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Abstract

To explain complex phenomena, an explanation
system must be able to select information from
a formal representation of domain knowledge,
organize the selected information into multi-
sentential discourse plans, and realize the dis-
course plans in text. Although recent years have
witnessed significant progress in the development
of sophisticated computational mechanisms for
explanation, empirical results have been limited.
This paper reports on a seven year effort to em-
pirically study explanation generation from se-
mantically rich, large-scale knowledge bases.

We first describe Knight, a robust explana-
tion system that constructs multi-sentential and
multi-paragraph explanations from the Biology
Knowledge Base, a large-scale knowledge base
in the domain of botanical anatomy, physiol-
ogy, and development. We then introduce the
Two Panel evaluation methodology and describe
how Knight’s performance was assessed with this
methodology in the most extensive empirical
evaluation conducted on an explanation system.
In this evaluation, Knight scored within “half a
grade” of domain experts, and its performance
exceeded that of one of the domain experts.

Introduction

In the course of their daily affairs, scientists explain
complex phenomena—both to one another and to lay
people—in a manner that facilitates clear communi-
cation. Similarly, physicians, lawyers, and teachers
are equally facile at generating explanations in their
respective areas of expertise. In an effort to compu-
tationalize this critical ability, research in natural lan-
guage generation has addressed a broad range of issues
in automatically constructing text from formal rep-
resentations of domain knowledge. Research on text
planning (McKeown 1985; Paris 1988; McCoy 1989
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1990; Hovy 1993; Maybury 1993) has developed tech-
niques for determining the content and organization
of many genres, and explanation generation (Cawsey
1992; Moore 1995) in particular has been the sub-
ject of intense investigation. In addition to exploring
a panorama of application domains, the explanation
community has begun to assemble these myriad de-
signs into a coherent framework. As a result, we have
begun to see a crystallization of the major components

(Suthers 1993).

Despite this success, empirical results in explana-
tion generation are limited. Although techniques for
developing and evaluating robust explanation genera-
tion should yield results that are more conclusive than
those produced by prototype, “proof-of-concept” sys-
tems, with only a few notable exceptions (Kukich 1983;
Hovy 1990; Cawsey 1992; Mittal 1993; Robin 1994),
most work has adopted a research methodology in
which a proof-of-concept system is constructed and its
operation 1s analyzed on a few examples. While iso-
lating one or a small number of problems enables re-
searchers to consider particular issues in detail, it is
difficult to gauge the scalability and robustness of a
proposed approach. A critical factor contributing to
the dearth of empirical results is the absence of seman-
tically rich, large-scale knowledge bases. Knowledge
bases housing tens of thousands of different concepts
could furnish ample raw materials for empirical study,
but no work in explanation generation has been con-
ducted or empirically evaluated in the context of these
knowledge bases.

To empirically study explanation generation from se-
mantically rich, large-scale knowledge bases, we un-
dertook a seven year experiment. First, our domain
experts (one employed full-time) constructed the Biol-
ogy Knowledge Base (Porter et al. 1988), a very large
structure representing more than 180,000 facts about
botanical anatomy, physiology, and development. Sec-
ond, we designed, implemented, and empirically eval-
uated KNIGHT, a robust explanation system that ex-
tracts information from the Biology Knowledge Base,
organizes 1t, and realizes it in multi-sentential and
multi-paragraph expository explanations of complex



biological phenomena. Third, we developed a novel
evaluation methodology for gauging the effectiveness
of explanation systems and employed this methodol-
ogy to evaluate KNIGHT. This paper describes the
lessons learned during the course of the “KNIGHT
experiments.”!

The Task of Explanation Generation

Explanation generation is the task of extracting infor-
mation from a formal representation of knowledge, im-
posing an organization on it, and realizing the informa-
tion in text. The overall task is typically decomposed
into two subtasks, explanation planning and realiza-
tion. FExplanation planning itself has two subtasks:
content determination, in which knowledge structures
are extracted from a knowledge base, and organiza-
tion, in which the selected knowledge structures are
arranged 1n a manner appropriate for communication
in natural language. To communicate complex ideas,
an explanation system should be able to produce multi-
sentential explanations such as the one in Figure 1,
which shows several explanations from the domain of
botanical anatomy, physiology, and development. To
perform these tasks successfully, an explanation plan-
ner must have access to discourse knowledge, which
informs its decisions about the content and organiza-
tion of textual explanations. The organizational aspect
of discourse knowledge plays a particularly important
role in the construction of extended explanations.

Embryo sac formation is a kind of female gametophyte
formation. During embryo sac formation, the embryo
sac is formed from the megaspore mother cell. Embryo
sac formation occurs in the ovule.

Embryo sac formation is a step of angiosperm sex-
ual reproduction. It consists of megasporogenesis and
embryo sac generation. During megasporogenesis, the
megaspore mother cell divides in the nucellus to form
4 megaspores. During embryo sac generation, the em-
bryo sac is generated from the megaspore.

Figure 1: Explanation produced by KNIGHT from the
Biology Knowledge Base

Evaluating the performance of explanation systems
is a critical and non-trivial problem. Five evaluation
criteria should be applied.

e (Coherence: A global assessment of the overall qual-
ity of explanations generated by a system.

e Content. The extent to which the explanation’s in-
formation is adequate and focused.

e Organization: The extent to which the information
is well organized.

o Writing style: The quality of the prose.

!Details of KNIGHT s architecture, implementation, and
evaluation may be found in (Lester 1994).

e Correctness: For scientific explanations, the extent
to which the explanations are in accord with the
established scientific record.

In addition to performing well on the evaluation cri-
teria, if explanation systems are to make the difficult
transition from research laboratories to fielded appli-
cations, they should exhibit two important properties,
both of which significantly affect scalability. First,
these systems’ representations of discourse knowledge
should be easily inspected and modified. To develop
explanation systems for a broad range of domains,
tasks, and question types, discourse-knowledge engi-
neers must be able to create and efficiently debug the
discourse knowledge that drives the systems’ behavior.
The second property that explanation systems should
exhibit 1s robustness. Despite the complex and possi-
bly mal-formed representational structures that an ex-
planation system may encounter in its knowledge base,
it should be able to cope with these structures and con-
struct reasonably well-formed explanations.

Given the state of the art in explanation generation,
the field i1s now well positioned to explore what may
pose its greatest challenge and at the same time may
result in its highest payoff: generating explanations
from semantically rich, large-scale knowledge bases.
Large-scale knowledge bases encode information about
domains that cannot be reduced to a small number of
principles or axioms. These knowledge bases consist
of highly interconnected networks of (at least) tens of
thousands of facts.

One such knowledge base is the Biology Knowl-
edge Base, a large structure that encodes informa-
tion about botanical anatomy, physiology, and devel-
opment. One of the largest knowledge bases in exis-
tence, it is encoded in the KM frame-based knowledge
representation language. The backbone of the Biology
Knowledge Base is its taxonomy, which is a large hi-
erarchical structure of biological objects and biological
processes. The Biology Knowledge Base currently con-
tains more than 180,000 explicitly represented triples,
and its deductive closure is significantly larger.

It is important to note that the authors and the do-
main experts entered into a “contractual agreement”
with regard to representational structures in the Biol-
ogy Knowledge Base. To eliminate all requests for rep-
resentational modifications that would skew the knowl-
edge base to the task of explanation generation, the au-
thors entered into the following agreement: they could
request representational changes only if knowledge was
inconsistent or missing. This facilitated a unique ex-
periment in which the representational structures were
not tailored for the task of explanation generation.

Accessing Large-Scale Knowledge Bases

By interposing a KB accessing system between an ex-
planation planner, which performs global content de-
termination, and a knowledge base, it is possible to
keep an explanation planner at “arm’s length” from



the representation of domain knowledge. In addi-
tion, it can help build explanations that are coherent.
An important technique for generating coherent ex-
planations is by extracting views (McCoy 1989 1990;
Suthers 1993). For example, the concept photosynthe-
sis can be viewed as either a production process or
an energy transduction process. Viewed as production,
it would be described in terms of its raw materials
and products: “During photosynthesis, a chloroplast
uses water and carbon dioxide to make oxygen and
glucose.” Viewed as energy transduction, it would be
described in terms of input energy forms and output
energy forms: “During photosynthesis, a chloroplast
converts light energy to chemical bond energy.” In
short, the view that is taken of a concept has a sig-
nificant effect on the content that is selected for its
description.

KNIGHT has a robust KB accessing system that ex-
tracts views of concepts represented in a knowledge
base. Fach view is a coherent subgraph of the knowl-
edge base describing the structure and function of ob-
jects, the change made to objects by processes, and
the temporal attributes and temporal decompositions
of processes. FEach of the nine accessors in the li-
brary can be applied to a given concept—the “con-
cept of interest”—to retrieve a view of that concept.
There are three classes of Accessors: those that are ap-
plicable to all concepts (As-Kind-Of and Functional),
those that are applicable to objects (Partonomic-
Connection and Sub-Structural), and those that are
applicable to processes (Awuziliary-Process—which in-
cludes Causal, Modulatory, Temporal, and Locational
sub-types— Participants, Core-Connection, and Sub-
event, and Temporal-Step).”

In addition to coherence, robustness is also an im-
portant design criterion. The KB accessors achieve
robust performance in four ways: (1) They do not as-
sume that essential information will actually appear
on a given concept in the knowledge base. (2) They
employ a type checking system that exploits the knowl-
edge base’s taxonomy. (3) When they detect an irreg-
ularity, they return appropriate error codes to the ex-
planation planner. (4) They tolerate specialized (and
possibly unanticipated) representational vocabulary by
exploiting the relation taxonomy. By using these tech-
niques in tandem, we have developed a KB accessing
system that has constructed several thousand views
without failing.

A Discourse Programming Language

The “discourse-knowledge programming language” of
Fxplanation Design Packages (EDPs) emerged from
an effort to accelerate the representation of discourse

?In addition to the “top level” accessors, the library
also provides a collection of some twenty “utility” accessors.
These include procedures for extracting particular aspects
of views previously constructed by the system.

knowledge without sacrificing expressiveness. For a
given query type, domain, and task, a discourse-
knowledge engineer must be able to represent the dis-
course knowledge needed by an explanation system for
responding to questions of that type in that domain
about that task. Pragmatically, to represent discourse
knowledge for a broad range of queries, domains, and
tasks, a formalism must facilitate effictent represen-
tation of discourse knowledge. Therefore, important
goals for the design of a discourse formalism are ease
of reuse and ease of modification.

EDPs give discourse-knowledge engineers the proper
abstractions for specifying the content and organiza-
tion of explanations. They combine a frame-based rep-
resentation language with embedded procedural con-
structs. To mirror the structure of expository texts,
an EDP contains a hierarchy of nodes, which pro-
vides the “global organization” of explanations. EDPs
are schema-like (McKeown 1985; Paris 1988) struc-
tures that include constructs found in traditional pro-
gramming languages. Just as prototypical program-
ming languages offer conditionals, iterative control
structures, and procedural abstraction, EDPs offer
discourse-knowledge engineers counterparts of these
constructs that are precisely customized for explana-
tion planning. Moreover, each EDP names multiple
KB accessors, which are invoked at explanation plan-
ning time. Because EDPs are frame-based and are im-
plemented in KM, the representational language used
by the Biology Knowledge Base, they can be easily
viewed and edited by knowledge engineers using the
graphical tools commonly associated with frame-based
languages. This has proven to be very useful for ad-
dressing a critical problem in scaling up explanation
generation: maintaining a knowledge base of discourse
knowledge that can be easily constructed, viewed, and
navigated by discourse-knowledge engineers.

A discourse-knowledge engineer can use EDPs to
encode discourse knowledge for his or her applica-
tion. In our work, we have focused on two types of
texts that occur in many domains: process descrip-
tions and object descriptions. For example, in biol-
ogy, one encounters many process-oriented descriptions
of physiological and reproductive mechanisms, as well
as many object-oriented descriptions of anatomy. In
the course of our research, we studied many passages
in biology textbooks. These passages focused on ex-
planations of the anatomy, physiology, and reproduc-
tion of plants. We manually “parsed” each passage
into a discourse tree. The discourse trees were ex-
pressed in an informal language centering around view-
points (Acker et al. 1991; Suthers 1993). The view-
points were in turn expressed in an informal language
of structure, function, and process which is commonly
found in the discourse literature, e.g., (McKeown 1985;
Paris 1988). Our final step was to generalize the most
commonly occurring patterns into abstractions that
covered as many aspects of the passages as possible.
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Figure 2: An Architecture for Explanation Generation

After generalizing the commonly occurring patterns
into abstractions, we encoded the abstractions in two
Explanation Design Packages. These EDPs can be
used by an explanation planner to generate explana-
tions about the processes and objects of physical sys-
tems.

Planning Explanations

We have designed an architecture for explanation gen-
eration and implemented a full-scale explanation gen-
erator, KNIGHT,? that is based upon this architecture.?
Explanation generation begins when the user poses a
query, which includes a verbosity specification that
comes in the form of a qualitative rating expressing
the desired length of the explanation (Figure 2). The
query interpreter—whose capabilities have been ad-
dressed only minimally in our work—translates the
query to a canonical form, which is passed, along with
the verbosity specification, to the explanation planner.

The heart of an explanation generator is its expla-
nation planner. The explanation planner invokes the
EDP Selector, which chooses an Explanation Design

FAll of the explanation planning algorithms, as well as
the KB Accessors, were implemented in Lucid Common
Lisp on a DEC Station 5000.

*See (Lester & Porter 1991) for a discussion of KNIGHTs
approach to user modeling.

Package from the EDP Library. The explanation plan-
ner then applies the EDP by conducting an in-order
traversal of its hierarchical structure. As the plan is
constructed, the explanation planner updates the user
model to reflect the contextual changes that will result
from explaining the views in the explanation plan, at-
tends to the verbosity specification, and invokes KB
Accessors to extract information from the knowledge
base. Recall that the Accessors return “views,” which
are subgraphs of the knowledge base. The planner at-
taches the views to the explanation plan; they become
the plan’s leaves. Planning is complete when the ex-
planation planner has traversed the entire EDP.

The planner passes the resulting explanation plan to
a realization component for translation to natural lan-
guage. The realizer, FARE (Callaway & Lester 1995),
is built on top of a unification-based surface generator
with a large systemic grammar (Elhadad 1991). Ex-
planation generation terminates when FARE has trans-
lated all of the views in the explanation plan to natural
language.

Example Behavior

To illustrate the behavior of the system, consider the
concept of embryo sac formation. Figure 3 depicts
the semantic network in the Biology Knowledge Base
that represents information about embryo sac forma-
tion. When KNIGHT is given the task of explaining this
concept,® it applies the Frplain-Process EDP. KNIGHT
first finds the topics of the Ezplain Process exposition
node, which are Process Querview, Quiput Actor Fates,
Temporal Information, and Process Details. During its
traversal of this tree, it begins with Process Qverview,
which has a High centrality rating and an inclusion
condition of True. KNIGHT executes the COMPUTE
INcLUsION algorithm with the given verbosity of High,
which returns True, i.e., the information associated
with the topic should be included.

Hence, it now begins to traverse the children of this
topic node, which are the As Kind Of Process De-
scription, Process Participants, and Location Descrip-
tion content specification nodes. For the As Kind Of
Process Description, it computes a value for the local
variable ?Reference Concept, which returns the value
female gametophyte formation. It then instantiates the
content specification template on As Kind Of Process
Description, which 1t then evaluates. This results in a
call to the As-Kind-Of KB Accessor, which produces
a view. Similarly, KNIGHT instantiates the content
specification expressions of Process Participants De-
scription and Location Description, which also cause
KB Accessors to be invoked; these also return views.
Next KNIGHT visits the Location Partonomic Connec-
tton node, which is an elaboration of Location De-
scription. However, because 1ts inclusion condition 1is

°In this example, KNIGHT is given a HIGH verbosity
specification.
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not satisfied, this branch of the traversal halts. Next,
KNIGHT visits each of the other topics of the Ezplain
Process exposition node: Temporal Information and
Process Details. Because it was given a High verbosity
specification, both of these are used to determine addi-
tional content. When the views in the final explanation
plan are translated to text by the realization system,
KNIGHT produces the text shown in Figure 1.

Evaluation

How can one evaluate the architectures, algorithms,
and knowledge structures that form the basis for
an explanation generator? To address these prob-
lems, we have developed the Two-Panel Evaluation
Methodology. To ensure the integrity of the evalua-
tion results, a central stipulation of the methodology is
that the following condition be maintained throughout
a study:

Computer Blindness: None of the partici-
pants can be aware that some texts are machine-
generated or, for that matter, that a computer is
in any way involved in the study.

Experimental Design

The Two-Panel Evaluation Methodology involves four
steps: (1) generation of explanations by computer;
(2) formation of two panels of domain experts; (3) gen-
eration of explanations by one panel of domain experts;
and (4) evaluation of all explanations by second panel
of domain experts.

Explanation Generation: Knight. Because
KNIGHT’s operation is initiated when a user poses a
question, the first task was to select the questions it
would be asked. To this end, we combed the Biology
Knowledge Base for concepts that could furnish topics
for questions. Although the knowledge base focuses
on botanical anatomy, physiology, and development,

it also contains a substantial amount of information
about biological taxons. Because this latter area is sig-
nificantly less developed, we ruled out concepts about
taxons. In addition, we ruled out concepts that were
too abstract, e.g., Object. We then requested KNIGHT
to generate explanations about the 388 concepts that
passed through these filters.

To thoroughly exercise KNIGHT’s organizational
abilities, we were most interested in observing its per-
formance on longer explanations. Hence, we passed
the 388 explanations through a “length filter”: expla-
nations that consisted of at least 3 sentences were re-
tained; shorter explanations were disposed of. This
produced 87 explanations, of which 48 described ob-
jects and 39 described processes. Finally, to test an
equal number of objects and processes, we randomly
chose 30 objects and 30 process.

Two Panels of Domain Experts. To address the
difficult problem of subjectivity, we assembled 12 do-
main experts, all of whom were PhD students and post-
doctoral scientists in biology. Because we wanted to
gauge KNIGHT’s performance relative to humans, we
assigned each of the experts to one of two panels: the
Writing Panel and the Judging Panel. By securing the
services of such a large number of domain experts, we
were able to form relatively large panels of four writ-
ers and eight judges (Figure 4). To ensure that the
human-generated explanations would be of the highest
possible quality, we assigned the four most experienced
experts to the Writing Panel. The remaining eight ex-
perts were assigned to the Judging Panel to evaluate
explanations.

To minimize the effect of factors that might make 1t
difficult for judges to compare KNIGHT s explanations
with those of domain experts, we took three precau-
tions. First, we attempted to control for the length of
explanations. Although we could not impose hard con-
straints, we made suggestions about how long a typical
explanation might be. Second, to make the “level” of
the explanations comparable, we asked writers to com-
pose explanations for a particular audience, freshman
biology students. Third, so that the general topics of
discussion would be comparable, we asked writers to
focus on anatomy, physiology, and development.

Explanation Generation: Humans. To ensure
that the difficulty of the concepts assigned to the writ-
ers were the same as those assigned to KNIGHT, the
writers were given the task of explaining ezactly the
same set of concepts that KNIGHT had explained. Be-
cause we wanted to give writers an opportunity to ex-
plain both objects and processes, each writer was given
an approximately equal number of objects and pro-
cesses. Each of the 4 writers was given 15 concepts to
explain, and each concept was assigned to exactly one
writer. We then transcribed their handwritten expla-
nations and put them and KNIGHT s explanations into



Questions  (60)

y Biologist Biologist Biologist Biologist

KNIGHT

|

Explanations Explanations Explanations Explanations Explanations

I I N

Panel of Judges

SIS SIS,

Biologist ~ Biologist Biologist Biologist Biologist Biologist Biologist ~ Biologist

Evaluations

Figure 4: The Two-Panel Methodology in the KNIGHT
Experiments

an identical format. At this point, we had a pool of
120 explanations: sixty of these pertained to objects
(30 written by biologists and 30 by KNIGHT), and the
other sixty pertained to processes (also 30 written by
biologists and 30 by KNIGHT).

Explanation Evaluation. We then submitted the
explanations to the panel of eight judges. The judges
were not informed of the source of the explanations,
and all of the explanations appeared in the same for-
mat. Each judge was given fifteen explanations to eval-
uate. Judges were asked to rate the explanations on
several dimensions: overall quality and coherence, con-
tent, organization, writing style, and correctness. To
provide judges with a familiar rating scale, they were
asked to assign letters grades (A, B, C, D, or F) to each
explanation on each of the dimensions. Because care-
fully evaluating multiple dimensions of explanations is
a labor-intensive task, time considerations required us
to limit the number of explanations submitted to each
judge. Hence, we assigned each judge 15 explanations,
which on average required an hour to evaluate. We as-
signed explanations to judges using an allocation policy
that obeyed the following four constraints: (1) Each
judge received explanations that were approximately
evenly divided between those that were produced by
KNIGHT and those that were produced by biologists.
(2) Each judge received explanations that were approx-
imately evenly divided between objects and processes.
(3) No judge received two explanations of the same
concept. (4) The explanations written by each writer
were not evaluated by only one judge; rather, they were

distributed to at least two judges. It is important to
emphasize again that the judges were not made aware
of the purpose of the experiment, nor were told that
any of the explanations were computer-generated.

Results

By the end of the study, we had amassed a large vol-
ume of data. To analyze 1t, we converted each of the
“grades” to their traditional numerical counterparts,
i.e., A=4 B=3, etc. Next, we computed means and
standard errors for both KNIGHT’s and the biologists’
grades. We calculated these values for the overall qual-
ity and coherence rating, as well as for each of the di-
mensions of content, organization, writing style, and
correctness. On the overall rating and on each of
the dimensions, KNIGHT scored within approximately
“half a grade” of the biologists (Table 1).°

Given these results, we decided to investigate the
differences between KNIGHT’s grades and the biolo-
gists’ grades. When we normalized the grades by defin-
ing an “A” to be the mean of the biologists’ grades,
KNIGHT earned approximately 3.5 (a Bt). Comparing
differences in dimensions, KNIGHT performed best on
correctness and content, not quite as well on writing
style, and least well on organization. Because the dif-
ferences between KNIGHT and the biologists were nar-
row in some cases, we measured the statistical signifi-
cance of these differences by running standard t-tests.”
KNIGHT’s grades on the content, organization, and cor-
rectness dimensions did not differ significantly from the
biologists’ (Table 2). Of course, an insignificant dif-
ference does not indicate that KNIGHT s performance
and the biologists’ performance was equivalent—an
even larger sample size might have shown a signifi-
cant difference—however, it serves as an indicator that
KNIGHT’s performance approaches that of the biolo-
gists on these three dimensions.

As a final test, we compared KNIGHT to each of
the individual writers. For a given writer, we as-
sessed KNIGHT’s performance relative to that writer
in the following way: we compared the grades awarded
to KNIGHT and the grades awarded to the writer on
explanations generated in response to the same set
of questions. Although there were substantial differ-
ences between KNIGHT and “Writer 1,7 KNIGHT was
somewhat closer to “Writer 2,” it was very close to
“Writer 3,” and its performance actually exceeded that
of “Writer 4.” KNIGHT and Writers 2, 3, and 4 did not
differ significantly (Table 3).

Related Work

By synthesizing a broad range of research on knowl-

edge base access (McCoy 1989 1990; Suthers 1993),

In the tables, &+ denotes the standard error, i.e., the
standard deviation of the mean.

TAll t-tests were unpaired, two-tailed. The results are
reported for a 0.05 level of confidence.



|| Generator || Overall || Content | Organization | Writing | Correctness ||
KNIGHT 2.37£0.13 2.6540.13 | 2.45+0.16 2.4040.13 | 3.07£0.15
Human 2.85+0.15 2.9540.16 | 3.07£0.16 2.9340.16 | 3.16+£0.15
Table 1: Comprehensive Analysis

|| || Overall || Content | Organization | Writing | Correctness ||
Difference 0.48 0.30 0.62 0.53 0.09
t statistic -2.36 -1.47 -2.73 -2.54 -0.42
Significance || 0.02 0.14 0.07 0.01 0.67
Significant? || Yes No No Yes No

Table 2: Differences and Significance

schemata (McKeown 1985; Paris 1988; McCoy 1989
1990), and top-down discourse planners (Cawsey 1992;
Suthers 1993; Hovy 1993; Moore 1995). KNIGHT pro-
vides a “start-to-finish” solution to the problem of au-
tomatically constructing expository explanations from
semantically rich, large-scale knowledge bases. Per-
haps its most important contribution lies in its eval-
uation methodology. With regard to evaluation, it
is perhaps most closely related to five NLG projects
that have been empirically evaluated: PAULINE (Hovy
1990), EDGE (Cawsey 1992), the EXAMPLE GENERA-
ToR (Mittal 1993), ANa (Kukich 1983), and STREAK
(Robin 1994). PAULINE’s texts were not formally ana-
lyzed by a panel of judges, and it did not produce texts
on a wide range of topics (it generated texts on only
three different events.); nevertheless, it is a significant
achievement in terms of evaluation scale because of the
sheer number of texts it produced. In a second land-
mark evaluation, Cawsey undertook a study in which
subjects were allowed to interact with her explanation
generation system, EDGE. Cawsey analyzed the sys-
tem’s behavior as the dialogs progressed, interviewed
subjects, and used the results to revise the system. Al-
though EDGE was not subjected to a tightly controlled,
formal evaluation, it was sufficiently robust to be used
interactively by eight subjects.

The EXAMPLE GENERATOR, ANA, and STREAK
were each subjected to formal (quantitative) evalua-
tions. Mittal and Paris developed and formally evalu-
ated a generator that produced descriptions integrat-
ing text and examples. Rather than evaluating the
explanations directly, subjects were given a quiz about
the concept under consideration.® The degree to which
the experiments controlled for specific factors, e.g.,

8In a second analysis without human judges, the sys-
tem developers compared selected features of the Exam-
PLE GENERATOR’s output with text from textbook and ob-
tained encouraging results.

the effect of example positioning, example types, ex-
ample complexity, and example order, is remarkable.
ANA and STREAK were both subjected to quantita-
tive, corpus-based evaluations. Kukich employed a
corpus-based methodology to judge the coverage of
ANA’s knowledge structures. STREAK was evaluated
with a corpus-based study that produced estimates of
its sub-language coverage, extensibility, and the over-
all effectiveness of its revision-based generation tech-
niques. Although neither of these studies employed
human judges to critique text quality, the rigor with
which they were conducted has significantly raised the
standards for evaluating generation systems.

To summarize, KNIGHT 1s the only system to have
been evaluated in the context of a semantically rich,
large-scale knowledge base. It is also the only system
to have been evaluated in a kind of restricted “Turing
test” in which the quality of its text was evaluated by
humans in a head-to-head comparison against the text
produced by humans (domain experts) in response to
the same set of questions.

Conclusion

Explanation generation is an exceedingly complex task
that involves a diversity of interacting computational
mechanisms. To investigate the issues and problems
of generating natural language explanations from se-
mantically rich, large-scale knowledge bases, we have
designed and implemented KNIGHT, a fully func-
tioning explanation system that automatically con-
structs multi-sentential and multi-paragraph natural
language explanations. This work has demonstrated
that (1) separating out knowledge-base access from
explanation planning can enable the construction of
a robust system that extracts coherent views from a
a semantically rich, large-scale knowledge base; and
(2) Explanation Design Packages, a hybrid represen-
tation of discourse knowledge that combines a frame-



|| KNIGHT || vs. Writer 1 | vs. Writer 2 | vs. Writer 8 | vs. Wrater 4 ||
KNIGHT 1.9340.29 2.73+0.23 2.73+£0.27 2.07+0.23
Human 3.60+0.16 3.40+0.23 2.80+0.28 1.6040.23
Difference 1.67 0.67 0.07 0.47
t statistic -5.16 -2.03 -0.17 1.42
Significance || 0.00 0.05 0.86 0.16
Significant? || Yes No No No

Table 3: KNIGHT vs. Individual Writers

based representation with procedural constructs, facil-
itate the iterative refinement of discourse knowledge.

To gauge the effectiveness of these techniques, we de-
veloped the Two-Panel Evaluation Methodology and
employed it in the evaluation of KNIGHT. KNIGHT
scored within “half a grade” of the biologists. There
was no significant difference between KNIGHT’s ex-
planations and the biologists’ explanations on mea-
sures of content, organization, and correctness, nor
was there a statistically significant difference in over-
all quality between KNIGHT’s explanations and those
composed by three of the biologists. KNIGHT’s perfor-
mance exceeded that of one of the biologists. These
findings demonstrate that an explanation system that
has been given a well represented knowledge base can
construct natural language responses whose quality ap-
proximates that of humans.

Acknowledgements

We would like to thank our principle domain expert,
Art Souther, for leading the knowledge base construc-
tion effort; Charles Callaway and the NLG students
for their work on the realization system; Erik Filerts,
for building the knowledge base editing tools; Michael
Elhadad, for generously assisting us with FUF; Peter
Clark and Charles Callaway for helpful comments on
previous drafts of this paper; Dan Suthers for insights
on the problems of evaluating explanation systems;
and the other members of the Biology Knowledge Base
Project: Liane Acker, Brad Blumenthal, Rich Mallory,
Ken Murray, and Jeff Rickel.

References
Acker, L. H.; Lester, J. C.; Souther, A. F.; and Porter,

B. W. 1991. Generating coherent explanations to answer
students’ questions. In Burns, H.; Parlett, J.; and Red-
field, C., eds., Intelligent Tutoring Systems: Evolutions in
Design. Hillsdale, New Jersey: Lawrence Earlbaum. 151—
176.

Callaway, C. B., and Lester, J. C. 1995. Robust natural
language generation from large-scale knowledge bases. In
Proceedings of the Fourth Bar-Ilan Symposium on Foun-
dations of Artificial Intelligence, 96—-105.

Cawsey, A. 1992. Ezplanation and Interaction: The Com-
puter Generation of Explanatory Dialogues. MIT Press.

Elhadad, M. 1991. FUF: The universal unifier user manual
version 5.0. Technical Report CUCS-038-91, Department
of Computer Science, Columbia University.

Hovy, E. H. 1990. Pragmatics and natural language gen-
eration. Artificial Intelligence 43:153-197.

Hovy, E. H. 1993. Automated discourse generation us-
ing discourse structure relations. Artificial Intelligence
63:341-385.

Kukich, K. 1983. Knowledge-Based Report Generation:
A Knowledge Engineering Approach to Natural Language
Report Generation. Ph.D. Dissertation, University of
Pittsburgh.

Lester, J. C., and Porter, B. W. 1991. A student-sensitive
discourse generator for intelligent tutoring systems. In
Proceedings of the International Conference on the Learn-
ing Sciences, 298-304.

Lester, J. 1994. Generating Natural Language Explana-
tions from Large-Scale Knowledge Bases. Ph.D. Disserta-
tion, The University of Texas at Austin, Austin, Texas.

Maybury, M. T. 1993. Communicative acts for generat-
ing natural language arguments. In Proceedings of the
Eleventh National Conference on Artificial Intelligence,
357-364.

McCoy, K. F. 1989 1990. Generating context-sensitive
responses to object-related misconceptions. Artificial In-
telligence 41:157-195.

McKeown, K. R. 1985. Text Generation: Using Dis-
course Strategies and Focus Constraints to Generate Nat-
ural Language Text. Cambridge University Press.

Mittal, V. O. 1993. Generating Natural Language De-
scriptions with Integrated Text and Fxamples. Ph.D. Dis-
sertation, University of Southern California.

Moore, J. D. 1995.
logues. MIT Press.

Paris, C. L. 1988. Tailoring object descriptions to a user’s
level of expertise. Computational Linguistics 14(3):64-78.

Porter, B.; Lester, J.; Murray, K.; Pittman, K.; Souther,
A.; Acker, L.; and Jones, T. 1988. Al research in the
context of a multifunctional knowledge base: The botany
knowledge base project. Technical Report Al Laboratory
AT88-88, University of Texas at Austin, Austin, Texas.
Robin, J. 1994. Rewision-Based Generation of Natural
Language Summaries Providing Historical Background.
Ph.D. Dissertation, Columbia University.

Suthers, D. D. 1993. An Analysis of Fxplanation and
Its Implications for the Design of Faplanation Planners.
Ph.D. Dissertation, University of Massachusetts.

Participating in Ezplanatory Dia-



