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Abstract. Narrative-centered learning environments comprise a class of game-
based learning environments that embed problem solving in interactive stories. 
A key challenge posed by narrative-centered learning is dynamically tailoring 
story events to enhance student learning. In this paper, we investigate the 
impact of a data-driven tutorial planner on students’ learning processes in a 
narrative-centered learning environment, CRYSTAL ISLAND. We induce the 
tutorial planner by employing modular reinforcement learning, a multi-goal 
extension of classical reinforcement learning. To train the planner, we collected 
a corpus from 453 middle school students who used CRYSTAL ISLAND in their 
classrooms. Afterward, we investigated the induced planner’s impact in a 
follow-up experiment with another 75 students. The study revealed that the 
induced planner improved students’ problem-solving processes—including 
hypothesis testing and information gathering behaviors—compared to a control 
condition, suggesting that modular reinforcement learning is an effective 
approach for tutorial planning in narrative-centered learning environments. 

Keywords: Narrative-Centered Learning Environments, Tutorial Planning, 
Modular Reinforcement Learning, Game-Based Learning. 

1   Introduction 

Over the past decade, the education research community has shown growing interest 
in digital games, largely inspired by a key question: how can we motivate and engage 
students in learning? A promising class of games is narrative-centered learning 
environments, which integrate the motivational qualities of stories, along with the 
adaptive pedagogy of intelligent tutoring systems, to foster student engagement in 
learning and problem solving. When students use narrative-centered learning 
environments, they become active participants in ongoing narratives whose outcomes 
are shaped by students’ learning behaviors. As a result of recent advances in game 
engines and authoring tools, there are now a range of narrative-centered learning 
environments under investigation across different domains, including language 
learning [1], anti-bullying education [2], biosafety training [3], and science inquiry [4]. 

A key benefit of narrative-centered learning environments is their capacity to 
discreetly support students’ learning processes by integrating pedagogical and 
narrative elements. This form of scaffolding depends upon the presentation of events 



that fulfill dual roles: advancing problem-centric storylines, and providing tutorial 
support such as feedback or hints. Yet, despite a substantial research base on the 
cognitive principles of student learning [5], there is limited research on how to 
effectively design narrative-centered learning environments. If designed or deployed 
ineffectively, narrative-centered learning environments risk the introduction of 
seductive details, which can be harmful for learning [6]. Moreover, a one-size-fits-all 
approach to the design of narrative-centered learning environments has important 
limitations, due to the role of students’ individual differences in learning. 

To address these challenges, we conceptualize adaptive scaffolding in narrative-
centered learning environments as an instance of tutorial planning. We seek to devise 
computational models for generating, sequencing, and personalizing story events in a 
narrative-centered learning environment, with the explicit aim of enhancing student 
learning and engagement. To solve this problem, we employ a data-driven framework 
for inducing narrative-centered tutorial planners that leverages modular 
reinforcement learning. This formulation is made possible by the observation that 
tutorial planning in narrative-centered learning environments can be decomposed in 
terms of multiple independent sub-problems, each focused on a particular class of 
scaffolding events. Our framework is inspired by work on reinforcement learning 
methods for tutorial dialogue management [7], adapting and extending these 
techniques to meet the requirements of narrative-centered learning.  

To evaluate our framework, we present results from an experiment investigating 
the impact of an induced tutorial planner integrated with the CRYSTAL ISLAND 
narrative-centered learning environment. Empirical findings indicate that the induced 
planner improves students’ problem-solving behaviors, including hypothesis-testing 
and information-gathering processes, compared to a control condition. The results 
suggest that our modular reinforcement-learning framework is a promising method 
for devising data-driven tutorial planners that scaffold learning effectively in 
narrative-centered learning environments. 

2 Tutorial Planning with Modular Reinforcement Learning 

We formalize tutorial planning as a modular reinforcement learning problem. 
Modular reinforcement learning is a multi-goal extension of classical single-agent 
reinforcement learning [8,9]. In reinforcement learning, an agent learns a policy for 
selecting actions in an uncertain environment, guided by delayed rewards, in order to 
accomplish a goal [10]. The agent utilizes an environment-based reward signal in 
order to learn a policy, denoted π, which maps observed states to actions and 
maximizes total accumulated reward. Agents in reinforcement learning problems are 
typically modeled with Markov decision processes (MDPs).  

Modular reinforcement learning tasks are formally defined in terms of N 
concurrent MDPs, M = 𝑀! !

!, where each Mi =(𝑆!, 𝐴!, 𝑃!, 𝑅!), corresponding to a sub-
problem in the composite reinforcement learning task. Each agent Mi has its own state 
sub-space Si, action set Ai, probabilistic state transition model Pi, and reward model 
Ri. The solution to a modular reinforcement learning problem is a set of N policies, 
𝜋∗ = 𝜋!∗ !

! , where 𝜋!  is the optimal policy for the constituent MDP Mi. Any 



circumstance where two policies 𝜋! and 𝜋! with i≠j recommend different actions in 
the same state requires the application of an arbitration procedure. 

Tutorial planning in narrative-centered learning environments is naturally 
represented as a modular reinforcement learning problem: state consists of the 
learner’s state and history as well as the learning environment’s; actions represent the 
pedagogical decisions the planner can perform; a probabilistic state transition model 
encodes how learners, and the learning environment, respond to the planner’s tutorial 
decisions; and a reward model encapsulates measures of students’ learning outcomes, 
which the tutorial planner seeks to optimize. The solution to a modular reinforcement-
learning problem is a set of policies, or mappings between states and tutorial actions, 
that govern how the tutorial planner scaffolds students’ learning. If two policies 
conflict, externally defined arbitration procedures specify which policy prevails.  

By decomposing tutorial planning into multiple sub-problems, we can reduce the 
complexity of reinforcement learning by reframing the task in terms of several 
smaller, concurrent Markov decision processes. To perform this decomposition, we 
employ the concept of an adaptable event sequence (AES), an abstraction for a series 
of one or more scaffolding-related events that, once triggered, can unfold in several 
different ways within the learning environment [11]. To illustrate the concept of an 
AES, consider an example of an event sequence that occurs when a player asks a non-
player character (NPC) about her backstory. The NPC could respond in one of several 
ways: 1) providing a detailed explanation and a hint about how her backstory 
information is useful, 2) providing an explanation but no hint, 3) responding 
suspiciously and revealing only a few details, or 4) not responding at all. Each of 
these four responses is an alternate manifestation of the NPC Backstory event 
sequence. Each option is coherent within the storyline, can be interchanged with any 
other, and provides a distinct level of problem-solving support. We refer to the event 
sequence as adaptable, or in other words, it is an adaptable event sequence (AES).  

AESs can encode a broad range of scaffolding types. For example, an AES could 
specify the location of an important object, or determine what level of hint to provide 
to a student, or select whether to prompt a student to self-explain their problem-
solving strategy or not. Further, multiple AESs can be interleaved. AESs encode 
distinct threads of story events, each potentially involving multiple decision points 
spanning an entire story. For this reason, AESs are sequential and operate 
concurrently. Each AES is modeled separately as a MDP, and tutorial decisions about 
scaffolding are determined through modular reinforcement learning. 

Leveraging the concept of an AES, narrative-centered tutorial planning can be cast 
as a collection of sequential decision-making problems about scaffolding student 
learning within a narrative-centered learning environment. Modular reinforcement 
learning is applied as follows. Each AES is modeled as a distinct Markov decision 
process, Mi. For each AES, every occurrence of the event sequence corresponds to a 
decision point for Mi. The set of possible scaffolding options for the AES is modeled 
by an action set, Ai. A particular state representation, Si, is tailored to the AES using 
manual or automatic feature selection techniques. Rewards, Ri, can be calculated from 
formative or summative assessments of student learning, such as a post-test. A state 
transition model Pi encodes the probability of transitioning between two specific 
states during successive decision points for the AES. To estimate the values of these 
parameters, we can collect training data from students by deploying a tutorial planner 



that selects actions randomly, in effect sampling the space of tutorial policies and 
rewards [7]. Leveraging this mapping between AESs and MDPs, and a training 
corpus of random tutorial decision data, we can employ model-based reinforcement 
learning techniques to induce policies for tutorial planning. Specifically, we utilize 
dynamic programming methods (e.g., value iteration) to compute solution policies for 
each MDP using estimates of the state transition model and reward model inferred 
from the training corpus [7,10]. In cases where two policies conflict, we utilize 
greatest mass arbitration, a domain-independent arbitration procedure that selects the 
action with the largest Q-value calculated during policy induction [8,9]. In 
combination, this formulation provides a method for formulating narrative-centered 
tutorial planning as an instance of modular reinforcement learning.  

3   Corpus Collection  

To investigate our modular reinforcement learning framework for tutorial planning, 
we used CRYSTAL ISLAND, a narrative-centered learning environment for middle 
school microbiology (Figure 1). The version of CRYSTAL ISLAND used in this study 
was built on Valve Software’s SourceTM engine. The environment features a science 
mystery in which students investigate the identity and source of an infectious disease 
that is plaguing a research team on a remote island. Students adopt the role of a 
medical detective who must save the research team from the outbreak. Over the past 
decade, CRYSTAL ISLAND has been 
the subject of extensive empirical 
investigation, and has been found to 
provide substantial learning and 
motivational benefits [12].  

To investigate narrative-centered 
tutorial planning in CRYSTAL ISLAND, 
we developed a modified version of 
the system that includes 13 AESs. We 
selected 13 AESs in order to 
incorporate a broad range of 
scaffolding capabilities. Space 
limitations preclude a detailed 
description of every AES, but they 
included decisions about whether to 
provide hints and prompts during the mystery (e.g., prompt the student to record her 
findings in a diagnosis worksheet, prompt the student to self-explain her problem-
solving strategy); whether to administer embedded assessments of content knowledge; 
which disease and transmission source caused the outbreak; how much detail should 
NPCs provide about their symptoms; what level of feedback should be provided on 
students’ proposed diagnoses; and manipulations to the number of hypotheses that 
students can test in the virtual laboratory. For additional details, a more 
comprehensive discussion of the AESs is available in [13]. 

To illustrate how AESs unfolded within CRYSTAL ISLAND, consider the following 

Figure 1. CRYSTAL ISLAND narrative-centered 
learning environment. 



scenario. When a student begins the narrative, the Mystery’s Solution AES occurs 
behind the scenes, selecting one of 6 possible solutions to the mystery. The tutorial 
planner selects salmonellosis as the mystery disease and contaminated milk as the 
disease’s transmission source. This AES decision is invisible to the student, but the 
selection dictates which symptoms and medical history are reported by the sick 
characters. As the student explores the camp, she initiates a conversation with a sick 
scientist named Teresa. The student asks Teresa about her symptoms, triggering a 
decision point for the Details of Teresa’s Symptoms AES. This AES controls how 
much information Teresa provides in her response. The tutorial planner has Teresa 
provide minimal information, leading Teresa to groan and explain that she has a fever. 
If the student chooses to ask Teresa about her symptoms again later, the planner may 
choose a different response to help the student narrow on a diagnosis. Next, a decision 
point for the Record Findings Reminder AES is triggered, because the student has just 
received useful information for diagnosing the illness. The tutorial planner chooses 
whether to hint to the student that she should take a note about the symptom 
information. The narrative continues in this manner, driven by the student’s actions, 
and periodically triggering scaffolding events that shape how the experience unfolds. 

After modifying CRYSTAL ISLAND to incorporate AESs, we conducted a pair of 
classroom studies to collect training data for inducing a tutorial planner. The first 
study involved 300 students from a North Carolina middle school, and the second 
study involved 153 students from another middle school. All students used the same 
version of CRYSTAL Island, followed the same study procedure, and used the game 
individually. One week prior to using CRYSTAL ISLAND, students completed a pre-test, 
which collected data on students’ demographics, game-playing experience, and 
microbiology content knowledge. The microbiology content test consisted of 19 
multiple-choice questions, and was created iteratively by the research team and a 
group of eighth-grade science teachers. During the studies, students interacted with 
CRYSTAL ISLAND until they solved the mystery, or 55 minutes elapsed, whichever 
occurred first. Immediately afterward, students completed a post-test, which included 
the same content knowledge assessment as the pre-test, as well as several self-report 
measures of engagement. Both the pre- and post-tests lasted no more than 30 minutes.  

While using CRYSTAL ISLAND, students unknowingly encountered AESs several 
times. At each AES decision point, the environment selected a scaffolding-related 
event according to a uniform random policy. By logging these tutorial planning 
decisions, as well as students’ responses, the environment broadly sampled the space 
of policies for controlling adaptable event sequences. The data from both studies were 
combined into a single corpus consisting of two parts: students’ interaction logs, and 
students’ pre- and post-test results. After removing incomplete or inconsistent records, 
there were 402 participants remaining. The resulting data consisted of 315,407 events. 
In addition to student actions, there were 10,057 instances of AESs in the corpus, 
which corresponded to approximately 25 tutorial planning decisions per student. 

4   Implemented Planner 

Using the corpus, we induced a policy for each MDP to control CRYSTAL ISLAND’s 



scaffolding features, with the exception of one AES for which we had insufficient 
training data (off-task behavior discouragement). All of the MDPs shared the same 
state representation, which consisted of 8 binary features drawn from three categories: 
narrative features, individual difference features, and problem-solving features. We 
limited the state representation to 8 binary features to mitigate potential data sparsity 
issues. The first four features were narrative-focused. Each feature was associated 
with a salient plot point from CRYSTAL ISLAND’s narrative and indicated whether the 
plot point had been completed thus far. The next two features were based on students’ 
individual differences. The first feature was computed from a median split on students’ 
microbiology pre-test scores, and the second feature was computed from a median 
split on students’ self-report data about how often they played video games. The final 
two state features were computed from students’ observed problem-solving behaviors. 
Specifically, we computed running median splits on the frequency of students’ lab-
testing and book-reading behaviors within CRYSTAL ISLAND. 

The action sets for the 12 MDPs corresponded to the scaffolding options for the 
associated AESs. The action sets’ cardinalities ranged from binary to 6-way decisions. 
If the entire planning task were modeled as a single MDP, it would require encoding 
approximately 1,644,000 parameters to populate the entire state transition model (256 
states × 25 distinct actions × 257 states, including the terminal state), although not all 
state transitions were possible.1 

Each MDP shared the same reward function, which was based on students’ 
normalized learning gains (NLG). NLG is the normalized difference between 
participants’ pre- and post-study knowledge test scores. To determine reward values 
in the corpus, NLG was first calculated for each participant, and then a median split 
was performed. Students who had a NLG that was greater than or equal to the median 
were awarded +100 points at the conclusions of their episodes. Participants with a 
NLG that was less than the median were awarded -100 points. 

To induce the tutorial policies, we used value iteration [10]. The 12 MDPs, one for 
each AES in CRYSTAL ISLAND, were implemented with a reinforcement-learning 
library written in Python by the first author. Policies were induced using a discount 
rate of 0.9. The discount rate parameter governs how rewards are attributed to planner 
actions during reinforcement learning. Our previous work has found that discount rate 
has a limited effect on the policies induced for CRYSTAL ISLAND [11]. 

5   Evaluation Experiment 

After inducing tutorial planning policies for each adaptable event sequence, we 
evaluated the tutorial planner’s impact on students’ learning experiences in the run-
time CRYSTAL ISLAND learning environment. This required incorporating the induced 
tutorial planning policies into CRYSTAL ISLAND by replacing the exploratory tutorial 
policies from the corpus collection studies with the newly induced policies.  
 To evaluate CRYSTAL ISLAND’s induced tutorial planner, we conducted a follow-up 
controlled experiment with middle school students comparing the induced policies to 

                                                
1 Several AESs included an action choice of do nothing. We count all of these do nothing 

choices as a single action, yielding a total of 25 distinct actions across the 12 AESs. 



a control condition. Participants were drawn from a different school than the corpus 
collection studies. A total of 75 eighth-grade students participated. Among these 
students, 14 were removed due to incomplete or inconsistent data.  
 The study had two conditions: an Induced Planner condition and a Control Planner 
condition. Students in both conditions played CRYSTAL ISLAND, but the conditions 
differed in terms of the tutorial planning policies employed by the narrative-centered 
learning environment. The Induced Planner followed policies obtained by inducing 
solution policies for each Markov decision process associated with an AES in 
CRYSTAL ISLAND, with conflicts resolved via greatest mass arbitration [9]. The 
Control Planner employed a uniform random policy, where tutorial decisions were 
selected randomly whenever the planner encountered a decision point. This was the 
same policy used by the exploratory planner during the corpus collection studies.  
 Students were randomly assigned to the two conditions when they entered the 
experiment room. Among students with complete data, 33 were randomly assigned to 
the Induced Planner condition, and 28 were assigned to the Control Planner condition. 
Students played until they solved the mystery or the interaction time expired, 
whichever occurred first. The study procedure, pre-test, and post-test were otherwise 
identical to the corpus collection studies.  

6   Results 

Analyses of students’ learning gains found students achieved significant 
improvements in microbiology content knowledge in both experimental conditions. In 
the Induced Planner condition, students significantly improved their content test 
scores by 1.6 questions on average from pre-test (M = 7.8, SD = 2.2) to post-test  
(M = 9.4, SD = 3.6), t(32) = 2.67, p < .02. In the Control Planner condition, students 
also achieved significant improvements in content test score from pre-test (M = 7.2, 
SD = 2.5) to post-test (M = 9.5, SD = 3.4), t(27) = 4.09, p < .001, a gain of 2.3 
questions on average. A comparison between the two conditions’ average post-test 
scores did not find evidence of a significant condition effect on microbiology content 
learning. Similarly, no condition effects were observed on students’ normalized 
learning gains or self-reported engagement. In hindsight, the lack of a condition effect 
on learning is unsurprising. A majority of the AESs provided scaffolding for students’ 
inquiry behaviors, rather than microbiology content exposure, which was the focus of 
the pre- and post-tests. Students in both conditions had the same access to the game’s 
microbiology content. Additionally, we had anticipated a potential test effect from the 
Knowledge Quiz AES, which controlled decisions about whether to administer 
embedded assessments in CRYSTAL ISLAND, and would be hypothesized to yield 
increased learning gains [5]. However, the Induced Planner tended to not deliver the 
assessments, surprisingly, making it unlikely to find such an effect. 

Next, we investigated students’ problem-solving processes in CRYSTAL ISLAND. In 
particular, we sought evidence of deliberate problem solving, in contrast to strategies 
that involve extensive guessing or non-purposeful behavior. To perform this 
investigation, we calculated several metrics that had previously yielded insights about 
problem solving in CRYSTAL ISLAND, including measures of hypothesis testing 
efficiency [14] and early information gathering behavior [15]. 



We first analyzed students’ hypothesis testing behaviors. In CRYSTAL ISLAND, 
students test hypotheses about potential sources of the outbreak in the camp’s virtual 
laboratory. A two-tailed t-test indicated that students in the Induced Planner condition 
(M = 13.7, SD = 10.9) conducted marginally fewer tests than students in the Control 
Planner condition (M = 19.5, SD = 14.4), t(59) = 1.80, p < .08. Additionally, the 
Induced Planner group ran significantly fewer tests (M = 4.7, SD = 7.7) after 
identifying the transmission source than students in the Control Planner group  
(M = 11.0, SD = 12.6), t(59) = 2.39, p < .03. These findings suggest that students in 
the Induced Planner condition tested their hypotheses more efficiently.  

Next, we examined student behaviors during the early stages of problem solving by 
investigating how students collected background information on the microbiology 
curriculum prior to forming, testing, and reporting their hypotheses. First, we 
investigated students’ conversations with virtual characters (Figure 2). In terms of 
total number of conversations, as well as total number of dialogue turns, no 
significant differences between conditions were observed. However, there were 
significant condition effects on student dialogue behavior with specific virtual 
characters. Students in the Induced Planner condition engaged in significantly more 
dialogue turns with Ford, the camp’s virus specialist, prior to running a laboratory test, 
t(59) = -2.31, p < .03. Conversely, Induced Planner students engaged in significantly 
fewer dialogue turns with Ford after running their first test, t(59) = 2.25, p < .03.  

Similar patterns were observed for students’ conversational behaviors with Robert, 
the camp’s bacteria specialist. Students in the Induced Planner condition engaged in 
more dialogue turns with Robert prior to running a laboratory test, t(59) = -1.71,  
p = .09. Students in the Induced Planner condition also engaged in fewer dialogue 
turns with Robert after running their first laboratory test, t(59) = 2.21, p < .04. In a 
related finding, the Induced Planner students engaged in significantly more dialogue 
turns with the camp nurse Kim—a character who provides general background on 
pathogens, mutagens, and carcinogens—prior to first submitting their diagnosis 
worksheet, t(59) = -2.19, p < .04. These patterns are consistent with strategic 
information gathering in CRYSTAL ISLAND. The findings suggest that students in the 
Induced Planner condition collected more background information about 
microbiology prior to testing their hypotheses in the laboratory, which is a desirable 

Figure 2. Students' dialogue behaviors by problem-solving phase, which include 1) before 
running the first lab test, 2) before running a positive lab test, 3) before first submitting the 

diagnosis worksheet, and 4) before solving the science mystery. 
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problem-solving approach, whereas students in the Control condition gathered 
background information afterward, which is consistent with an ad hoc approach. 

As a further investigation of students’ information gathering strategies, we 
examined poster-viewing behaviors between experimental conditions. In these 
analyses, we only considered instances lasting longer than one second in duration. 
Similar to the character dialogue findings, no significant differences in total poster 
viewing metrics were observed. However, in an examination of the camp’s six 
disease-focused posters, two-tailed t-tests indicated that students in the Induced 
Planner condition spent significantly more time reading the Salmonellosis poster prior 
to submitting their diagnosis worksheet than students in the Control Planner condition, 
t(59) = -2.18, p < .04. Similarly, students in the Induced Planner condition viewed the 
Anthrax poster more times prior to submitting their diagnosis worksheet, t(59) = -1.67, 
p = .1. Students in the Induced Planner condition viewed the Botulism poster more 
times prior to successfully testing the transmission source in the laboratory,  
t(59) = -1.73, p < .09. And students in the Induced Planner condition viewed the 
Ebola poster more times prior to submitting their diagnosis worksheet, t(59) = -1.96,  
p = .05. No analogous condition effects were observed for the Influenza or Smallpox 
posters. 

These findings suggest that students in the Induced Planner condition examined 
disease-specific posters more frequently before testing hypothesized diagnoses, 
particularly for posters about bacterial diseases. The findings raise questions about 
whether similar patterns were observed for students reading virtual books, which 
provide similar information for diagnosing the illness. However, an investigation of 
virtual book-reading behaviors failed to find evidence of significant condition effects. 
Furthermore, significant condition effects were not observed for students’ diagnosis 
worksheet behaviors, another key problem-solving feature in CRYSTAL ISLAND. 

7   Conclusions and Future Work 

We have found that a narrative-centered tutorial planner, induced using modular 
reinforcement learning, significantly improves students’ problem-solving processes in 
the CRYSTAL ISLAND learning environment. We trained the tutorial planner directly 
upon a corpus of data from students who used CRYSTAL ISLAND in their science 
classrooms, producing data-driven tutorial planning models capable of adaptive 
scaffolding. We evaluated the planner’s impact in a controlled experiment conducted 
with 75 middle school students. Results indicated that students in the Induced Planner 
condition demonstrated greater efficiency at hypothesis testing, as well as greater 
evidence of strategic information gathering, during their investigations. These 
findings provide evidence that narrative-centered tutorial planners, induced using 
modular reinforcement learning, can have positive effects on students’ problem 
solving behaviors. Building on these findings, in future work it will be important to 
investigate the impacts of alternate MDP state representations on induced tutorial 
planning policies. In addition, it will be informative to investigate the framework’s 
generalizability by applying it to different types of learning environments. 
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