
Journal of Adolescent Health 67 (2020) S52eS58
www.jahonline.org
Review article
Artificial Intelligence for Personalized Preventive Adolescent
Healthcare
Jonathan P. Rowe, Ph.D. *, and James C. Lester, Ph.D.
Department of Computer Science, College of Engineering, North Carolina State University, Raleigh, North Carolina

Article history: Received September 13, 2019; Accepted February 19, 2020
Keywords: Artificial intelligence; Prevention; Health information technology; Adaptive learning technologies; User modeling;
Interactive narrative generation; Adolescents
A B S T R A C T
IMPLICATIONS AND
Recent advances in artificial intelligence (AI) are creating new opportunities for personalizing
technology-based health interventions to adolescents. This article provides a computer science
perspective on how emerging AI technologiesdintelligent learning environments, interactive
narrative generation, user modeling, and adaptive coachingdcan be utilized to model adolescent
learning and engagement and deliver personalized support in adaptive health technologies. Many
of these technologies have emerged from human-centered applications of AI in education, training,
and entertainment. However, their application to improving healthcare, to date, has been
comparatively limited. We illustrate the opportunities provided by AI-driven adaptive technologies
for adolescent preventive healthcare by describing a vision of how future adolescent preventive
health interventions might be delivered both inside and outside of the clinic. Key challenges posed
by AI-driven health technologies are also presented, including issues of privacy, ethics, encoded
bias, and integration into clinical workflows and adolescent lives. Examples of empirical findings
about the effectiveness of AI technologies for user modeling and adaptive coaching are presented,
which underscore their promise for application toward adolescent health. The article concludes
with a brief discussion of future research directions for the field, which is well positioned to
leverage AI to improve adolescent health and well-being.
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This article describes a
computer science perspec-
tive on the opportunities
and challenges in utilizing
artificial intelligence (AI) to
drive adaptive technologies
in adolescent preventive
healthcare. Several AI tech-
nologies are discussed,
including intelligent
learning environments,
interactive narrative gener-
ation, user modeling, and
adaptive coaching. AI ap-
plications raise important
issues related to privacy,
ethics, encoded bias, and
integration within clinic
workflows and adolescent
lives, but the potential of
personalized health in-
terventions enabled by AI-
driven adaptive technolo-
gies is significant and holds
considerable promise.
A key promise of health information technologies is their
capacity to personalize health interventions to individual ado-
lescents [1e3]. Many technology-based preventive health in-
terventions are one-size-fits-all, or their support for
personalization is limited. However, the potential of personali-
zation within technology-based health interventions is broad
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and significant. Personalization promises to support awide range
of adolescent health interventions through responding to indi-
vidual differences in age, gender, and background, predicting key
health indicators, and supporting motivation, engagement,
learning, and ultimately, well-being.

We are in the midst of a dramatic technological trans-
formation brought about by major advances in artificial intelli-
gence (AI). AI encompasses a range of computational tools and
methods for creating intelligent systems that can perceive,
reason, learn, and act, and which can be applied toward solving
problems in many domains, including education [4], training [5],
and increasingly, healthcare [6]. For example, advances in com-
puter vision are creating new opportunities for diagnosing dis-
ease from image data, such as MRI scans and retinal fundus
photographs. Improvements in automated pattern recognition
are driving progress in drug discovery and genetic analysis.
Machine learning is being utilized to analyze patterns in smart-
watch sensor data to detect cardiac issues such as atrial
fibrillation.

An emerging opportunity for leveraging AI to advance
adolescent health is the design, development, and evaluation of
adaptive technologies for personalized preventive healthcare. AI-
driven personalized health technologies have several prospective
benefits. AI can be used to model how adolescents engage with
adaptive technologies to develop a data-rich understanding of
adolescent traits and knowledge [7]. AI can also be used to
dynamically generate or tailor interventions in response to
adolescent interactions with technology [8]. Furthermore, AI can
be used to devise predictive models that measure key health
indicators to inform adolescent behavior and provide analytics to
care providers. In short, AI can serve as the foundation for
personalized health technologies that engage adolescents in
their own health in ways that are personally meaningful, rele-
vant, and effective.

In this article, we describe emerging opportunities to leverage
AI for enabling adaptive health interventions that are deeply
personalized to adolescents. We provide a computer science
perspective on the opportunities and challenges raised by AI, and
we examine specific AI technologies that show particular
promise, including intelligent learning environments, interactive
narrative generation, user modeling, and adaptive coaching.
Research on adaptive health technologies calls for the develop-
ment of multidisciplinary partnerships that feature close
collaboration between health researchers, computer scientists,
and health-care providers. By integrating theoretically grounded
health interventions with state-of-the-art AI, we anticipate the
creation of tools and methods that extend the reach of clinicians
and empower young people toward achieving significant im-
provements in health.

Illustrative scenario

To illustrate the vision of adaptive health technologies for
personalized preventive adolescent healthcare, consider the
following scenario. (The scenario is based on the work by Ozer
et al. [9] on the design and development of INSPIRE, a narrative-
centered behavior change environment for adolescent preven-
tive healthcare focused on alcohol use.) Camila is a 14-year-old
teenager who has arrived at the primary care clinic for her annual
checkup. Camila recently started high school, and she is strug-
gling to orient herself in the new social environment that she
finds herself in at school. Although she may not be fully aware of
it, Camila is at a developmental stage that is formative for her in
establishing positive health behaviors.

As Camila awaits her appointment in the clinic waiting room,
she uses a clinic-provided tablet to complete an online screening
tool to report her recent history related to various types of health
behaviors, including risky behavior, such as smoking and
consuming alcohol. Based on her responses, Camila is provided
the opportunity to watch a 90-second video trailer about an
interactive narrative video game that is freely available through
the digital app store on her smartphone. The video trailer in-
troduces a storyline about a group of teenage friends planning a
social get-together that goes awry. Camila is intrigued to learn
what will happen to the characters, and she looks forward to
downloading the game to explore the story further when she
returns home.

After Camila returns home following her visit to see her pri-
mary care provider, she uses a link she received from the online
screening tool to access the personalized interactive narrative
game on her smartphone. Behind the scenes, the game is pow-
ered by an adaptive health behavior change system, including a
machine learning-based interactive narrative generator that
utilizes anonymized interaction data from prior adolescents, as
well as an online, private user model that was earlier updated
based on Camila's responses to the online screening tool, to drive
a set of personalized behavior change narrative generation pol-
icies. These policies determine how the game dynamically adapts
narrative events, character behaviors, and scaffolding in the
storyline based on Camila's individual characteristics and
gameplay choices. Camila begins to explore the interactive
narrative, which presents a series of story-centric problem sce-
narios involving the potential for engagement in risky health
behaviors, including peer pressure, social norms, and the con-
sequences of alcohol use. Throughout these scenarios, Camila
engages with a group of virtual teenage characters who respond
to Camila's conversational decisions through a combination of
speech, gestures, and facial expressions that are automatically
generated by the game's AI-based animation engine.

As Camila explores the interactive narrative, her choices drive
how events unfold in the storyline. The system provides adaptive
coaching to support Camila's self-regulatory process, prompting
her to select goals for handling the social gathering and reflect on
how different decisions might impact her goals. In effect, Camila
is engaged with an AI-driven preventive health intervention,
gaining practical experience with problem-solving strategies
that are critical for building self-efficacy to navigate real-world
situations that she may encounter in her own life.

Midway through the narrative, Camila's avatar receives
pressure from a virtual adolescent character to accept an alco-
holic drink. Based on Camila's risk profile, the system adapts the
narrative to provide just-in-time information about the effects of
alcohol on an adolescent's brain, and it directs another virtual
character to model a positive behavior strategy for handling peer
pressure. Camila observes how the virtual teenager believably
handles the situation, and she chooses a similar response for her
avatar, successfully navigating the difficult social decision while
adopting a strategy that promotes prosocial behavior and mini-
mizes health risks.

Camila's interactions with the intelligent learning environ-
ment continue in this manner as she engages with a series of
dynamically generated narrative episodes over the course of four
successive weeks. Throughout Camila's interactions with the
game, her software interaction logs are anonymized and
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recorded by the system to serve as additional training data for
the machine learningebased narrative generation system. In
addition, Camila's responses to subsequent alcohol screens and
questionnaires, which are administered between narrative
episodes as well as after the final episode, are provided to the
system to assess the impacts of the personalized behavior
change interactive narratives on Camila's alcohol use and self-
efficacy.

Following Camila's usage of the game, her care provider ob-
tains a summary report relaying how many times Camila logged
into the system, how many episodes have been completed, how
long she interacted with the system, and her self-reported
alcohol use. The report provides a launching point for future
communication with Camila about alcohol use and health
behavior change.

AI-driven adaptive technologies for adolescent preventive
healthcare

In recent years, major advances in AI can be largely attributed
to improvements in machine learning, and in particular, in deep
learning. Machine learning is a subfield of AI that centers on
developing computer programs that learn to solve tasks by
recognizing complex patterns in data rather than by being
explicitly programmed [10]. Deep learning is a family of machine
learning techniques that leverage artificial neural networks, a
type of computational approach for representing complex,
nonlinear mathematical functions that model patterns in large
multidimensional data sets [11]. Deep learning techniques have
yielded dramatic advances in foundational AI tasks such as
computer vision, speech recognition, and text understanding.

The breadth of AI as it applies to adaptive health technologies,
however, extends far beyond the machine learning techniques
and applications described in the previous paragraph. A major
frontier in AI is human-centered AI, which is situated at the
intersection of AI and human-computer interaction, and it fo-
cuses on identifying how to design, develop, and investigate
intelligent systems that support and enhance human experi-
ences augmented with technology [12]. Research and develop-
ment of adaptive technologies for preventive healthcare is an
instantiation of human-centered AI, and it points toward the
opportunity for investigating how AI techniques can be utilized
to solve critical challenges of preventive health, and conversely,
how open questions in preventive health can motivate algo-
rithmic advances in AI techniques and methodologies.

Within prevention, adaptive technologies have significant
promise both as a health intervention tool and a health screening
tool. Health information technologies, such as digital games and
mobile devices, provide a natural vehicle for delivering person-
alized interventions that operationalize evidence-based strate-
gies for affecting health behavior change. They extend the reach
of primary care interventions, complementing adolescents' face-
to-face interactions with their health-care provider, as well as
promoting follow-through care. Conversely, adolescents' in-
teractionswith these technologies can also serve as a “dependent
variable,” unobtrusively generating evidence by which to assess
adolescents' health risks and attributes.

A key capability of technology-based health interventions is
their capacity to produce rich data streams about users' in-
teractions with the technology. Detailed records of user in-
teractions can be securely logged, timestamped, stored, and
analyzed. These trace data logs include records of interaction
events, such as button presses, text entries, and menu selections,
as well as low-level user inputs, such as moment-to-moment
mouse movements, keystrokes, touchscreen taps, and gestures.
Increasingly, information technologies can also capture multi-
modal sensor data, such as speech, facial expression, gaze, loca-
tion, and biometric data. Taken together, thesemultichannel data
streams can serve as the raw input to machine learning systems
for processing, analyzing, and triangulating key variables, such as
measures of adolescent health and behavior [13].

Research and development on adaptive technologies for
adolescent preventive healthcare has several parallels with ap-
plications of human-centered AI in related fields, such as edu-
cation and training [4,7]. Research on AI in education spans
several decades, and it has produced a rich literature on intelli-
gent tutoring systems [14], student modeling [7], educational
data mining [15], and computational models of affect and
engagement [16]. Intelligent tutoring systems have been shown
to produce effect sizes that are comparable to one-on-one hu-
man tutoring with regard to student learning outcomes or
approximately 0.7 standard deviations over conventional
methods such as classroom instruction [4]. By leveraging run-
time models of student knowledge, misconceptions, and
related cognitive-affective states, intelligent learning environ-
ments can deliver carefully timed feedback, scaffolding, and
problem scenarios to guide students toward highly effective
learning experiences [14].

Adaptive technologies for adolescent preventive healthcare
share several key similarities with intelligent learning environ-
ments. Both use AI-driven personalization to enrich adolescent
interactions with technology; both rely upon run-time models of
assessment to inform how personalization is enacted for indi-
vidual users; and both are designed to support users toward
achieving, in the short term, positive outcomes, and in the longer
term, effective self-regulation. The opportunity for cross-
pollination between the two areas is significant and
bidirectional.

Another related area is interactive narrative generation,
which integrates AI and commercial game engine technologies to
generate immersive, interactive story experiences that are
dynamically tailored to individual users [17]. In contrast to
traditional narrative media such as books, animation, and film,
interactive narrative generation enables the creation of rich,
story-centric experiences in which users are active participants
who shape the events and outcomes of an unfolding narrative. A
range of computational approaches have been investigated for
interactive narrative generation, most recently machine learning
techniques such as collaborative filtering [18], dynamic Bayesian
networks [19], and reinforcement learning [8,20]. These latter
techniques comprise a family of data-driven systems that
dynamically personalize interactive narratives by training
generative models “bottom-up” from corpora of example story
data. In healthcare, interactive narrative technologies are a nat-
ural fit for creating technology-based health interventions that
are highly engaging and personalized to adolescents. Adoles-
cents may identify with their virtual avatars, as well as other
characters, and vicariously experience a range of health behavior
scenarios with different consequences. Interactive narrative
technologies have shown promise in several health applications,
including narrative-centered behavior change environments for
reducing adolescent risky behavior [9], interactive pedagogical
dramas to support development of social problem-solving skills
of relatives of pediatric cancer patients [21], and interactive
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visual novels designed to support patient empowerment in
managing hospital stays [22].

There is considerable potential to leverage human-centered
AI techniques that have proven effective in intelligent learning
environments and interactive narrative generation systemsd
these include user modeling and adaptive coaching tech-
nologiesdtoward supporting improvements in adolescent
knowledge, behavior, and engagement in health (Table 1).

Modeling adolescent learning and engagement

To enable adaptive health technologies to recognize the in-
dividual characteristics of adolescent users, devising computa-
tional models of adolescent learning and engagement is
essential. We briefly describe three applications of machine
learning for creating user models in intelligent learning envi-
ronments: (1) stealth assessment, (2) affective modeling, and (3)
user goal recognition. These applications exemplify critical
components of adaptive technologies designed to personalize
support for individual learners. In the context of healthcare,
these techniques promise to enable health technologies that
model and predict adolescent knowledge, engagement, and
behavior, respectively, and subsequently enable tailoring health
technology interactions to adolescents.

Stealth assessment

Stealth assessment is the task of unobtrusively measuring
student knowledge in an educational game using logs of user
gameplay data as input [23]. A key attribute of stealth assessment
is that it is invisible: it occurs in the background as an individual
interacts with a game-based learning environment, completing
tasks and engaging with the software, yielding a gradually
improving assessment of the student's knowledge as more evi-
dence is collected from their interactions with the game. Stealth
assessment is a framework that involves consumption of user
game trace logs and pretest data as input and predicts user
performance on post-test knowledge assessments as output.

Stealth assessment in educational games has typically
involved the creation of Bayesian networks, a type of probabi-
listic model, to capture how students' in-game behaviors provide
evidence about student competencies, such as science knowl-
edge or persistence [23]. However, the creation of Bayesian
network models requires a labor-intensive knowledge engi-
neering process that involves encoding large numbers of
Table 1
Examples of AI-driven adaptive technologies for adolescent preventive healthcare

AI-driven adaptive
technology

Example applications toward adolescent preventive hea

Intelligent learning
environments

� Create technology-rich health interventions that prov
self-efficacy, and problem-solving skills

� Deliver engaging health technology experiences that
Interactive narrative

generation
� Generate interactive narrative vignettes that emulate

own lives
� Tailor story events and character behaviors within

choices within the health intervention technology
User modelling
� Stealth assessment
� Affective modeling
� Goal recognition

� Assess adolescent knowledge about relevant health c
� Recognize occurrences of negative, deactivating emoti

disengagement
� Model adolescents' goals during interactions with

processes
Adaptive coaching � Prompt adolescents to set goals related to their health

� Deliver personalized hints and feedback within techn
variables and intervariable relationships that are explicitly rep-
resented in the model. Min et al. [24] devised a deep learninge
based framework for stealth assessment that utilizes long
short-term memory (LSTM) networks to automate major por-
tions of the model engineering process. In a comparison of
several machine learningebased models, they found that the
best performingmodel configuration, an LSTM network with 140
hidden units, significantly outperformed competing machine
learningebased models in predicting student post-test assess-
ment scores with respect to predictive accuracy and early pre-
diction capacity.

The effectiveness of stealth assessment in intelligent learning
environments underscores its potential as a user modeling
technique within health intervention technologies. Assessing
adolescents' knowledge of health behavior and risks provides a
direct mechanism for driving personalized presentation of in-
formation to impart knowledge and lay the foundation for im-
provements in adolescent health. However, leveraging stealth
assessment within technology-based health interventions also
raises important questions about the correspondence between
adolescent choices within an interactive narrative game and
their real-life choices that occur offline.

Affective modeling

Computational models of affect are integral to modeling and
understanding user engagement with adaptive technologies.
Recent years have witnessed significant interest in leveraging
machine learning to create run-time models for automatically
recognizing learner emotions [25]. This includes work on auto-
matically recognizing expressions of learner emotion, modeling
temporal changes in emotion over time, and interpreting learner
emotions to inform delivery of adaptive support [16]. A key
objective of affective models is enabling adaptive technologies to
respond to negative, deactivating emotions, such as boredom
and frustration [5]; detect and measure positive affective states,
such as flow [26]; and provide support to learners experiencing
confusion or anxiety, which can have a significant impact on
student learning outcomes [27].

Affective models are often grouped into two categories:
sensor-free models and sensor-based models. Sensor-free affec-
tive models utilize interaction trace log data as input for machine
learningebased classifiers of human emotion [28]. Sensor-based
affect recognition utilizes physical hardware sensors, such as
webcams for tracking facial expression, eye trackers for
lthcare

ide personalized learning experiences to enhance adolescent knowledge,

serve as a screening tool for detecting potential health risks and attributes
real-world problem scenarios that adolescents are likely to encounter in their

interactive health problem scenarios to respond dynamically to adolescents'

oncepts to inform personalized coaching in support of mastery learning
ons during adolescent interactions with health technologies to predict potential

technology-based health interventions to support effective self-regulatory

, and follow up with guided reflection about how well they achieved their goals
ology-based health interventions to support learning
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measuring gaze, motion-tracking cameras for tracking gesture
and posture, microphones for recording conversation, and bio-
metric sensors for tracking heart rate and other physiological
measures [29]. Multimodal affect recognition, which combines
multiple concurrent data streams using data fusion techniques,
produces run-time classifications of learner emotions, and has
shown promise in several contexts [29].

Obtaining “ground truth” measurements of emotion for
training machine learningebased affective models, however, is a
key challenge [30]. Research on affective modeling in education
has largely relied upon self-report methods, observational
methods, and elicitation methods to measure emotion [25].
However, each of these approaches has shortcomings. Emotional
expressions are context sensitive, multivariate, and have com-
plex temporal dynamics [30]. There is still a significant need for
enriched methodologies for measuring learner emotion in
naturalistic contexts and with finer temporal resolutions.

Affective modeling shows significant promise for under-
standing adolescent engagement with technology-based health
interventions. Even if a technology-based intervention is effec-
tive in the laboratory, if adolescents do not engage with it in the
real-world, it is unlikely to have a meaningful impact on health
outcomes. Affective modeling provides tools and methodologies
for measuring key aspects of adolescent engagement, which can
inform personalized support for maintaining healthy behavior,
improve adherence in prevention programs, and help health-
care providers understand the effectiveness of technology-
based preventive interventions.

Goal recognition

Goal recognition in intelligent learning environments in-
volves identifying the specific objectives that a user is attempting
to achieve, where the user's goals are often hidden from the
system and must be inferred from actions taken by the user.
Automated goal recognition is a classic challenge in AI, and it is a
special case of a more general problem known as plan, activity,
and intent recognition [31]. Automatically inferring users' goals
is critical for modeling patterns in users' goal-directed behavior,
which is important to informing personalized support of self-
regulatory processes during learning, and by extension, adoles-
cents' ownership over their own health.

Machine learning-based approaches to goal recognition have
shownconsiderable promise in intelligent learning environments
and interactivenarrative technologies. Forexample,Min et al. [32]
formulated goal recognition in intelligent learning environments
as a sequence labeling task and utilized LSTM networks as a so-
lution approach. The LSTM goal recognition framework was
evaluated with trace interaction logs from over 100 players
interacting with a game-based learning environment for middle
school science education. Results showed that an LSTM model
that used distributed action embeddings as input significantly
outperformed several deep and non-deep learning baselineswith
respect to predictive accuracy and convergence rate.

Delivering personalized support in adaptive health
technologies

Machine learning, and in particular, reinforcement learning
(RL) techniques, introduce the potential for user-adaptive tech-
nologies that automatically induce models of adaptive coaching
and feedback from observations of adolescent interactions in a
virtual environment. Reinforcement learning is a subarea of ma-
chine learning that focuses on training models for sequential
decision-making under uncertainty [33]. It is an algorithmic
process for learning by experience, rather than demonstration,
where the agent attempts alternative courses of action through a
form of trial-and-error and, over time, induces a model for per-
forming actions that maximize its accumulated reward.

Over the past several years, RL has been the subject of
growing interest in applications of human-centered AI, especially
in education [8,20,34,35]. This work has emphasized probabi-
listic models of behavior, as opposed to explicit models of
cognitive states, to drive models for supporting student learning.
For example, Chi et al. [35] used RL to model tutorial dialogue
interactions, devising pedagogical tactics directly from student
data in an intelligent tutoring system for physics education.
Rowe and Lester [20] utilized modular RL to induce policies for
narrative-centered tutorial planning in an educational game for
middle school microbiology education. More recently, Ausin et al.
[34] investigated a combination of deep learning and RL tech-
niques to model tutorial decision-making in an intelligent tutor
for undergraduate logic proofs.

Reinforcement learning is naturally suited to planning adap-
tive coaching and feedback in intelligent learning environments
and adaptive health technologies: the planner is tasked with
making a series of decisions about how coaching and feedback
should unfold at runtime to optimize adolescent learning and
performance on behavior change objectives. Wang et al. [8]
devised a deep RL-based adaptive coaching framework that was
based upon asynchronous advantage actor-critic (A3C), a type of
RL algorithm that has proven effective in benchmark RL tasks
such as Atari game playing and racecar simulations [36]. Wang
et al. trained and evaluated the adaptive coaching model using
trace log data from over 400 students who used an educational
game in their science classrooms. Results from a simulation
analysis suggested that the deep RL framework yielded more
effective learning experiences than baseline RL architectures in
terms of fostering improved student learning gains.

In addition to RL, there are several alternative machine
learningebased frameworks for providing personalized coaching
and support to enhance learning outcomes. Lee et al. [19]
introduced a learning-by-demonstration framework in which a
human tutor “teaches” the machine learning system how to
provide adaptive coaching in an educational game for middle
school science. Their framework involved conducting user
studies under a Wizard of Oz paradigm, where a group of stu-
dents interact with the learning environment, and behind the
scenes, coaching and feedback interventions are selected by a
human but are delivered entirely through the intelligent learning
environment's interface. Orji et al. [3] utilized data-driven tech-
niques from persuasive technologies to personalize game-based
interventions toward individual user personalities in a serious
game for health behavior change. These methods, among others,
underscore the significant promise of AI-driven adaptive
coaching technologies for supporting personalized interventions
in preventive health.

Challenges

There are several important challenges raised by AI-driven
adaptive technologies for adolescent preventive healthcare.
Looking beyond AI's prospective benefits, it is important to also
recognize challenges and potential risks, identify strategies for
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addressing or managing them, and assess areas where caution
may be necessary to ensure that AI's impacts are beneficial for
adolescent health rather than counterproductive.

Because machine learningebased systems rely heavily upon
access to detailed data about user attributes and behavior to drive
intelligent support and personalization, privacy is amajor issue in
health applications of AI [37]. Increasingly, it will be essential for
technology developers and researchers to develop a deep un-
derstanding of the ethical and regulatory issues related to privacy
of patient health data. By accepting responsibility for how AI
technologies are used, the developers of these systems will be
better positioned to ensure that adaptive health technologies are
designed and developed tomaximize benefits towardhealth. This
includes careful attention toward ethics in human research, such
as issues of user consent, data security, user autonomy, justice,
beneficence, and data ownership, which are critically important
for ensuring that the benefits of AI-driven adaptive health tech-
nologies are not outweighed by their potential risks and hazards.
For example, user modeling techniques, such as stealth assess-
ment, show significant promise for informing the provision of
personalized support within adaptive health technologies. How-
ever, these same techniques raise questions about what data are
collected and how else the data will be used; the prospect of
invisibly collecting adolescent health data, especially for the
purpose of informing health interventions, raises important
considerations of user consent and patient rights.

Another important challenge is the potential introduction of
implicit bias into machine learningebased models in adaptive
health technologies [38]. In general, machine learningebased
models reflect the data they have been trained on; if systematic
biases exist in the training data, then similar biases are likely to
arise in the machine learning models too. To avoid codifying and
entrenching harmful bias into machine learningebased models
for adolescent preventive healthcare, it is imperative to recruit
diverse adolescents to participate in studies for collecting data to
train machine learning systems, and where possible, participate
in discussions about the design and development of health in-
formation technologies themselves. Furthermore, there are
emerging computational techniques that explicitly address issues
of fairness, accountability, transparency, and generalizability of
machine learningebased models that merit attention for their
applicability toward adaptive health technologies [39,40].

A third challenge is integrating AI-driven adaptive health
technologies into existing workflows for delivering care, and
relatedly, integrating into the real-world lives of adolescents.
Within clinical settings, there are a broad range of questions about
effective models for integrationwith electronic health record sys-
tems, linking adolescents to the technology, giving care providers
effective interfaces, andminimizing issues related tomaintenance
and troubleshooting. Outside of the clinic, it is imperative that the
design and development of adaptive health technologies account
for where, when, and how adolescents are likely to use adaptive
health intervention technologies. Adolescents have access to an
enormous range of activities, entertainment technologies, and
other resources, both technology-based and technology-free, that
call upon their time and attention throughout the day. Developing
tools and methods that enable adaptive health technologies to fit
within the everyday livesof adolescents is important for adherence
and engagement. Furthermore, the specific context in which
adaptive technologies are used canhave a significant impacton the
design and effectiveness of machine learningebased models of
adolescent learning and engagement. Ultimately, developing
frameworks for better understanding how AI-driven adaptive
health technologies are most effective in practice will be a critical
challenge for the field.

In conclusion, recent advances in AI show significant promise
for enabling adaptive technologies for personalized adolescent
preventive healthcare. Increasingly, new opportunities for
personalization are being introduced by dramatic improvements
in machine learning. Drawing upon related work on intelligent
learning environments and interactive narrative generation, we
have described significant opportunities in modeling adolescent
learning and engagementdthese including applying techniques
such as stealth assessment, affective modeling, and goal recog-
nitiondand devising adaptive coaching to support improved
adolescent health outcomes. There are several important chal-
lenges raised by AI-driven health technologies, which require
solutions and active management, including issues of privacy,
ethics, encoded bias, and effective integration into clinical
workflows and adolescent lives. However, we see enormous
potential for applying AI toward the creation of adaptive tech-
nologies for personalized preventive health, creating new pos-
sibilities for personalized technology-based health screening and
intervention that are both effective and engaging for adolescents.

There are many promising future directions for research on
the design, development, and investigation of adaptive health
technologies for personalized preventive adolescent healthcare.
The human-centered AI technologies described in this articled
intelligent learning environments, interactive narrative genera-
tion, stealth assessment, affective modeling, goal recognition,
and adaptive coachingdhave been widely investigated in edu-
cation and entertainment settings, but there has been compar-
atively little work examining their application within adolescent
health. Investigating how human-centered AI technologies
translate to health-care settings, both inside and outside of the
clinic, is an important future direction for the field. This will
necessitate the creation of newmodels and methodologies for AI
research and development within preventive healthcare, as well
as validation of AI techniques within health applications, such as
prevention, behavior change, and disease management. To
conduct this research, it will be important to develop collabo-
rations between health researchers, computer scientists, and
health-care providers to ensure that the research is grounded in
health behavior change theory, clinically relevant, and leverages
the complementary perspectives that are uniquely available in
multidisciplinary teams. Finally, investigating AI-driven person-
alization within adolescent preventive health promises to sur-
face new and distinctive problems that require novel algorithmic
approaches and methodologies, pushing forward the frontiers of
both health and computer science alike.
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