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Abstract.  Lifelike animated agents for knowledge-based learning environments can 
provide timely, customized advice to support learners’ problem-solving activities.  By 
drawing on a rich repertoire of emotive behaviors to exhibit contextually appropriate 
facial expressions and emotive gestures, these agents could exploit the visual channel to 
more effectively communicate with learners.  To address these issues, this article 
proposes the emotive-kinesthetic behavior sequencing framework for dynamically 
sequencing lifelike pedagogical agents’ full-body emotive expression.  By exploiting a 
rich behavior space populated with emotive behaviors and structured by pedagogical 
speech act categories, a behavior sequencing engine operates in realtime to select and 
assemble contextually appropriate expressive behaviors. This framework has been 
implemented in a lifelike pedagogical agent, COSMO, who exhibits full-body emotive 
behaviors in response to learners' problem-solving activities. 
  
  
INTRODUCTION 
 
Recent years have witnessed significant advances in intelligent multimedia interfaces 
that broaden the bandwidth of communication in knowledge-based learning  
environments.  Moreover, because of the potential benefits of both agent-based 
technologies and anthropomorphic interfaces, concerted efforts have been undertaken to 
develop pedagogical agents that can play an important role in learning environment 
architectures (Dillenbourg et al., 1997; Eliot & Woolf, 1996; Frasson, 1997; Ritter, 
1997; Chan and Chan, 1997). In particular, animated pedagogical agents (Lester et al., 
1999a; Rickel & Johnson, 1999; Stone & Lester, 1996) that couple advisory 
functionalities with a strong lifelike presence offer the promise of providing critical 
visual feedback, which raises the intriguing possibility of creating learning 
environments inhabited by a pedagogical agent in the form of an intelligent lifelike 
character. 
 
Engaging lifelike pedagogical agents that are visually expressive could clearly 
communicate problem-solving advice and simultaneously have a strong motivating 
effect on learners.  If they could draw on a rich repertoire of emotive behaviors to 
exhibit contextually appropriate facial expressions and expressive gestures, they could 
exploit the visual channel to advise, encourage, and empathize with learners.  However, 
enabling lifelike pedagogical agents to communicate the affective content of problem-
solving advice poses serious challenges.  Agents’ full-body emotive behaviors must 
support expressive movements and visually complement the problem-solving advice 
they deliver.  Moreover, these behaviors must be planned and coordinated in realtime in 
response to learners’ progress.  In short, to create the illusion of life typified by well 
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crafted animated characters, animated pedagogical agents must be able to communicate 
through both visual and aural channels. 
 
To address these issues, this paper proposes the emotive-kinesthetic behavior 
sequencing framework for dynamically sequencing lifelike pedagogical agents’ full-
body emotive expression. Creating an animated pedagogical agent with this framework 
consists of a three phase process: 
 
1. Emotive Pedagogical Agent Behavior Space Design: Creating a behavior space 

populated with emotive behaviors with full-body movements, including facial 
expressions with eyes, eyebrows, and mouth, and gestures with arms and hands. 

 
2. Speech Act-Based Behavior Space Structuring: Constructing a behavior space in 

which pedagogical speech acts are associated with their emotional intent and their 
kinesthetic expression. 

 
3. Full-body Emotive Behavior Sequencing: Creating an emotive-kinesthetic 

behavior sequencing engine that operates in conjunction with an explanation system 
to dynamically plan full-body emotive behaviors in realtime by selecting relevant       
pedagogical speech acts and then assembling appropriate visual behaviors. 

 
This framework has been used to implement COSMO (Figure 1), a lifelike pedagogical 
agent with realtime full-body emotive expression. COSMO inhabits the INTERNET 
ADVISOR, a learning environment for the domain of Internet packet routing.  An impish, 
antenna-bearing creature who hovers about in the virtual world of routers and networks, 
he provides advice to learners as they decide how to ship packets through the network to 
specified destinations.  Previous work with the COSMO  project focused on techniques to 
enable lifelike agents to dynamically create deictic references to particular objects in 
learning environments agents (Lester et al., 1999b).  Here, we propose the emotive-
kinesthetic behavior sequencing framework and illustrate its use in COSMO’s realtime 
emotive behavior sequencing as it corrects learners’ misconceptions detected in the 
course of their problem-solving activities. 
 
This article is structured as follows. Section 2 outlines the communicative 
functionalities that animated pedagogical agents should provide to learners.  Section 3 
describes the emotive-kinesthetic behavior sequencing framework, including methods 
for designing emotive-kinesthetic behavior spaces, for structuring these spaces with 
pedagogical speech acts, and the algorithm for dynamically sequencing emotive 
behaviors in realtime.  Section 4 presents an implemented animated pedagogical agent, 
COSMO, that employs the emotive-kinesthetic behavior sequencing framework, 
illustrates its operation in a problem-solving episode, and describes an informal focus 
group study with COSMO.  The article concludes with a discussion of directions for 
future work. 
 
 



 
 

Figure 1.  COSMO and the INTERNET ADVISOR learning environment 
 
PEDAGOGICAL AGENTS 
 
Although knowledge-based graphical simulations (Hollan et al., 1987) are virtually de 
rigueur in contemporary learning environments, it is only in recent years, as a result of 
rapid advances in multimedia technologies, that full-scale intelligent multimedia 
interfaces have become standard components through which tutoring systems can 
provide clear visual feedback to learners.  A particularly promising line of work 
underway outside of the intelligent tutoring systems community is that of lifelike 
animated intelligent agents.  Because of these agents’ compelling visual presence and 
their high degree of interactivity, there has been a surge of interest in believable 
intelligent characters (André & Rist, 1996; Bates, 1994; Blumberg & Galyean, 1995; 
Granieri et al., 1995; Kurlander & Ling, 1995), including the runtime incorporation of 
gesture and facial expression in communication (Cassell, 1999; Pelechaud et al., 1996). 
 
As a result of these developments, the ITS community is now presented with 
opportunities for exploring new technologies for pedagogical agents and the roles they 
can play in communication.  Work to date on pedagogical agents is still in its infancy, 
but progress is being made on two fronts.  First, research has begun on a variety of 
pedagogical agents that can facilitate the construction of component-based tutoring 
system architectures and communication between their modules (Chan and Chan, 
1997), provide multiple context-sensitive pedagogical strategies (Frasson, 1997), reason 
about multiple agents in learning environments (Eliot & Woolf, 1996), provide 
assistance to trainers in virtual worlds (Maraella & Johnson, 1998), and act as co-
learners (Dillenbourg et al., 1997).  Second, projects have begun to investigate 
techniques by which animated pedagogical agents can behave in a lifelike manner to 
communicate effectively with learners both visually and verbally (André & Rist, 1996; 
Johnson et al., 1998; Paiva & Machado, 1998; Rickel & Johnson, 1997; Stone & Lester, 



1996). It is this second category, lifelike animated pedagogical agents, that is the focus 
of the work described here. 
 
Creating lifelike pedagogical agents that are endowed with facilities for exhibiting 
learner-appropriate emotive behaviors potentially provides four important educational 
benefits (Elliott et al., 1999). First, a pedagogical agent that appears to care about a 
learner’s progress may convey to the learner that it and she are “in things together” and 
may encourage the learner to care more about her own progress. Second, an emotive 
pedagogical agent that is in some way sensitive to the learner’s progress may intervene 
when she becomes frustrated and before she begins to lose interest.  Third, an emotive 
pedagogical agent may convey enthusiasm for the subject matter at hand and may foster 
similar levels of enthusiasm in the learner.  Finally, a pedagogical agent with a rich and 
interesting personality may simply make learning more fun.  A learner that enjoys 
interacting with a pedagogical agent may have a more positive perception of the overall 
learning experience and may consequently opt to spend more time in the learning 
environment. 
 
In short, lifelike pedagogical agents seem to hold much promise because they could 
play a central communicative role in learning environments.  Through an engaging 
persona, a lifelike pedagogical agent could simultaneously provide students with 
contextualized problem-solving advice and create learning experiences that offer high 
visual appeal.  Perhaps as a result of the inherent psychosocial nature of learner-agent 
interactions and of humans’ tendency to anthropomorphize software (Reeves & Nass, 
1998), recent evidence suggests that ITSs with lifelike characters can be pedagogically 
effective (Lester et al., 1997b), while at the same time having a strong motivating effect 
on learners (Lester et al., 1997a).  For example, the latter study, which was conducted 
with one hundred middle school students, demonstrated that well-designed pedagogical 
agents are perceived as being very helpful, credible, and entertaining.  It is even 
becoming apparent that particular features, e.g., personal characteristics, of lifelike 
agents, can have an important impact on learners’ acceptance of them (Hietala & 
Niemirepo, 1998). 
 
In the same manner that human-human communication is characterized by multi-modal 
interaction utilizing both the visual and aural channels, agent-human communication 
can be achieved in a similar fashion.  As master animators have discovered repeatedly 
over the past century, the quality, overall clarity, and dramatic impact of communication 
can be increased through the creation of emotive movement that underscores the 
affective content of the message to be communicated: 
 

Situated Emotive Communication: By carefully orchestrating facial 
expression, full-body behaviors, arm movements, and hand gestures, 
animated pedagogical agents could visually augment verbal problem-
solving advice, give encouragement, convey empathy, and perhaps 
increase motivation. 

 
Although work has been underway for several years on two large-scale projects 
involving lifelike pedagogical agents, STEVE and DESIGN-A-PLANT, neither has focused 
on runtime inference techniques for providing visual feedback via the exhibition of 
continuous full-body emotive behaviors.  The STEVE (Soar Training Expert for Virtual 
Environments) project has produced a full complement of animated pedagogical agent 



technologies for teaching procedural knowledge.  Although the STEVE agent can create 
on-the-fly demonstrations and explanations of complex devices and its creators are 
beginning to examine more complex animations (Rickel, 1998), its focus to date has 
been on the realtime generation of behaviors using a visually simple agent, originally  
based on the JACK model (Granieri et al., 1995).  The DESIGN-A-PLANT project (Stone 
& Lester, 1996) has produced effective animated pedagogical agent technologies that 
are the creation of a multidisciplinary team of ITS researchers and animators.  However, 
research on its behavior sequencing mechanisms has not addressed realtime inference 
about the creation of full-body emotive behaviors.  Finally, initial forays have begun on 
emotion generation in pedagogical environments (Abou-Jaoude & Frasson, 1998) and 
reasoning about learners’ emotions (de Vicente & Pain, 1998), indicating the potential 
richness offered by affective learner-system interactions. 
 
Animated pedagogical agents can be introduced into learning environments with a 
variety of forms and functions.  In this work, we make the following three simplifying 
assumptions about the role and form of the agent.  First, it assumes that only one agent 
inhabits the learning environment and this agent serves as a “coach.”  Second, it 
assumes that a full-body agent is used.  While emotions can be communicated solely 
with facial expressions, employing a body including arms enables the agent to gesture 
emotively.  Third, it assumes that an explanation system is used to drive the content and 
organization of the agent’s advice.  While the explanation system’s decisions may be 
informed by a student model or plan recognition system—in fact the implemented 
explanation system uses a simple overlay student model (Carr & Goldstein, 1977)—the 
emotive behavior sequencing framework described here only requires that the 
explanation system somehow provides the content and organization of the advice that 
will be presented. 
 
 
THE EMOTIVE-KINESTHETIC BEHAVIOR FRAMEWORK 
 
To enable a lifelike pedagogical agent to play an active role in facilitating learners’ 
progress, its behavior sequencing engine must be driven by learners’ problem-solving 
activities.  As learners solve problems, an explanation system monitors their actions in 
the learning environment (Figure 2).  When they reach an impasse, as indicated by 
extended periods of inactivity or sub-optimal problem-solving actions, the explanation 
system is invoked to construct an explanation plan that will address potential 
misconceptions.  By examining the problem state, a curriculum information network, 
and a user model, the explanation system determines the sequence of pedagogical 
speech acts that can repair the misconception and passes the types of the speech acts to 
the emotive-kinesthetic behavior sequencing engine.  By assessing the speech act 
categories and then selecting full-body emotive behaviors that the agent can perform to 
communicate the affective impact appropriate for those speech act categories, the 
behavior sequencing engine identifies relevant behaviors and binds them to the verbal 
utterances determined by the explanation system.  The behaviors and utterances are then 
performed by the agent in the environment and control is returned to the learner who 
continues her problem-solving activities. 
 
 



 
Figure 2.  The Emotive-Kinesthetic Behavior Sequencing Architecture 

 
The techniques for designing emotive-kinesthetic behavior spaces, structuring them 
with pedagogical speech act categories, and the computational mechanisms that drive 
the emotive behavior sequencing engine are described below. 
 
Emotive-Kinesthetic Behavior Space Design 
 
To exhibit full-body emotive behaviors, a pedagogical agent’s behavior sequencing 
engine must draw on a large repertoire of behaviors that span a broad emotional 
spectrum.  For many domains, tasks, and target learner populations, agents that are fully 
expressive are highly desirable.  To this end, the first phase in creating a lifelike 
pedagogical agent is to design an emotive-kinesthetic behavior space that is populated 
with physical behaviors that the agent can perform when called upon to do so.  Because 
of the aesthetics involved, an agent’s behaviors are perhaps best designed by a team that 
includes character animators.  Creating a behavior space entails setting forth precise 
visual and audio specifications that describe in great detail the agent’s actions and 
utterances, rendering the actions, and creating the narrative utterances.1  By exploiting 
the character behavior canon of the animated film (Culhane, 1988) (which itself drew on 
movement in theater) and then adapting it to the specific demands posed by learning 
environments, we can extract general emotive animation techniques that artists in this 
medium have developed over the past hundred years. 

                                                      
1 An important technical decision in creating an emotive behavior space is the decision of whether the 
agent's utterances will be created by a voice actor or via natural language generation (NLG) coupled with 
speech synthesis.  Although NLG plays a central role in the authors’ research programme, e.g., (Lester & 
Porter, 1997), because of the current quality of speech synthesizers, it was determined that the COSMO 
agent’s behavior space should be populated with utterances created by a professional voice actor.  As 
speech synthesis improves, the authors believe that NLG for emotive pedagogical agents will become an 
increasingly important research issue. 



 
Stylized Emotive Behaviors 
 
It is important to draw a critical distinction between two approaches to animated 
character realization, life-quality vs. stylized (Culhane, 1988).  In the life-quality 
approach, character designers and animators follow a strict adherence to the laws of 
physics.  Characters musculature and kinesthetics are defined entirely by the physical 
principles that govern the structure and movement of human (and animal) bodies.  For 
example, when a character become excited, it raises its eyebrows and its eyes widen.  In 
contrast, in the stylized approach, although a consistency is obeyed, the laws of physics 
(and frequently the laws of human anatomy and physiology) are broken at every turn.  
When a character animated with the stylized approach becomes excited, e.g., as in the 
animated films of Tex Avery (Culhane, 1988), it may express this emotion in an 
exaggerated fashion by rising from the ground, inducing significant changes to the 
musculature of the face, and bulging out its eyes.  Not all stylized animation features 
such exaggerated emotive overstatement—for learning environments, a more restrained 
approach is called for—but its ability to communicate with dramatic visual cues can be 
put to good use in the realtime animation of pedagogical agents.  For example, when a 
learner solves a complex problem in the INTERNET ADVISOR environment, the COSMO 
agent smiles broadly and uses his entire body to applaud the learner’s success. 
 
Expressive Range 
 
To be maximally entertaining, animated characters must be able to express many 
different kinds of emotion. As different social situations arise, they must be able to 
convey emotions such as happiness, elation, sadness, fear, envy, shame, and gloating.  
In a similar fashion, because lifelike pedagogical agents should be able to communicate 
with a broad range of speech acts, they should be able to visually support these speech 
acts with an equally broad range of emotive behaviors.  However, because their role is 
primarily to facilitate positive learning experiences, only a critical subset of the full 
range of emotive expression is useful for pedagogical agents.  For example, they should 
be able to exhibit body language that expresses joy and excitement when learners do 
well, inquisitiveness for uncertain situations (such as when rhetorical questions are 
posed), and disappointment when problem-solving progress is less than optimal.  The 
COSMO agent, for instance, can scratch his head in wonderment when he poses a 
rhetorical question.  
 
Behavior Space Structuring with Pedagogical Speech Acts 
 
An agent’s behaviors will be dictated by design decisions in the previous phase, which 
to a significant extent determine its personality characteristics.  Critically, however, its 
runtime emotive behaviors must be somehow modulated to a large degree by ongoing 
problem-solving events driven by the learner’s activities. Consequently, after the 
behavior space has been populated with expressive behaviors, it must then be structured 
to assist the sequencing engine in selecting and assembling behaviors that are 
appropriate for the agent’s communicative goals.  Although, in principle, behavior 
spaces could be structured along any number of dimensions such as degree of 
exaggeration of movement or by type of anatomical components involved in 
movements, experience with the implemented agent suggests that the most effective 
means for imposing a structure is based on speech acts.  While it could be indexed by a 



full theory of speech acts, our research to date leverages a highly specialized collection 
of speech acts that occur in pedagogical dialogue with great frequency. 
 
Given the primacy of the speech act in this approach, the question then arises about the 
connection between rhetorical goals on the one hand and physical behaviors on the 
other.  This linkage is supplied by emotive categories inspired by foundational research 
on affective reasoning.  Work on the Affective Reasoner (AR) (Elliott, 1992) uses 
Ortony’s computational model of emotion to design agents’ that can respond 
emotionally.  In the AR framework, agents are given unique pseudo-personalities 
modeled as both an elaborate set of appraisal frames representing their individual goals 
(with respect to events that arise), principles (with respect to perceived intentional 
actions of agents), preferences (with respect to objects), moods (temporary changes to 
the appraisal mechanism), and as a set of about 440 differentially activated channels for 
the expression of emotions (Elliott, 1992; Elliott & Ortony, 1992).  Situations that arise 
in the agents’ world may map to twenty-six different emotion types (e.g., pride, as 
approving of one’s own intentional action), twenty-two of which were originally 
theoretically specified by Ortony and his colleagues (Ortony et al., 1988).  Qualities, 
and intensity, of emotion instances in each category are partially determined by some 
subset of roughly twenty-two different emotion intensity variables (Elliott & Siegle, 
1993).  To communicate with users, Elliott’s implementation of the AR framework uses 
line-drawn facial expressions, which are morphed in real time. 
  
The emotive-kinesthetic behavior sequencing framework exploits the fundamental 
intuition behind the AR, namely, that the emotive states and communication are 
intimately interrelated.  It creates emotive annotations that connect pedagogical speech 
acts to relevant physical behaviors.  Computationally, this is accomplished by 
employing a model of communication that places pedagogical speech acts in a one-to-
one mapping to emotive states: each speech act type points to the behavior type that 
expresses it.  To illustrate, the COSMO agent deals with cause and effect, background, 
assistance, rhetorical links, and congratulatory acts as follows: 
 
• Congratulatory: When a learner experiences success, a congratulatory speech 

act triggers an admiration emotive intent that will be expressed with behaviors 
such as applause, which depending on the complexity of the problem will be either 
restrained or exaggerated.  The desired effect is to encourage the learner. 

 
• Causal: When a learner requires problem-solving advice, a causal speech act is 

performed in which the agent communicates an interrogative emotive intent 
that will be expressed with behaviors such as head scratching or shrugging.  The 
desired effect is to underscore questioning. 

 
• Deleterious effect: When a learner experiences problem-solving difficulties or when 

the agent needs to pose a rhetorical question with unfortunate consequences, 
disappointment is triggered which will be expressed with facial characteristics 
and body language that indicate sadness.  The desired effect is to build empathy.  

 
• Background and Assistance: In the course of delivering advice, background or 

assistance speech acts trigger inquisitive intent that will be expressed with 
“thoughtful” restrained manipulators such as finger drumming or hand waving.  The 
desired effect is to emphasize active cognitive processing on the part of the agent. 



 
The one-to-one mapping is used to enact a three-fold adaptation of the AR framework.  
First, while the AR is intended to be generic, the emotive-kinesthetic behavior 
framework is designed specifically to support problem-solving advisory 
communication.  Second, while the AR framework is enormously complex, the 
emotive-kinesthetic framework employs only the speech acts and only the emotive 
intentions that arise frequently in tutorial situations.2  Third, while work on 
computational models of social linguistics indicates that the combination of speech and 
gesture in human-human communication is enormously complex (Cassell et al., 1994), 
the one-to-one mapping approach turns out in practice to be a reasonable starting point 
for realtime emotive behavior sequencing. 
 
To create a fully operational lifelike agent, the behavior space includes auxiliary 
structuring to accommodate important emotive but non-speech-oriented behaviors such 
as dramatic entries into and exits from the learning environment.  Moreover, sometimes 
the agent must connect two behaviors induced by multiple utterances that are generated 
by two speech acts.  To achieve these rhetorical link behaviors, it employs subtle 
“micro-movements” such as slight head nods or blinking. 
 
Dynamic Emotive Behavior Sequencing 
 
As students solve problems in the learning environment, the pedagogical agent provides 
advice to assist them.  In the course of observing a learner attempt different solutions, 
the agent explains concepts and gives hints.  It provides advice in two situations: (1) 
when a student pauses for an extended period of time, which may signal a problem-
solving impasse, and (2) when a learner proposes a solution that is either incorrect or 
sub-optimal.  When it has been determined that the agent should provide advice, the 
emotive behavior sequencing engine is invoked.  First, an explanation planner 
determines the content and structure of explanations by examining a curriculum 
information network, a simple overlay user model (Carr & Goldstein, 1977), the current 
problem state, and the learner’s proposed solution.  It constructs a sequence of 
explanatory behaviors and explanations (typically 6-10 utterances) which will 
collectively constitute the advice that will be delivered.  In this way, problem-solving 
actions performed by the learner are punctuated by customized explanations delivered 
by the agent. 
 
To dynamically orchestrate full-body emotive behaviors that achieve situated emotive 
communication, complement problem-solving advice, and exhibit realtime visual 
continuity, the emotive behavior sequencing engine selects and assembles behaviors in 
realtime.  By exploiting the pedagogical speech act structuring, the sequencing engine 
navigates coherent paths through the emotive behavior space to weave the small local 
behaviors into continuous global behaviors.  Given a communicative goal G, such as 
explaining a particular misconception that arose during problem solving, a simple 
overlay user model, a curriculum information network, and the current problem state, it 
employs the following algorithm to select and assemble emotive behaviors in realtime: 
 

1. Determine the pedagogical speech acts A1…An used to achieve G. When 
the explanation system is invoked, employ a top-down goal decomposition 

                                                      
2 An extensive discussion of adapting the Affective Reasoning framework to emotive models of tutoring 
may be found in (Elliott et al., 1999). 



planner to determine a set of relevant speech acts.  For each speech act Ai, 
perform steps (2)-(5). 

 
2. Identify a family of emotive behaviors Fi to exhibit when performing Ai. 

Using the emotive annotations in the behavior speech act structuring, index 
into the behavior space to determine a relevant family of emotive behaviors 
Fi. 

 
3. Select an emotive behavior Bi that belongs to Fi. Either by using 

additional contextual knowledge, e.g., the level of complexity of the current 
problem, or simply randomly when all elements of Fi are relevant, select an 
element of Fi. 

 
4. Select a verbal utterance Ui from the library of utterances that is 

appropriate for performing Ai.  Using a audio library of voice clips that is 
analogous to physical behaviors, extract a relevant voice clip.   

 
5. Coordinate the exhibition of Bi with the speaking of Ui.  Couple Bi with 

Ui on the evolving timeline schedule. 
 
6. Establish visual continuity between B1…Bn.  Examine the final frame of 

each Bi, compare it with the initial frame of each Bi+1, and if they differ, 
introduce transition frames between them.   

 
First, the behavior sequencing engine must determine the content and organization of 
the problem-solving advice to be communicated (Step 1).  To do so, it performs a 
function that is analogous to that performed by discourse planners of natural language 
generation systems (Cawsey, 1992; Hovy, 1993; Lester & Porter, 1997; Mittal, 1993; 
Moore, 1995; Suthers, 1991). Natural language generators typically consist of a 
discourse planner that determines the content and structure of multi-sentential texts and 
a realization system that plans the surface structure of the resulting prose.  Analogously, 
given a communicative goal, the emotive behavior sequencing engine uses the by-now-
classic techniques of goal decomposition planning to determine the content and 
structure of the agent’s explanations.  For example, the particular class of explanations 
focused on in the current agent implementation were inspired by McCoy’s seminal 
work on discourse schemata for correcting misconceptions (McCoy, 1989-90).  The 
sequencing engine typically first points out the strong points (if any) of the learner’s 
proposed solution, then compares and contrasts it with the properties that an ideal 
solution would exhibit.  The leaves of the resulting hierarchical plan are instantiated 
speech acts that will achieve the initial top-level communicative goal. 
 
For each speech act Ai identified by the sequencing engine above, it performs the 
following actions.  First, during Step 2, it identifies a family of emotive behaviors Fi 
that can be exhibited while the agent is performing Ai.  It accomplishes this by 
employing pedagogical speech act indices that have been used to index the agent’s 
physical behavior space.  For example, a congratulatory speech act created during 
top-down planning will cause the sequencing engine to identify the admiration 
emotive behavior family. 
 



Next, during Step 3, it selects one of the physical behaviors in Fi.  By design, all of the 
behaviors have the same emotive intent, so they are all legitimate candidates.  However, 
because a key aspect of agent believability is exhibiting a variety of behaviors, the 
behavior space was constructed so as to enable the agent to perform a broad range of 
facial expression and gestures.  Hence, the sequencing engine selects from a collection 
of behaviors, any of which will effectively communicate the relevant emotive content.  
For example, in the current implementation of the COSMO agent, the behavior 
sequencing engine makes this decision pseudo-randomly with elimination, i.e., it 
randomly selects from among the behaviors in Fi that have not already been marked as 
having been performed. After all behaviors in a given Fi have been performed, they are 
unmarked, and the process repeats.  Empirical evidence suggests that this pseudo-
random element contributes significantly to believability. 
 
During the final three steps the behavior sequencing engine determines the narrative 
utterances to accompany the physical behaviors and assembles the specifications on an 
evolving timeline. In Step 4, it selects the narrative utterances Ui, which are of three 
types: connective (e.g., “but” or “and”), phrasal, e.g., “this subnet is fast” or sentential, 
i.e., a full sentence.  Because each instantiated speech act specifies the verbal content to 
be communicated, narrative utterance selection is straightforward.  In Step 5, it lays out 
the physical behaviors and verbal utterances in tandem on a timeline.  Because the 
emotive physical behaviors were determined by the same computational mechanism that 
determined the utterances, the sequencing engine can couple their exhibition to achieve 
a coherent overall behavior.   
 
Finally, in Step 6, it ensures that the visual continuity is achieved by introducing 
appropriate transition frames.  To do so, for each of the visual behaviors selected above, 
it inspects the first and final frames.  If adjacent behaviors are not visually identical, it 
splices in visual transition behaviors and installs them, properly sequenced into the 
timeline.  As it delivers advice, sometimes the agent must refer to objects in the 
environment through judicious combination of gesture, locomotion, and speech.  It 
employs a deictic behavior planner (Lester et al., 1999b) to make these decisions.  In 
addition, for purposes of believability, the agent is always in subtle but constant motion, 
even when it is not delivering advice. COSMO, for example, typically performs “anti-
gravity bobbing” and blinking behaviors as learners solve problems. 
 
The sequencing engine passes all behaviors and utterances to the learning environment, 
which cues them up and orchestrates the agent’s actions and speech in realtime.  The net 
effect of the sequencing engine’s activities is the learner’s perception that an expressive 
lifelike character is carefully observing their problem-solving activities and behaving in 
a visually compelling manner.  The resulting behaviors are then exhibited by the agent 
in the learning environment and control is immediately returned to the learner who 
continues her problem-solving activities. 
 
 
AN IMPLEMENTED EMOTIVE PEDAGOGICAL AGENT 
 
The emotive-kinesthetic behavior sequencing framework has been implemented in 
COSMO, a lifelike (stylized) pedagogical agent that inhabits the INTERNET ADVISOR 
learning environment. COSMO and the INTERNET ADVISOR environment are implemented 
in C++ and employ the Microsoft Game Software Developer’s Kit (SDK). COSMO’s 



behaviors run at 15 frames/second with 16 bits/pixel color on a Pentium Pro 200 Mhz 
PC with 128 MB of RAM.  He has a head with movable antennae and expressive 
blinking eyes, arms with bendable elbows, hands with a large number of independent 
joints, and a body with an accordion-like torso.  His speech was supplied by a voice 
actor. COSMO, as well as the routers and subnets in the virtual Internet world, were 
modeled and rendered in 3D on SGIs with Alias/Wavefront. The resulting bitmaps were 
subsequently post-edited with Photoshop and AfterEffects on Macintoshes and 
transferred to PCs where users interact with them in a 21/2D environment. COSMO can 
perform a variety of behaviors including locomotion, pointing, blinking, leaning, 
clapping, and raising and bending his antennae. His verbal behaviors include 240 
utterances ranging in duration from 1-20 seconds. 
 
COSMO’s behavior sequencing engine operates according to the framework outline 
above.  Given a request to explain a concept or to provide a hint, the behavior planner 
selects the explanatory content by examining the curriculum information network (a 
partially ordered structure of topics and skills) and the user model (a representation of 
the individual problem-solving skills previously demonstrated by the learner).  
Explanatory content is determined in large part by the current problem state, which 
includes both the logical state of the problem and the student’s proposed solution.  
Problems in the INTERNET ADVISOR are defined by factors such as the current packet’s 
destination address, subnet type, IP numbers for the computers and routers on the 
current subnet, and network congestion.  
 
Learners interact with COSMO as they study network routing mechanisms by navigating 
through a series of subnets.  Given a packet to escort through the Internet, they direct it 
through networks of connected routers.  At each subnet, they may send their packet to a 
specified router and view adjacent subnets.  By making decisions about factors such as 
address resolution and traffic congestion, they learn the fundamentals of network 
topology and routing mechanisms.  Helpful, encouraging, and with a bit of attitude, 
COSMO explains how computers are connected, how routing is performed, what types of 
networks have particular physical characteristics, how address schemes work, and how 
traffic considerations come into play.  Learners’ journeys are complete when they have 
successfully navigated the network and delivered their packet to the proper destination. 
 
Suppose a student has just routed her packet to a fiber optic subnet with low traffic.  She 
surveys the connected subnets and selects a router which she believes will advance it 
one step closer to the packet’s intended destination.  Although she has chosen a 
reasonable subnet, it is sub-optimal because of non-matching addresses, which will slow 
her packet’s progress.  Working in conjunction with the deictic behavior planner, the 
emotive behavior planner chooses pedagogical speech acts and the relevant emotive 
behaviors as follows. 
  
• State-Correct(Subnet-Type): The learning environment determines that the agent 

should interject advice and invokes the sequencing engine.  As a result of the deictic 
behavior planner’s directives, COSMO moves towards and points at the onscreen 
subnet information and says, “You chose the fastest subnet.” 

 
• State-Correct(Traffic): COSMO then tells the student that the choice of a low traffic 

subnet was also a good one.  The gesture focus history indicates that, while the type 
of subnet has already been the subject of a deictic reference, the traffic information 



has not.  COSMO therefore moves to the onscreen congestion information and points 
to it.  However, the utterance focus history indicates that he has mentioned the 
subnet in a recent utterance, he pronominalizes the subnet as “it” and says, “Also, it 
has low traffic.” 

 
• Congratulatory(): Responding to a congratulatory speech act, the sequencing 

engine selects an admiration emotive intent which is realized with an enthusiastic 
applauding behavior as COSMO exclaims, “Fabulous!” 

 
• Causal(): The sequencing engine’s planner selects a causal speech act, which 

causes the interrogative emotive behavior family to be selected.  These include 
actions such as head scratching and shrugging, for which the desired effects are to 
emphasize a questioning attitude.  Hence, because COSMO wants the student to 
rethink her choice, he scratches his head and poses the question, “But more 
importantly, if we sent the packet here, what will happen?” 

 
• Deleterious-Effect(Address-Resolution): After the causal act, the sequencing 

engine’s planner now selects a deleterious-effect speech act, which causes it to index 
into the disappointment behavior family.  It includes behaviors that indicate sadness, 
which is intended to build empathy with the learner.  COSMO therefore informs the 
learner of the ill-effect of choosing that router as he takes on a sad facial expression, 
slumping body language, and dropping his hands, and says, “If that were the case, 
we see it doesn’t arrive at the right place.” 

 
• Rationale(Address-Resolution): To explain the reason why the packet won’t arrive 

at the correct destination, COSMO adds, “This computer has no parts of the address 
matching,” as he moves and gestures to the problematic computer. 

 
• Background(Address-Resolution): The sequencing engine has selected a  

background speech act.  Because all background and assistance speech acts cause 
the sequencing engine to index into the inquisitive behavior family, it obtains one of 
several “thoughtful” restrained manipulators such as hand waving.  In this case, it 
selects a form of finger tapping which he performs as he explains, “Addresses are 
used by networked computers to tell each other apart.” 

 
• Assistance(Address-Resolution): Finally, COSMO assists the learner by making a 

suggestion about the next course of action to take.  Because she has committed 
several mistakes on address resolution problems, COSMO provides advice about 
correcting her decision by pointing to the location of the optimal computer and 
stating, “This router has two parts of the address matching.” 

 
The emotive-kinesthetic behavior sequencing framework has been “stress tested” in a 
very informal focus group study in which 10 students interacted with COSMO for 
approximately half an hour each.  The subjects of the study were 7 men and 3 women 
with ages ranging from 14 to 54.  All of the subjects expressed genuine delight in 
interacting with COSMO.  Their typical reaction was that he was fun, engaging, 
interesting, and full of charisma.  Taking into account the important caveat that the 
study was very limited, the findings are nonetheless informative.  Although some 
subjects voiced the opinion that COSMO was overly dramatic, almost all exhibited 



particularly strong positive responses when he performed the congratulatory behaviors.  
In short, they seemed to find him very entertaining and his advice very helpful. 
 
It is also important to note the limitations of the framework.  First, because the 
sequencing engine does not employ a natural language generation system, it’s flexibility 
is necessarily limited by the narrative utterances of the behavior space.  As the quality 
of speech produced by synthesizers improves, generation will undoubtedly come to the 
forefront of research on lifelike pedagogical agents.  Second, the subjects’ perception 
that COSMO is overly dramatic is a by-product of his initial design by the animation 
team.  In creating pedagogical agents, it is critical to take into account the target learner 
audience, and an important feature of this is the personality characteristics of the users 
themselves (Isbister & Nass, 1998). Third, in interacting with COSMO, it quickly 
becomes clear that his emotions tend to come and go very quickly.  While this is 
certainly in keeping with the stylized approach to character animation, it could become 
a distraction over time.  Further theoretical work needs to be done to create sequencing 
engines that smooth out emotive transitions and provide mechanisms for the attenuation 
of emotive expression. 
 
 
CONCLUSIONS AND FUTURE WORK 
 
Because of their strong lifelike presence, animated pedagogical agents offer significant 
potential for playing the dual role of providing clear problem-solving advice and 
keeping learners highly motivated. By endowing them with the ability to exhibit full-
body emotive behaviors to achieve situated emotive communication, to complement 
problem-solving advice, and to exhibit realtime visual continuity, an emotive behavior 
sequencing engine can select and assemble expressive behaviors in realtime.  In the 
emotive-kinesthetic behavior sequencing framework for dynamically planning lifelike 
pedagogical agents’ full-body emotive expression, the behavior sequencing engine 
navigates a behavior space populated with a large repertoire of full-body emotive 
behaviors.  By exploiting the structure provided by pedagogical speech act categories, it 
can weave small expressive behaviors into larger visually continuous ones that are then 
exhibited by the agent in response to learners’ problem-solving activities. 
 
This work represents a small step towards the larger goal of creating fully interactive 
and fully expressive lifelike pedagogical agents. To make significant progress in this 
direction, it will be important to develop a comprehensive theory of pedagogical speech 
acts and leverage increasingly sophisticated computational models of affective 
reasoning.  We will be addressing the limitations of the framework noted above and 
pursuing these lines of investigation in our future work. 
 
 
ACKNOWLEDGEMENTS 
 
Thanks to Dorje Bellbrook, Tim Buie, Charles Callaway, Mike Cuales, Jim 
Dautremont, Amanda Davis, Rob Gray, Mary Hoffman, Alex Levy, Will Murray, 
Roberta Osborne, and Jennifer Voerman of the North Carolina State University 
IntelliMedia Initiative for their work on the behavior sequencing engine implementation 
and the 3D modeling, animation, sound, and environment design for the INTERNET 
ADVISOR.  Thanks also to Charles Callaway and Bradford Mott for comments on an 



earlier draft of this article.  Support for this work was provided by the following 
organizations: the National Science Foundation under grants CDA-9720395 (Learning 
and Intelligent Systems Initiative) and IRI-9701503 (CAREER Award Program); the 
North Carolina State University IntelliMedia Initiative; Novell, Inc.; and equipment 
donations from Apple and IBM. 
 
 
REFERENCES 
 
Abou-Jaoude, S. and Frasson, C. (1998).   Emotion computing in competitive learning environments.   In  

Working Notes of the ITS ’98 Workshop on Pedagogical Agents,   pages 33-39, San Antonio, Texas. 
 
André, E. and Rist, T. (1996).  Coping with temporal constraints in multimedia presentation planning.  In 

Proceedings of the Thirteenth National Conference on  Artificial Intelligence, pages 142-147. 
 
Bates, J. (1994). The role of emotion in believable agents.   Communications of the ACM, 37(7):122-125. 
 
Blumberg, B. and Galyean, T. (1995).   Multi-level direction of autonomous creatures for real-time virtual 

environments.  In Computer Graphics Proceedings, pages 47-54. 
 
Carr, B. and Goldstein, I.P. (1977). Overlays: A theory of modeling for computer aided instruction. 

Technical Report AI Memo 406, Massachusetts Institute of Technology, Artificial Intelligence 
Laboratory. 

 
Cassell, J. (1999). Embodied conversation: Integrating face and gesture into automatic spoken dialogue 

systems. In Luperfoy, S., editor, Automatic Spoken Dialogue Systems. MIT Press.  Forthcoming. 
 
Cassell, J., Pelachaud, C., Badler, N., Steedman, M., Achorn, B., Becket, T.,   Douville, B., Prevost, S., 

and Stone, M. (1994).   Animated conversation: Rule-based generation of facial expression, gesture 
and spoken intonation for multiple conversational agents.  In SIGGRAPH’94. 

 
Cawsey, A. (1992). Explanation and Interaction: The Computer Generation of Explanatory Dialogues.  

MIT Press. 
 
Chan, W.W., and Chan, T. (1997). Experience of Designing and Agent-Oriented Programming Language 

for Developing Social Learning Systems. In Proceedings of Eighth World Conference on Artificial 
Intelligence in Education, pages 7-14, Kobe, Japan.  

 
Culhane, S. (1988).  Animation from Script to Screen. St. Martin’s Press, New York.  
 
de Vicente, A. and Pain, H. (1998).   Motivation diagnosis in intelligent tutoring systems. In Proceedings 

of the Fourth International Conference on Intelligent Tutoring Systems, pages 86-95, San Antonio, 
Texas. 

 
Dillenbourg, P., Jermann, P., Schneider, D., Traum, D., and Buiu, C. (1997).  The design of MOO agents: 

Implications from an empirical CSCW study. In Proceedings of Eighth World Conference on 
Artificial Intelligence in Education, pages 15-22. 

 
Eliot, C.R. and Woolf, B.P. (1996). A simulation-based tutor that reasons about multiple agents.  In 

Proceedings of the Thirteenth National Conference on  Artificial Intelligence, pages 409-415. 
 
Elliott, C. (1992). The Affective Reasoner: A Process Model of Emotions in a Multi-agent System.   PhD 

thesis, Northwestern University. 
 
Elliott, C. and Ortony, A. (1992). Point of view: Reasoning about the concerns of others.   In Proceedings 

of the Fourteenth Annual Conference of the Cognitive Science Society, pages 809-814, Bloomington, 
IN. 

 



Elliott, C., Rickel, J., and Lester, J. (1999).   Lifelike pedagogical agents and affective computing: An 
exploratory synthesis.  In Wooldridge, M. and Veloso, M., editors, Artificial Intelligence Today, 
pages 195-212. Springer-Verlag, Berlin. 

 
Elliott, C. and Siegle, G. (1993). Variables influencing the intensity of simulated affective states. In AAAI 

Spring Symposium on Reasoning about Mental States: Formal Theories and Applications, pages 58-
67, Palo Alto, CA. 

 
Frasson, C., Mengelle, T., and Aimeur, E. (1997). Using pedagogical agents in a multi-strategic 

intelligent tutoring  system.  In Proceedings of the AI-ED ’97 Workshop on Pedagogical Agents,  
pages 40-47. 

 
Granieri, J. P., Becket, W., Reich, B.D., Crabtree, J., and Badler, N.I. (1995). Behavioral control for real-

time simulated human agents. In  Proceedings of the 1995 Symposium on Interactive 3D Graphics, 
pages 173-180. 

 
Hietala, P. and Niemirepo, T. (1998). The competence of learning companion agents.  International 

Journal of Artificial Intelligence in Education, 9(3-4):178-192. 
 
Hollan, J.D., Hutchins, E.L., and Weitzman, L.M. (1987). STEAMER: An interactive, inspectable, 

simulation-based training system. In Kearsley, G., editor, Artificial Intelligence and Instruction: 
Applications and Methods, pages 113-134. Addison-Wesley,  Reading, MA. 

 
Hovy, E.H. (1993). Automated discourse generation using discourse structure relations. Artificial 

Intelligence, 63:341-385. 
 
Isbister, K. and Nass, C. (1998). Personality in conversational characters: Building better digital 

interaction partners using knowledge about human personality preferences and  perceptions.  In 
Workshop on Embodied Conversational Characters, pages 103-111, Tahoe City, California. 

 
Johnson, W.L., Shaw, E., and Ganeshan, R. (1998).  Pedagogical agents on the web.  In Working Notes of 

the ITS ’98 Workshop on Pedagogical Agents,  pages 2-7, San Antonio, Texas. 
 
Kurlander, D. and Ling, D.T. (1995). Planning-based control of interface animation.  In Proceedings of 

CHI ’95, pages 472-479.  
 
Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., and Bhogal, R. (1997a). The 

persona effect: Affective impact of animated pedagogical   agents.   In Proceedings of CHI ’97 
(Human Factors in Computing Systems), pages 359-366, Atlanta. 

 
Lester, J.C., Converse, S.A., Stone, B.A., Kahler, S.E., and Barlow, S.T. (1997b). Animated pedagogical 

agents and problem-solving effectiveness: A large-scale empirical evaluation. In Proceedings of 
Eighth World Conference on Artificial Intelligence in Education, pages 23-30, Kobe, Japan. 

 
Lester, J.C. and Porter, B.W. (1997). Developing and empirically evaluating robust explanation 

generators: The KNIGHT experiments. Computational Linguistics, 23(1):65-101. 
 
Lester, J., Stone, B., and Stelling, G. (1999a). Lifelike pedagogical agents for mixed-initiative problem 

solving in constructivist learning environments. User Modeling and User-Adapted Interaction, 9(1-
2):1-44. 

 
Lester, J., Voerman, J., Towns, S., and Callaway, C. (1999b).  Deictic believability: Coordinating gesture, 

locomotion, and speech in lifelike pedagogical agents. Applied Artificial Intelligence, 13(4-5):383-
414. 

 
Marsella, S. and Johnson, W.L. (1998).  An instructor’s assistant for team-training in dynamic multi-

agent virtual worlds. In Proceedings of the Fourth International Conference on Intelligent Tutoring 
Systems, pages 464-473, San Antonio, Texas. 

 



McCoy, K. (1989 1990). Generating context-sensitive responses to object-related misconceptions. 
Artificial Intelligence, 41:157-195. 

 
Mengelle, T., Léan, C. D., and Frasson, C. (1998).   Teaching and learning with intelligent agents: Actors. 

In Proceedings of the Fourth International Conference on Intelligent Tutoring Systems, pages 284-
293, San Antonio, Texas. 

 
Mittal, V.  (1993). Generating Natural Language Descriptions with Integrated Text and Examples.  PhD 

thesis, University of Southern California. 
 
Moore, J. D. (1995). Participating in Explanatory Dialogues. MIT Press. 
 
Ortony, A., Clore, G.L., and Collins, A. (1988). The Cognitive Structure of Emotion.  Cambridge 

University Press. 
 
Paiva, A. and Machado, I. (1998). Vincent, an autonomous pedagogical agent for on-the-job training. In 

Proceedings of the Fourth International Conference on Intelligent Tutoring Systems, pages 584-593, 
San Antonio, Texas. 

 
Pelachaud, C., Badler, N.I., and Steedman, M. (1996). Generating facial expressions for speech. 

Cognitive Science, 20(1):1-46. 
 
Reeves, B. and Nass, C. (1998).  The Media Equation: How People Treat Computers, Television and New 

Media Like Real People and Places.  CSLI, New York. 
 
Rickel, J. (1998).   Personal communication.  
 
Rickel, J. and Johnson, L. (1997).   Integrating pedagogical capabilities in a virtual environment agent.  In 

Proceedings of the First International Conference on Autonomous Agents, pages 30-38. 
 
Rickel, J. and Johnson, W. L. (1999). Animated agents for procedural training in virtual reality:  

Perception, cognition, and motor control. Applied Artificial Intelligence, 13(4-5):343-382. 
 
Ritter, S. (1997). Communication, cooperation, and competition among multiple tutor  agents. In 

Proceedings of the Eighth World Conference on Artificial  Intelligence in Education, pages 31-38. 
 
Stone, B.A. and Lester, J.C. (1996).   Dynamically sequencing an animated pedagogical agent. In 

Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 424-431, 
Portland, Oregon. 

 
Suthers, D. (1991). A task-appropriate hybrid architecture for explanation. Computational Intelligence, 

7(4):315-333. 
 
Towns, S., Callaway, C., Voerman, J., and Lester, J. (1998).  Coherent gestures, locomotion, and speech 

in life-like pedagogical agents.  In Proceedings of the Fourth International Conference on Intelligent 
User Interfaces, pages 13-20, San Francisco. 

 
Wang, W.-C. and Chan, T.-W. (1997). Experience of designing an agent-oriented programming language 

for developing social learning systems. In Proceedings of Eighth World Conference on Artificial  
Intelligence in Education, pages 7-14. 

 


	Achieving Affective Impact: Visual Emotive Communication in Lifelike Pedagogical Agents
	INTRODUCTION
	PEDAGOGICAL AGENTS
	THE EMOTIVE-KINESTHETIC BEHAVIOR FRAMEWORK
	Emotive-Kinesthetic Behavior Space Design
	Stylized Emotive Behaviors
	Expressive Range

	Behavior Space Structuring with Pedagogical Speech Acts
	Dynamic Emotive Behavior Sequencing

	AN IMPLEMENTED EMOTIVE PEDAGOGICAL AGENT
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

