, i.e., their current belief in their abilities to solve the 
science mystery.  Upon completion of interacting with CRYSTAL ISLAND, participants completed 
the genetics self-efficacy questionnaire (Bandura 2006) prior to receiving the problem-solving 
system directions.  Once participants indicated they were prepared and physiological response 
measurements had been calibrated, they began solving 20 randomly displayed genetics problems.  
Each question was presented with 4 multiple-choice answers and a “self-efficacy slider” which 
participants adjusted indicating their belief in their ability to correctly solve the given problem.  
Finally, participants completed the post-experiment questionnaire before the experiment session 
concluded. 

After all participants’ sessions were completed, the same procedure as the one described in 
Section 3.3 was used to induce models of self-efficacy ratings from the training sessions (Figure 
8).  Training sessions lasted at least eight minutes, and each session log contained at least 15,000 
(32,487 at most) observation changes (e.g., a change in location, completing a goal, manipulating 
an object, or detected heart beat).  These changes were first translated into a full observational 
attribute vector.  For example, BVP and GSR readings were taken approximately 30 times every 
second reflecting changes in both heart rate and skin conductivity. After data were converted into 
an attribute vector format a dataset was generated that contained only records in which the 
biofeedback equipment was able to successfully monitor BVP and GSR throughout the entire 
training session and in which participants actively participated in the experiment by providing 
self-reports.  Two training sessions from male participants did not satisfy these requirements.  
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Figure 8.  Interactive learning environment evaluation data flow. 
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Self-efficacy models were again produced at varying levels of granularity.  These included 
two-level models (Low, High), three-level models (Low, Medium, High), four-level models 
(Very Low, Low, High, Very High), and five-level models (Very Low, Low, Medium, High, 
Very High). 

5.4. Results 
All models were evaluated using a tenfold cross-validation scheme for producing training and 
testing datasets.  The ROC curves (Figure 9) show the results of decision tree and naïve Bayes 
modeling for predicting student levels of self-efficacy.  The lack of smoothness of the curves 
indicates that training data did cover the entirety of the multidimensional space.  However, 
collected training data was sufficient for inducing SELF models of self-efficacy.  The highest 
performing model induced from interactive learning environment training data was the two-level 
decision tree model, correctly predicting more than 87% of reported levels of self-efficacy.  
Table 5 reports the results of the self-efficacy model induction mode of SELF.  Decision tree 
models’ prediction improvements over naïve Bayes models were significant at the two-level 
models (likelihood ratio, χ2 = 7.321, p = 6.8 × 10-3, and Pearson, χ2 = 7.291, p = 6.9 × 10-3, df = 
1) and four-level models (likelihood ratio, χ2 = 24.085, p = 9.218 × 10-7, and Pearson, χ2 = 23.96, 
p = 9.835 × 10-7, df = 1).  Furthermore, decision tree models performed significantly better than 
baseline models: two-level models (likelihood ratio, χ2 = 29.319, p = 6.139 × 10-8, and Pearson, 
χ2 = 28.929, p = 7.506 × 10-8, df = 1), three-level models (likelihood ratio, χ2 = 62.443, p = 2.74 
× 10-15, and Pearson, χ2 = 61.56, p = 4.29 × 10-15, df = 1), and four-level models (likelihood ratio, 
χ2 = 25.759, p = 3.869 × 10-7, and Pearson, χ2 = 25.617, p = 4.163 × 10-7, df = 1).  Naïve Bayes 
models performance was significantly better than baseline models for two-level models 
(likelihood ratio, χ2 = 7.433, p = 6.4 × 10-3, and Pearson, χ2 = 7.412, p = 6.5 × 10-3, df = 1) and 
three-level models (likelihood ratio, χ2 = 43.494, p = 4.25 × 10-11, and Pearson, χ2 = 43.099, p = 
5.2 × 10-11, df = 1). Table 6 reports the results of self-efficacy models induced in both the online 
tutorial system and the interactive learning environment. 
 
 

 
 

Figure 9:  ROC curves for SELF three-level models induced from CRYSTAL ISLAND interactions. 
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Table 5. Model results – area under ROC curves for dynamic self-efficacy models.  * Value represents model 

performance statistically significant from baseline performance. 

 
 
Table 6. Model results – area under ROC curves for online tutorial system static and dynamic self-efficacy models, 

and interactive learning environment dynamic models.  * Value represents model performance statistically 

significant from baseline performance. 
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In the online tutorial system evaluation, the majority of self-efficacy self-reports were 

classified as being high efficacy, as indicated by the baseline models (the portion of the 
distribution belonging to the majority class).  Thus, in the interactive learning environment 
development, some tasks were designed to present more challenging scenarios to students than 
were presented in the online tutorial system in an effort to elicit a higher percentage of low 
efficacy self-reports.  While the baseline results indicate that the majority of self-efficacy self-
reports in the interactive learning environment evaluation were also classified as high and very 
high efficacy, we obtained significantly more instances of students reporting low efficacy.  Table 
7 reports the baseline dynamic models from both evaluations and likelihood ratio and Pearson’s 
statistics indicating the reduced accuracy in the interactive learning environment dynamic 
baseline models to be statistically significant.  Since baseline models are composed of high self-
efficacy report instances, a drop in baseline models (drop in the count of high self-efficacy 
reports) corresponds directly to an increase in counts of low self-efficacy report instances.  This 
observation of a reduction in the quantity of high self-efficacy reports indicates a significant gain 
in the quantity of low self-efficacy reports.  This fact is supported by the results presented in 
Table 7.  
 
Table 7. Baseline comparisons between the online tutorial system and the interactive learning environment 

evaluations.  The percentage increase in the number of instances in which students reported low levels of self-

efficacy from the online tutorial system to the interactive learning environment evaluation was statistically 

significant.  * For the five-level dynamic baseline model, comparison p-values are slightly above .05 indicating 

weak significance. 

 

5.5. Discussion 
A notable difference between the online tutorial system evaluation and the interactive learning 
environment evaluation is the dimensionality of the observational attribute vector.  Recall that 
150 features were observed in the online tutorial system, while in the interactive learning 
environment over 275 features were continuously monitored.  This added dimensionality called 
for a larger dataset covering a larger space to improve the predictive accuracy of self-efficacy 
modeling.  The training data obtained from the 40 usable sessions appears to have been sufficient 
for modeling self-efficacy in CRYSTAL ISLAND.  The design of CRYSTAL ISLAND learning tasks, 
and particularly the varying challenge levels of the tasks, led to an increase in reports of low-
efficacy in the interactive learning environment evaluation.  This observation may explain why 
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SELF-induced models of self-efficacy obtained similar levels of accuracy among comparable 
models in the interactive learning environment as they did in the online tutoring system.  It is 
noteworthy considering the increased dimensionality and complexity constraints placed on the 
induction process for learning self-efficacy models in the CRYSTAL ISLAND learning 
environment.   

One of the challenging tasks in the design of SELF for the interactive learning environment 
evaluation was selecting observable attributes to monitor throughout student interactions that 
would also be used in student appraisal and self-efficacy determination.  Because of the difficult 
nature of identifying attributes used by most students in appraisal, we elected to monitor the 
large 283-dimensional space designed for CRYSTAL ISLAND.  The performance of induced 
models suggests that there is overlap between the features contained in the observable attribute 
vector and the attributes of the learning environment used by students in appraisal and realized in 
reports of self-efficacy. 

We have considered a variety of models in the online tutorial system and the interactive 
learning environment along three dimensions:  static vs. dynamic data, classification technique, 
and granularity.  The online tutorial system evaluation found that dynamic models (inclusion of 
physiological data) performed significantly better, i.e., they correctly classified student self-
efficacy more accurately, than static models (exclusion of physiological data) of self-efficacy.  
This result motivated the focus of investigating only dynamic models in the interactive learning 
environment evaluation.  We hypothesize the performance improvements of dynamic models 
stems from the relationship between self-efficacy and physiological response.  Because 
physiological responses follow from emotional reactions to situation appraisals (Frijda 1986; 
Picard, 1997) and self-efficacy beliefs arise from a similar cognitive appraisal process (Bandura, 
1997), it seems appropriate to infer that changes in physiology are perhaps generated in response 
to a combination of interacting affective factors, such as emotional state, self-efficacy beliefs, 
and motivational states.  Following research that has demonstrated the ability to recognize 
affective state from classification of physiological data (Burleson, 2006; Conati, 2002; Healey, 
2000; Picard et al., 2001; Prendinger et al., 2005), it seems reasonable to infer that physiological 
response data may also be useful in predictions of self-efficacy. 

Both evaluations investigated two families of classification techniques: rule-based models 
(decision trees) and probabilistic models (naïve Bayes).  In the online tutorial system and the 
interactive learning environment, decision tree models outperformed naïve Bayes models.  We 
hypothesize that this is likely due to the naïve Bayes assumption that all observable attributes are 
conditionally independent.  As noted above, this is clearly not the case in CRYSTAL ISLAND 
where particular events can only occur in particular locations, such as running an experiment on 
an artifact, which requires the use of stationary machinery that can only be found in the 
laboratory on CRYSTAL ISLAND. 

Induced models of self-efficacy also vary in the levels of granularity in which they predicted 
student efficacy.  There is a noticeable decay in model performance as the granularity is 
increased in both evaluations.  For instance, the performance of dynamic decision tree models  
from the interactive learning environment evaluation were 87.3%, 80.4%, 72.9%, and 63.2% for 
two, three, four, and five-level models respectively.  Despite the trend of decreasing accuracy 
with increasing levels of granularity there are several instances worth noting, such as the 
performance of the two-level dynamic decision tree model from the interactive learning 
environment which accurately predicted 80.4% of instances, outperforming the associated 
baseline by 19.2% (the baseline model achieved 61.2% accuracy).  However, it remains clear 
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that as granularity is increased the multidimensionality of the observation attribute vector hinders 
the ability to accurately predict student efficacy levels.  For runtime environments, this decay 
effect raises the question of which level of granularity should implemented models use to predict 
self-efficacy.  The answer to this question must consider the tradeoffs between models which 
calls for analyzing the increasing number of misclassifications associated with each additional 
level of granularity and how misclassifications affect system performance.  For instance, 
consider the two-level dynamic decision tree model from the interactive learning environment 
which was able to predict 87.3% instances correctly.  The 12.7% of instances that were 
incorrectly classified were predicted to be in the other class of the two-level model, i.e., instances 
of high self-efficacy were misclassified as low, and low self-efficacy instances were 
misclassified has high in 12.7% of all instances.  After introducing another level of granularity, 
yielding a three-level model, we notice performance slips to 80.4% with an increase in 
misclassifications accounting for 19.6% of all instances.  While higher granularity models do 
indeed provide more information than low levels of granularity, misclassifications can increase.  
This highlights the tradeoff question: when should models with higher levels of granularity (and 
therefore more precision) but with lower predictive accuracy be preferred to models with lower 
levels of granularity (and therefore less precision) but with higher predictive accuracy?  In the 
future, it will be important to consider the tradeoff question in evaluations of runtime self-
efficacy models. 

6.  Discussion and Design Implications 
Both the foundational evaluation with an online tutorial system and the follow-up evaluation 
with an interactive learning environment suggest that it is possible to model self-efficacy from 
observable attributes with induced models achieving statistically significant improvements in 
performance over baseline models.  The two experiments suggest that it may be possible to 
devise empirically based models that can then be used to support learning in interactive settings. 
 Recall from Section 2 that Bandura distinguishes four types of self-efficacy effectors:  enactive 
mastery experiences, vicarious experiences, verbal persuasion, and physiological and affective 
state (Bandura, 1997).  Here, for each type of effector, we consider how ITSs may employ 
tutorial strategies to enhance and maintain ideal levels of student self-efficacy in conjunction 
with a SELF-like self-efficacy diagnostic framework. 

ITSs can facilitate mastery learning (Bloom, 1984) by creating experiences in which the 
difficulty of the task or specific problems is adapted to the individual student.  Diagnosing self-
efficacy can better inform the pedagogical decisions bearing on the selection of problem 
difficulty by ensuring that the student has not only mastered the concept but believes in her 
abilities to use acquired knowledge in the domain.  When self-efficacy models determine that a 
student has low efficacy beliefs during particular problem-solving tasks, an ITS can redirect the 
student’s tasks to prior concepts or sub-problems that will help the student gain confidence in the 
skills required to solve the problem eliciting low self-efficacy.  Self-efficacy models could 
contribute to improved pedagogical planning by informing the planner when replanning is 
necessary for individual students.  Self-efficacy models could also contribute to error correction 
decision making, and they could play a role in determining when to intervene to provide tutorial 
guidance.  Since efficacious students are likely to persist longer than students with low self-
efficacy, pedagogical monitoring components might permit efficacious students to work through 
their own mistakes and consider intervening when mistakes are made by inefficacious students.  
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Challenge is an intrinsic motivator that is often employed by human tutors (Lepper et al., 1993).  
Self-efficacy models could inform decisions about the appropriate challenge level of tasks to 
 create adaptive learning experiences that sustain ideal levels of self-efficacy and motivation, 
which in turn support effective learning.  The amount of learning that takes place relates to the 
amount of mental effort students exhibit which has an “inverted U” relationship to self-efficacy 
(Clark, 1999).  Thus, the difference between low self-efficacy and high self-efficacy needs to be 
handled delicately by ITSs.  Just as too low self-efficacy can constrain learning, so too can too 
high self-efficacy. 

The adaptability of ITSs may enable them to create vicarious experiences, which are 
sometimes difficult to elicit in a classroom setting.  In particular, peer learning companions 
(Aimeur et al., 2000; Burleson and Picard, 2004; Chan and Baskin, 1990; Chou et al., 2003; 
Goodman et al., 1998; Kim, 2004) can create adaptable vicarious experiences for students.  
Student observation of similar peers succeeding may enhance the observing student’s self-
efficacy if she believes she can also succeed at the same or similar tasks (Schunk, 1987).  
Consider an ITS in which a peer companion agent fails or struggles at a task.  Witnessing this 
event may enable less efficacious students to exert more effort if they believe their abilities to be 
greater than the companion agent’s abilities.  Likewise, highly efficacious students may persist 
as a companion agent begins to succeed at similar tasks and problems.  This form of competition 
with a learning companion could contribute to increases in student efficacy.  It has been 
determined that student perception of a companion agent’s knowledge level can have a material 
effect on student self-efficacy (Baylor and Kim, 2004).  Monitoring such perceptions could 
support the orchestration of agent and environment behaviors, and it could inform the adaptive 
selection of agent personae that most effectively support interactions with individual students. 
 Enabling an ITS to adaptively control the perception of peers in the learning environment 
through personae selection, agent task completion, and interactive dialogue to demonstrate agent 
knowledge (or lack there of) are promising techniques for enhancing and maintaining student 
self-efficacy. 

Verbal persuasion is a common motivational tool used by tutors (Lepper et al., 1993), both 
human and automated.  Tutors who express confidence in a student’s abilities can have a 
profound effect on the student’s own self-efficacy beliefs.  The impact is determined by the value 
the student places on the persuader, so an established relationship between a tutor and the student 
makes verbal persuasion all the more powerful.  ITS research has considered several approaches 
to providing feedback (Aleven et al., 2004; Corbett and Anderson, 2001; Moreno, 2004), but 
feedback that improves self-efficacy can also be less performance-driven.  In a study that 
targeted students with academic problems, direct feedback on success did not affect self-
efficacy; rather, feedback on the selected cognitive strategies to develop a solution substantially 
enhanced student self-efficacy beliefs (Schunk and Rice, 1987).  This is not to discount the 
potential effects of rewarding performance, especially verbally.  Verbal performance feedback 
ensures that students are aware of goal progression, immersed in challenging tasks, and may 
contribute to student task persistence.  Verbal persuasion is not as powerful as enactive mastery 
or vicarious experiences, particularly for inducing lasting effects on student efficacy beliefs 
(Bandura, 1997).  Verbal persuasion is a technique that learning companions might employ if 
students are closing in on learning goals and self-efficacy models are beginning to detect 
declining student efficacy.  In short, verbal persuasion can quickly elicit short bursts of efficacy 
to motivate students at critical junctures in learning episodes. 
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The final effector Bandura considers is physiological and affective state.  This calls for self-
efficacy modeling and affect recognition to operate in tandem.  Changes in affective state and the 
subsequent changes in student physiology will impact self-appraisals of efficacy.  Thus, devising 
strategies to guide students toward affective states with lower arousal levels will diminish the 
adverse effects of high-arousal physiological responses on student efficacy.  For example, stress 
elicits aroused responses, such as increased heart rate and sweaty palms.  Such responses may 
cause adverse self-appraisals of efficacy.  Employing affect recognition combined with self-
efficacy models can inform interactive pedagoical components to take action when situations of 
arousal and low self-efficacy co-occur.  One approach to addressing student affect is to respond 
appropriately, given the social interactive context of an ongoing learning episode, through 
empathetic companion agents (Kim, 2005; McQuiggan and Lester 2006a, Paiva et al., 2005; 
Prendinger and Ishizuka, 2005).  The empathetic nature of such agents may help students better 
self-regulate their own affective state leading to stronger senses of efficacy.  Recognizing that 
physiological and affective states influence self-efficacy beliefs and in turn, that self-efficacy 
affects affective processes (Bandura, 1997), self-efficacy modeling can play an important role in 
the affective-loop of ITSs. 

7.  Conclusions and Future Work 
Self-efficacy is an affective construct that may be useful for increasing the effectiveness of 
tutorial decision making by intelligent tutoring systems.  It may contribute to increasing students’ 
level of effort, the degree of persistence with which they approach problem solving, and, 
ultimately, the levels of success they achieve.  However, to provide accurate and useful 
information, self-efficacy models must be able to operate at runtime, i.e., during problem-solving 
episodes, they must be efficient, and they must avoid interrupting learning.  A promising 
approach to constructing models of self-efficacy is inducing them rather then manually 
constructing them.  In controlled experiments, it has been demonstrated that static models 
induced from demographic data, a validated self-efficacy instrument, and information from the 
tutorial system can accurately predict student’s self-efficacy during problem solving.  It has also 
been empirically demonstrated that dynamic models enriched with physiological data can more 
accurately predict student’s self-efficacy during problem solving.   

The findings reported here contribute to the growing body of work on affective reasoning for 
learning environments.  They represent a first step towards a computational theory of self-
efficacy that can be leveraged to increase motivation and learning effectiveness.  The 
foundational study evaluated SELF in an online tutorial system generating predictive models of 
self-efficacy.  This study served as a proof-of-concept and guided the design of a second 
evaluation which investigated self-efficacy modeling in an interactive learning environment, 
CRYSTAL ISLAND.  The interactive learning environment evaluation results extend the findings of 
the foundational study and suggest self-efficacy can be modeled in intelligent tutoring systems.    

Several directions for future work are suggested by the results.  First, the effect of specific 
pedagogical actions on students’ self-efficacy should be investigated.  It may be possible to 
quantitatively gauge the influence of competing tutorial strategies on students’ self-efficacy, 
which might further increase learning effectiveness.  Second, SELF generated models can be 
incorporated into a full scale intelligent tutoring system so that the impact of SELF-informed 
tutorial components on learning can be empirically investigated.  It is important to gauge the 
manner and degree to which students benefit from tutorial strategy selection informed by self-
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efficacy models.  Finally, self-efficacy information might be used to enhance models of 
cognitive, motivational, selective, and affective processes.  For example, prediction of self-
efficacy combined with affect recognition models that can detect student frustration may more 
accurately predict how students will cope with negative affect, such as frustration, which could 
lead to predictions of how long the student will persist in frustrating situations.  Such 
mechanisms could contribute to pedagogical strategies that enable students to learn more 
effectively and to increase their self-efficacy.  Investigating new frameworks and methodologies 
for modeling processes that integrate efficacy information is an important next step in 
incorporating self-efficacy diagnosis into intelligent tutoring systems. 
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