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Abstract. Self-efficacy is an individual’s belief about her ability to perform 
well in a given situation.  Because self-efficacious students are effective 
learners, endowing intelligent tutoring systems with the ability to diagnose self-
efficacy could lead to improved pedagogy.  Self-efficacy is influenced by (and 
influences) affective state.  Thus, physiological data might be used to predict a 
students’ level of self-efficacy.  This paper investigates an inductive approach 
to automatically constructing models of self-efficacy that can be used at 
runtime to inform pedagogical decisions.  In an empirical study, two families of 
self-efficacy models were induced: a static model, learned solely from pre-test 
(non-intrusively collected) data, and a dynamic model, learned from both pre-
test data as well as runtime physiological data collected with a biofeedback 
apparatus.  The resulting static model is able to predict students’ real-time 
levels of self-efficacy with reasonable accuracy, while the physiologically 
informed dynamic model is even more accurate. 

1 Introduction 

Affect has begun to play an increasingly important role in intelligent tutoring systems.  
Recent years have seen the emergence of work on affective student modeling [8], 
detecting frustration and stress [7, 21], modeling agents’ emotional states [1, 11, 16], 
devising affectively informed models of social interaction [13, 18, 20], and detecting 
student motivation [24].  All of this work seeks to increase the fidelity with which 
affective and motivational processes are modeled in intelligent tutoring systems in an 
effort to increase the effectiveness of tutorial interactions and, ultimately, learning.  

Self-efficacy is an affective construct that has been found to be a highly accurate 
predictor of students’ motivational state and their learning effectiveness [25].  
Defined as “the belief in one’s capabilities to organize and execute the courses of 
action required to manage prospective situations” [2], self-efficacy has been 
repeatedly demonstrated to directly influence students’ affective, cognitive, and 
motivational processes [3].  Self-efficacy holds much promise for intelligent tutoring 
systems (ITSs).  Foundational work has begun on using models of self-efficacy for 
tutorial action selection [6] and investigating the impact of pedagogical agents on 
students’ self-efficacy [5, 14].  Self-efficacy is useful for predicting what problems 
and sub-problems a student will select to solve, how long a student will persist on a 
problem, how much overall effort they will expend, as well as motivational traits such 



2      Scott W. McQuiggan and James C. Lester 

as level of engagement [22, 25].  Thus, if an ITS could increase a student’s self-
efficacy, then it could enable the student to be more actively involved in learning, 
expend more effort, and be more persistent; it could also enable them to successfully 
cope in situations where they experience learning impasses [3]. 

To effectively reason about a student’s self-efficacy, ITSs need to accurately model 
self-efficacy.  Self-efficacy diagnosis should satisfy three requirements.  First, it 
should be realized in a computational mechanism that operates at runtime.  Self-
efficacy may vary throughout a learning episode, so pre-learning self-efficacy 
instruments may or may not be predictive of self-efficacy at specific junctures in a 
learning episode.  Second, self-efficacy diagnosis should be efficient.  It should 
satisfy the real-time demands of interactive learning.  Third, self-efficacy diagnosis 
should avoid interrupting the learning process.  A common approach to obtaining 
information about a student’s self-efficacy is directly posing questions to them 
throughout a learning episode.  However, periodic self-reports are disruptive.  

This paper reports on the results of an experiment that investigates an inductive 
approach (naïve Bayes and decision tree classifications) to constructing models of 
self-efficacy.  In the experiment, two families of self-efficacy models were induced: 
the model learner constructed (1) static models, which are based on demographic data 
and a validated problem-solving self-efficacy instrument [4], and (2) dynamic models, 
which extend static models by also incorporating real-time physiological data.  In the 
experiment, 33 students provided demographic data and were given an online tutorial 
in the domain of genetics.  Next, they were given a validated problem-solving self-
efficacy instrument, and they were outfitted with a biofeedback device that measured 
heart rate and galvanic skin response.  Physiological signals were then monitored 
while students were tested on concepts presented in the tutorial.  After solving each 
problem, students rated their level of confidence in their response with a “self-
efficacy slider.”  Both families of resulting models operate at runtime, are efficient, 
and do not interrupt the learning process.  The static models are able to predict 
students’ real-time levels of self-efficacy with 73% accuracy, and the resulting 
dynamic models are able to achieve 83% predictive accuracy.  Thus, non-intrusive 
static models can predict self-efficacy with reasonable accuracy, and their predictive 
power can be increased by further enriching them with physiological data. 

The paper is structured as follows.  Section 2 discusses the role of self-efficacy in 
learning.  The experimental design is presented in Section 3 (experimental method) 
and Section 4 (procedure), and the results are described in Section 5.  Section 6 
discusses the findings and their associated design implications, and Section 7 makes 
concluding remarks and suggests directions for future work. 

2 Self-Efficacy and Learning 

Self-efficacy is powerful.  It influences students’ reasoning, their level of effort, their 
persistence, and how they feel; it shapes how they make choices, how much resilience 
they exhibit when confronted with failure, and what level of success they are likely to 
achieve [2, 22, 25].  While it has not been conclusively demonstrated, many 
conjecture that given two students of equal abilities, the one with higher self-efficacy 
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is more likely to perform better than the other over time.  Self-efficacy is intimately 
related to motivation, which controls the effort and persistence with which a student 
approaches a task [15].  Effort and persistence are themselves influenced by the belief 
the student has that she will be able to achieve a desired outcome [3].   Self-efficacy 
has been studied in many domains with significant work having been done in 
computer literacy [9] and mathematics education [19].  It is widely believed that self-
efficacy is domain-specific, but whether it crosses domains remains an open question.  

A student’s self-efficacy1 is influenced by four types of experiences [3, 25].  First, 
in enactive experiences, she performs actions and experiences outcomes directly.  
These are typically considered the most influential category.  Second, in vicarious 
experiences, she models her beliefs based on comparisons with others.  These can 
include peers, tutors, and teachers.  Third, in verbal persuasion experiences, she 
experiences an outcome via a persuader’s description.  For example, she may be 
encouraged by the persuader, who may praise the student for performing well or 
comment on the difficulty of a problem.   Her interpretation will be affected by the 
credibility she ascribes to the persuader.  Fourth, with physiological and emotional 
reactions, she responds affectively to situations.  These experiences, which often 
induce stress and anxiety and are physically manifested in physiological responses, 
such as increased heart rate and sweaty palms, call for emotional support and 
motivational feedback. 

Self-efficacy holds great promise for ITSs. Self-efficacy beliefs have a stronger 
correlation with desired behavioral outcomes than many other motivational constructs 
[10], and it has been recognized in educational settings, that self-efficacy can predict 
both motivation and learning effectiveness [25].   Thus, if it were possible to enable 
ITSs to accurately model self-efficacy, they may be able to leverage it to increase 
students’ academic performance.  Two recent efforts have explored the role of self-
efficacy in ITSs.  One introduced techniques for incorporating knowledge of self-
efficacy in pedagogical decision making [6].  Using a pre-test instrument and 
knowledge of problem-solving success and failure, instruction is adapted based on 
changes in motivational and cognitive factors.  The second explored the effects of 
pedagogical agent design on students’ traits, which included self-efficacy [5, 14].  The 
focus of the experiment reported in this paper is on the automated induction of self-
efficacy models for runtime use by ITSs. 

3 Method 

3.1 Participants and Design 

In a formal evaluation, data was gathered from thirty-three subjects in an Institutional 
Review Board (IRB) of NCSU approved user study.  There were 6 female and 27 

                                                           
1 Self-efficacy is closely related to the popular notion of confidence.  To distinguish consider 

the situation in which a student is very confident that she will fail at a given task.  This 
represents high confidence but low self-efficacy, i.e., she is exhibiting a strong belief in her 
inability [3]. 
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male participants varying in age, race, and marriage status.  Approximately 36% of 
the participants were Asian, 60% were Caucasian, and 3% were of other races.  27% 
of the participants were married.  Participants average age was 26.15 (SD=5.32). 

3.2 Materials and Apparatus 

The pre-experiment paper-and-pencil materials for each participant consisted of a 
demographic survey, tutorial instructions, Bandura’s Problem-solving Self-Efficacy 
Scale [4], and the problem-solving system directions.  Post-experiment paper-and-
pencil materials consisted of a general survey.  The demographic survey collected 
basic information such as gender, age, ethnicity, and marital status.  The tutorial 
instructions explained to participants the details of the task, such as how to navigate 
through the tutorial and an explanation of the target domain.  Bandura’s validated 
Problem-solving Self-Efficacy Scale [4], which was administered after they 
completed a tutorial in the domain of genetics, asked participants to rate how certain 
they were in their ability to successfully complete the upcoming problems (which 
they had not yet seen).  The problem-solving system directions supplied detailed task 
direction to participants, as well as screenshots highlighting important features of the 
system display, such as the “self-efficacy slider”. 

The computerized materials consisted of an online genetics tutorial and an online 
genetics problem-solving system.  The online genetics tutorial consisted of an 
illustrated 15-page web document which included some animation and whose content 
was drawn primarily from a middle school biology textbook [17].  The online 
genetics problem-solving system consisted of 20 questions, which covered material in 
the online genetics tutorial.  The problem-solving system presented each multiple-
choice question individually and required participants to rate their confidence, using a 
“self-efficacy slider,” in their answer before proceeding to the next question.  

Apparati consisted of a Gateway 7510GX laptop with a 2.4 GHz processor, 1.0 GB 
of RAM, 15-in. monitor and biofeedback equipment for monitoring blood volume 
pulse (one sensor on the left middle finger) and galvanic skin response (two sensors 
on the left first and third fingers).  Participants’ right hands were free from equipment 
so they could make effective use of the mouse in problem-solving activities. 

4 Procedure   

4.1  Participant Procedure   

Each participant entered the experimental environment (a conference room) and was 
seated in front of the laptop computer.  First, participants completed the demographic 
survey at their own rate.  Next, participants read over the online genetics tutorial 
directions before proceeding to the online tutorial.  On average, participants took 
17.67 (SD = 2.91) minutes to read through the genetics online tutorial.  Following the 
tutorial, participants were asked to complete the Problem-Solving Self-Efficacy Scale 
considering their experience with the material encountered in the genetics tutorial.  
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The instrument asked participants to rate their level of confidence in their ability to 
successfully complete certain percentages of the upcoming problems in the problem-
solving system. Participants did not have any additional information about the type of 
questions or the domain of the questions contained in forthcoming problems.  
Participants were then outfitted with biofeedback equipment on their left hand while 
the problem-solving system was loaded.  Once the system was loaded, participants 
entered the calibration period in which they read through the problem-solving system 
directions.  This allowed the system to obtain initial readings on the temporal 
attributes being monitored, in effect establishing a baseline for HR and GSR.  

The problem-solving system presented randomly selected, multiple-choice 
questions to the participant.  The participant selected an answer and then manipulated 
a self-efficacy slider representing the strength of their belief in their answer being 
correct.  Participants completed 20 questions.  Participants averaged 8.15 minutes (SD 
= 2.37) to complete the problem-solving system.  Finally, participants were asked to 
complete the post-experiment survey at their own rate before concluding the session. 

4.2  Machine Learning Procedure 

The following procedure was used to induce models of self-efficacy: 
• Data Construction:  Each session log, containing on average 14,645.42 (SD = 

4,010.57) observation changes, was first translated into a full observational 
attribute vector.  For example, BVP and GSR readings were taken nearly 30 times 
every second reflecting changes in both heart rate and skin conductivity.  

• Data Cleansing:  Data were converted into an attribute vector format.  Then, a 
dataset was generated that contained only records in which the biofeedback 
equipment was able to successfully monitor BVP and GSR throughout the entire 
training session.  Blood volume pulse (used for monitoring HR) readings were 
difficult to obtain from two participants resulting in the destruction of that data. 

• Naïve Bayes Classifier and Decision Tree Analysis: The prepared dataset was 
loaded into the WEKA machine learning package [23], a naïve Bayes classifier and 
decision tree were learned, and tenfold cross-validation analyses were run on the 
resulting models.  The entire dataset was used to generate several types of self-
efficacy models, each predicting self-efficacy with varying degrees of granularity.  
These included two-level models (Low, High), three-level models, four-level 
models, and five-level models (Very Low, Low, Medium, High, Very High). 

5 Results 

Below we present the results of the naïve Bayes and decision tree classification 
models and provide analyses of the collected data.  Various ANOVA statistics are 
presented for results that are statistically significant.  Because the tests reported here 
were performed on discrete data, we report Chi-square test statistics (χ2), including 
both likelihood ratio Chi-square and the Pearson Chi-square values.  Fisher’s Exact 
Test is used to find significant p-values at the 95% confidence level (p < .05). 
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Fig. 1. ROC curves for naïve Bayes (a) and decision tree (b) three-level models of self-
efficacy.  Areas under the curve are found in the key.  Overall the naïve Bayes model correctly 
classified 72% of the instances while the decision tree was able to correctly classify 83%.  

5.1 Model Results 

Naïve Bayes and decision tree classifiers are effective machine learning techniques 
for generating preliminary predictive models.  Naïve Bayes classification approaches 
produce probability tables that can be implemented into runtime systems and used to 
continually update probabilities for assessing student self-efficacy levels.  Decision 
trees provide interpretable rules that support runtime decision making.  The runtime 
system monitors the condition of the attributes in the rules to determine when 
conditions are met for assigning particular values of student self-efficacy.  Both the 
naïve Bayes and decision tree machine learning classification techniques are useful 
for preliminary predictive model induction for large multidimensional data, such as 
the 144-attribute vector used in this experiment.  Because it is unclear precisely which 
runtime variables are likely to be the most predictive, naïve Bayes and decision tree 
modeling provide useful analyses that can inform more expressive machine learning 
techniques (e.g., Bayesian networks) that also leverage domain experts’ knowledge. 

All models were constructed using a tenfold cross-validation scheme.  In this 
scheme, data is decomposed into ten equal partitions, nine of which are used for 
training and one used for testing.  The equal parts are swapped between training and 
testing sets until each partition has been used for both training and testing.  Tenfold 
cross-validation is widely used for obtaining a sufficient estimate of error [23]. 

Cross-validated ROC curves are useful for presenting the performance of 
classification algorithms for two reasons.  First, they represent positive classifications, 
included in a sample, as a percentage of the total number of positives, against 
negative classifications as a percentage of the total number of negatives [23].  Second, 
the area under ROC curves is widely accepted as a generalization of the measure of 
the probability of correctly classifying an instance [12]. 

The ROC curves (Fig. 1) above show the results of both a naïve Bayes and 
decision tree three-level model.  Low-confidence was noted by a student self-efficacy 
rating lower than 33 (on a 0 to 100 scale).  Medium-confidence was determined by 
rating between 33 and 67, while High-confidence was represented all ratings greater 
than 67.  The smoothness of the curve in Figure 1(a) indicates that sufficient data 
seems to have been used for inducing naïve Bayes models.  The jaggedness of the 
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Table 1. Model results – area under ROC curves.  Gray rows indicated static models 
induced from non-intrusive demographic and Problem-Solving Self-Efficacy data.  The 
other rows represent dynamic models that were also based on physiological data. 

Model Two-level Three-level Four-level Five-level 
Naïve Bayes 0.85 0.72 0.75 0.64 
Decision Tree 0.87 0.83 0.79 0.75 
Naïve Bayes 0.82 0.70 0.69 0.63 
Decision Tree 0.83 0.73 0.69 0.64 

curves in Figure 1(b) indicates that more data covering the possible instances is 
needed.  In particular, further investigation will need to consider more opportunities 
for students to experience instances of low self-efficacy.  Despite the appearance of a 
lack of sufficient data, the decision tree model performed significantly better than the 
naïve Bayes model (likelihood ratio, χ2 = 21.64, Pearson, χ2 = 21.47, p < .05).  The 
highest performing model induced from all data was the two-level decision-tree based 
dynamic model, which performed significantly better than the highest performing 
static model, which was a two-level decision tree model (likelihood ratio, χ2 = 3.99, 
Pearson, χ2 = 3.97, p < .05).  The three-level dynamic decision tree model was also 
significantly better than the static three-level decision tree (likelihood ratio, χ2 = 
18.26, Pearson, χ2 = 18.13, p < .05). All model results are presented in Table 1. 

5.2  Model Attribute Effects on Self-Efficacy 

Heart rate and galvanic skin response had significant effects on self-efficacy 
predictions (Table 2).  Participants’ age group was the only demographic attribute to 
have a significant effect on all levels of self-efficacy models (Table 3). 

Table 2. Chi-squared values representing the significance of physiological signals on varying 
levels of dynamic self-efficacy models (p < 0.5).  Grayed cells represent no significance. 

Physiological signal Two-level Three-level Four-level Five-level 
HR  9.58 15.35 12.78 
GSR  9.24 17.96 14.82 

 
Table 3. Demographic effects on self-efficacy.  Chi-square values reported with p < .05.  
Grayed cells represent no statistical significance. 

Demographic Two-level Three-level Four-level Five-level 
Gender   18.10 11.14 
Age Group 16.25 50.00 94.64 87.64 
Race & Ethnicity     

6 Discussion and Future Work 

Self-efficacy is closely associated with motivational and affective constructs that both 
influence (and are influenced by) a student’s physiological state.  It is therefore not 
unexpected that a student’s physiological state can be used to more accurately predict 
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Fig. 2.  Heart rate for reported high self-efficacy student. 
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Fig. 3.  Heart rate for reported low self-efficacy student. 

her self-efficacy.  For example, Figures 2 and 3 show the heart rates for one 
participant in the study over the course of solving two problems.   In Figure 2, the 
participant reported high levels of self-efficacy, while the same participant whose 
heart rate progression is shown in Figure 3 reported low levels of self-efficacy.  The 
heart rate for the high self-efficacy student gradually drops as they encounter a new 
question, presumably because of their confidence in their ability to successfully solve 
the problem.   In contrast, the heart rate for the low self-efficacy student spikes 
dramatically when the student selects an incorrect answer.  This phenomenon is 
particularly intriguing since the students were in fact not given feedback about 
whether or not their responses were correct.  It appears that through some 
combination of cognitive and affective processes the student’s uneasiness with her 
response, even in the absence of direct feedback, was enough to bring about a 
significant physiologically manifested reaction.  Curiously, there is a subsequent drop 
in heart rate after the student reports her low level of self-efficacy.  In this instance, it 
seems that providing an opportunity to acknowledge a lack of ability and knowledge 
to perform may itself reduce anxiety. 

The experiment has two important implications for the design of runtime self-
efficacy modeling.  First, even without access to physiological data, induced decision-
tree models can make reasonably accurate predictions about students’ self-efficacy.  
Sometimes physiological data is unavailable or it would be too intrusive to obtain the 
data.  In these situations, decision-tree models that learn from demographic data and 
data gathered with a validated self-efficacy instrument administered prior to problem 
solving and learning episodes, can accurately model self-efficacy.  Second, if runtime 
physiological data is available, it can significantly enhance self-efficacy modeling.  
Given access to HR and GSR, self-efficacy can be predicted more accurately. 
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7 Conclusion 

Self-efficacy is an affective construct that may be useful for increasing the 
effectiveness of tutorial decision making by ITSs.   It may be helpful for increasing 
students’ level of effort, the degree of persistence with which they approach problem 
solving, and, ultimately, the levels of success they achieve.  However, to provide 
accurate and useful information, self-efficacy models must be able to operate at 
runtime, i.e., during problem-solving episodes, they must be efficient, and they must 
avoid interrupting learning.   A promising approach to constructing models of self-
efficacy is inducing them rather then manually constructing them.  In a controlled 
experiment, it has been demonstrated that static models induced from demographic 
data, a validated self-efficacy instrument, and information from the tutorial system 
can accurately predict student’s self-efficacy during problem solving.  It has also been 
empirically demonstrated that dynamic models enriched with physiological data can 
even more accurately predict student’s self-efficacy during problem solving.   

The findings reported here contribute to the growing body of work on affective 
reasoning for learning environments.  They represent a first step towards a 
comprehensive theory of self-efficacy that can be leveraged to increase motivation 
and learning effectiveness.  Two directions for future work are suggested by the 
results.  First, it is important to pursue studies that investigate techniques for 
achieving the predictive power of dynamic models but “without the wires.”  Because 
of the invasiveness of biofeedback apparatus, it would be desirable to develop self-
efficacy models that can be induced from students’ actions in learning environments 
that perhaps can be used to infer physiological responses without actually requiring 
students in runtime environments to be outfitted with biofeedback sensors.  Second, 
now that self-efficacy can be accurately modeled at runtime, the effect of specific 
pedagogical actions on students’ self-efficacy can be investigated.  Thus, it may be 
possible to quantitatively gauge the influence of competing tutorial strategies on 
students’ self-efficacy, which might further increase learning effectiveness. 
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