
Integrating Discourse and Domain Knowledge for Document Drafting

L. Karl Branting Charles B. Callaway, Bradford W. Mott, James C. Lester

Department of Computer Science Department of Computer Science

University of Wyoming North Carolina State University

P.O. Box 3682 Box 8206

Laramie, WY 82071 Raleigh, NC 27606

USA USA

karl@uwyo.edu fcbcallaw,bwmott,lesterg@eos.ncsu.edu

Abstract

Document drafting is a key component of legal expertise.
E�ective legal document drafting requires knowledge both
of legal domain knowledge and of the structure of legal dis-
course. Automating the task of legal document drafting
therefore requires explicit representation of both these types
of knowledge. This paper proposes an architecture that in-
tegrates these two disparate knowledge sources in a modu-
lar architecture under which representation and control are
optimized for each task. This architecture is being imple-
mented in DocuPlanner 2.0, a system for interactive doc-
ument drafting.

1 Introduction

There is a growing recognition in the AI and Law community
of the central role of document drafting in legal expertise.
Lawyers engage in a wide range of activities involving le-
gal expertise. Some of these activities have as their explicit
goal the creation of documents intended to e�ect changes
in legal status, such as drafting wills, contracts, leases, and
deeds. However, even activities that do not have documents
as their ultimate object, such as counseling clients, present-
ing arguments in courts and other forums, and negotiation,
nevertheless entail drafting documents such as briefs, letters,
and memoranda. Moreover, judicial decision-making entails
creation of a wide range of documents, from brief orders to
lengthy decisions [Bra98].

In general, the focus of legal knowledge-based system
development has been on legal reasoning at the expense
of knowledge concerning document drafting. The primary
tasks addressed by most legal knowledge-based systems have
been analysis, argumentation, prediction, and planning. While
some systems, such as Hypo [Ash90] and Grebe [Bra91]
produce memoranda as output, these memoranda are not
intended to duplicate actual legal discourse as expressed in
legal documents, and many other systems provide even more
elliptical output. Conversely, the numerous commercial doc-
ument drafting systems now available are, in general, strik-
ingly devoid of explicit legal expertise [SL97].

This paper argues that automation of legal expertise re-
quires explicit representation of both legal domain knowl-
edge and knowledge of the structure of legal discourse. This
is because legal reasoning and legal document drafting do
not occur in isolation, but are instead mutually dependent
components of legal expertise. However, there are signi�cant
di�erences in the representation and control requirements of
legal reasoning and document drafting. Developing a model
that encompasses both types of legal expertise therefore re-
quires an architecture that integrates two sets of disparate
techniques. This paper argues for a modular architecture
under which representation and control can be optimized
for each task.

Section 2 sets forth several key desiderata for document
drafting systems. Section 3 argues for both the importance
and the feasibility of using explicit discourse knowledge in
legal document drafting. The role of explicit domain knowl-
edge is discussed in Section 4. Our architecture for achieving
this integration is set forth in Section 5.

2 Desiderata for Document Drafting Systems

Document creation is a synthesis task in which the user
posits a set of communicative and pragmatic goals, creates
a rhetorical structure for the evolving document, and con-
structs texts that achieve the goals. The purpose of docu-
ment creation systems is to reduce the burden on the drafter
to the greatest possible extent by automating document syn-
thesis. Ideally, a document creation system should enable
the user to provide the facts of the current case through user-
initiated processes (e.g., �lling in forms), a system-initiated
interview, or some mixture of the two. It should then gen-
erate the entire document, which would then be presented
to the drafter, perhaps for some minimal post-editing.

Currently, relatively simple techniques can be employed
to draft documents for document classes whose rhetorical
structures vary little across instances [Lau92]. For example,
petitions for restraining orders or �lings for extensions of
time require only the substitution of text strings within boil-
erplate, and template-based document creation systems can
easily be constructed for tasks as straightforward as these.
By instantiating a generic template with user-provided strings,
such as for the names of parties involved in the case, an un-

knowledgeable document assembly system can easily produce
the required documents.

However, there are many document classes for which
these simple techniques are inadequate, i.e., document classes
that require signi�cant legal reasoning and whose rhetorical



structures therefore vary more widely across document in-
stances. For example, drafting administrative or trial deci-
sions and orders entails non-trivial legal reasoning. More-
over, the rhetorical structures of documents that achieve
complex legal goals must somehow re
ect the underlying
domain reasoning. However, the precise relation between
this reasoning process and the rhetorical structure of the
document can be quite complex. Although some aspects
of the inference procedure result in straightforward produc-
tion of text in the document, the mapping of inference trees
onto a document surface structure is frequently not at all
straightforward.

Lauritsen has suggested that e�ective automated docu-
ment creation systems should provide users with a variety of
inspection and editing functionalities [Lau93]. These include
tools for noting essential and optional document segments,
browsing documents, validating drafts, and highlighting dif-
ferences between multiple versions. While these functionali-
ties are important, we believe that the most critical require-
ment for practical document creation systems is queryable
liveness:

Queryable Liveness: At any time, the drafter can
inspect, modify, and pose questions about spe-
ci�c segments of the document to determine how
that region of text follows from the case facts.

Results from key projects in the expert systems community
suggest that explanation is a key functionality for successful
deployment and adaptation for everyday practice [Swa83].
Users are typically unwilling to accept the conclusions drawn
by expert systems unless the systems are able to justify their
reasoning. Similarly, we believe that for many classes of doc-
uments, particularly those that are the product of relatively
complex legal reasoning, attorneys will be much more in-
clined to use automatically drafted documents if they un-
derstand the origin of the documents' text. In response
to justi�cation queries, document drafting systems should
therefore be able to provide explanations about the legal
reasoning underlying the documents that they generate.

In summary, an e�ective document-drafting system should
elicit in a concise and intuitive fashion the information nec-
essary to create a document that satis�es the user's goals
and should be capable of explaining the relationship between
text regions and case facts in terms that are understandable
to the user. The next section explains the role that discourse
knowledge plays in these processes.

3 Discourse-Based Techniques for Document Drafting

Three main approaches to automated document drafting
can be distinguished. The �rst is a procedural approach
under which commands in an imperative programming lan-
guage select text elements for combination based on user-
provided, document-speci�c data. The second approach is
template-based. Under this approach, a class of documents is
represented by a template consisting of text common to all
members of the class. Embedded in this text are (1) tokens
representing document-speci�c facts and (2) tests (e.g., IF-
THEN statements) specifying the conditions under which
text elements will be included in a particular document.

The third approach, termed the discourse-based approach,
uses an explicit model of the discourse structure of classes of
documents to guide creation of new documents. Discourse
structure consists of the relationships between statements
in a multi-sentential text that are responsible for the text's

coherence. The roots of this approach are in speech-act the-
ory, which is the study of illocutionary content of discourse,
i.e., the goals that speakers seek to accomplish through their
discourse [Gri75, Sea69]. The relevance of speech-act the-
ory to the AI and law community was �rst demonstrated by
Anne Gardner in her system for contract formation [Gar87].
In the computational linguistics community, the insights of
speech-act theory were used to develop techniques for un-
derstanding multi-sentential text by inferring the text's un-
derlying discourse structure [MT87, GS86, Hob79]. This
discourse structure comprises a number of rhetorical rela-
tions among sentences, such as elaboration, exempli�cation,
generalization, and sequence. In contrast to their role in
natural language understanding, discourse relations can be
used \in reverse" in natural language generation to dynam-
ically construct coherent text.

In our previous work [BLC98, BLC97, BL96] we pro-
posed a discourse model consisting of two elements: (1) an
illocutionary goal structure that expresses the goal depen-
dencies among the relevant legal predicates and the connec-
tion between performative text segments and the illocution-
ary goals that they achieve; and (2) a rhetorical structure
that expresses the stylistic and discourse conventions of the
document's genre. The illocutionary and rhetorical struc-
tures of a document together constitute the document's dis-
course structure. In [BLC97] we showed how the discourse
structure of documents created with a discourse grammar

can be used to answer questions about why text segments
were included and how propositions expressed by text seg-
ments are justi�ed, and in [BLC98] we showed how a dis-
course grammar can be used to generate a wide range of
documents within a particular document class.

3.1 Limitations of Current Commercial Systems

Current commercial legal document drafting systems rely al-
most exclusively on \knowledge-free" procedural or template-
based approaches. Lauritsen's recent survey [SL97] reveals
two important limitations of these current-generation docu-
ment technologies. First, none of the systems exploit sophis-
ticated representations of linguistic knowledge. For exam-
ple, the most advanced form of linguistic knowledge encoded
by these systems appears to be knowledge about the condi-
tional inclusion of text segments, e.g., particular clauses in
a contract. In contrast to signi�cantly more sophisticated
models of document assembly advocated by AI researchers
[RML95, Lau93, Gor89], they are therefore unable to rea-
son about the rhetorical structure and linguistic form of the
documents they produce.

Second, none of the systems exploit representations of
domain knowledge that has any of the sophisticated in-
ference capabilities advocated by the legal reasoning com-
munity. For example, the ability to reason with knowl-
edge about dates is considered an unusually advanced fea-
ture. Because these systems lack both linguistic and domain
knowledge, they lack the 
exibility that is necessary for deal-
ing with the broad range of situations typical of many doc-
ument creation tasks.

3.2 What NLG Can Bring to Document Drafting

Document generation has much to gain from lessons learned
in natural language generation (NLG), an active area of re-
search in computational linguistics for the past two decades.
Concerned with the automatic generation of text from for-
mal representations of knowledge, NLG is typically decom-
posed into two primary tasks: planning and realization [McK82].



Planning consists of determining the content and organiza-
tion of multi-sentential discourse, and realization consists
of translating formal representations of the selected knowl-
edge into grammatically correct text. NLG di�ers signif-
icantly from the template-based approaches employed in
most document assembly systems in its exploitation of lin-
guistic knowledge. In much the same manner that models
of legal reasoning can be used by expert systems to draw
inferences leading to the solution to novel problems of ju-
risprudence, models of linguistic reasoning can be used by
document systems to draw inferences leading to the creation
of customized documents.

While template-based approaches either use implicit lin-
guistic knowledge or remain agnostic about linguistic com-
mitments in general, NLG systems employ a number of
forms of linguistic knowledge to make decisions about the
content, structure, and surface form of generated texts. First,
they employ discourse knowledge to determine the rhetorical
organization of propositions to be communicated. For exam-
ple, the Rhetorical Structure Planner [Hov93] and Moore's
explanation system [Moo95] use plan-based representations
of discourse knowledge to impose a rhetorical organization
on the multi-sentential texts they generate. Second, NLG
systems employ sentence planning knowledge to make de-
cisions about which propositions should be aggregated to-
gether and about how domain concepts should be referenced.
For example, Dale's Epicure system invokes a sophisticated
referring-expression planner to determine how to pronomi-
nalize and how to create de�nite descriptions [Dal92]. Gen-
erators also use sentence planning knowledge to invoke ag-
gregation techniques for creating relative clause embeddings
and ellipsis. Third, NLG systems use lexical knowledge to
make word planning decisions. Given a concept or rela-
tion, lexicalization entails selecting a word or phrase that
properly expresses that concept or relation. This process
may involve taking discourse context into account to select
phrasings whose connotations are as carefully considered as
their denotations. Fourth, NLG systems employ grammat-
ical knowledge to transform sentence plans, which are typ-
ically expressed in a formal semantic representation, into
grammatically correct sentences. For the past decade, this
\realization" work has focused on systemic-functional gram-
mars [Elh91] that consist of enormous English grammars,
which take care of word order, agreement, and the insertion
of functional words. Finally, NLG systems employ morpho-
logical knowledge to make decisions about the formation of
words themselves. Morphology systems typically handle all
matters relating to person, number, pronoun formation, and
gender.

Applied natural language generation has been the sub-
ject of increasing attention in recent years, in large part
because of the signi�cant strides that have been made in
more theoretically oriented NLG [RD97]. Reiter has argued
that applied NLG systems' linguistic knowledge accrues im-
portant advantages over template-based approaches [Rei95].
First, systems with explicit NLG knowledge are more main-
tainable. Because they encode declarative representations
of linguistic knowledge about how to determine the con-
tent, structure, and form of generated texts, these systems
can be updated to re
ect knowledge changes without exten-
sive revision. Second, Reiter argues that they can create
higher-quality texts than templates. Because they reason
about how to plan multi-sentential texts, the content of in-
dividual sentences, and the grammatical properties of words
and phrases, they can (in principle at least) create texts
whose clarity and coherence is greater than template-based

approaches. Implicit in this observation is the fact that ap-
plied NLG systems are intended to handle fairly wide rang-
ing inputs. Applied NLG systems are therefore much less
subject to the di�culty of precisely anticipating the set of
variable instantiations and conditional texts required for a
document class than are template-based systems. Third,
Reiter argues that applied NLG systems permit documents
to be generated that more easily provide multi-lingual out-
put and conform to speci�ed textual standards.

While it is true that maintainability, higher quality texts,
and multi-linguistic output are important, we believe that
the overwhelming advantage of natural language generation
for document creation is the 
exibility it o�ers for dealing
with the idiosyncratic domain-speci�c inferences involved in
the creation of documents. This 
exibility is essential for
providing the functionalities outlined in Section 2. In par-
ticular, without the ability to dynamically plan the rhetor-
ical structure of a document, it is quite di�cult to create
documents to satisfy a set of goals that are in fact them-
selves highly dependent on domain-speci�c inferences to be
drawn about the speci�cs of the input \case" and are not
determined until runtime.

Applied NLG systems o�er a knowledgeable alternative
to traditional approaches to document creation. Most ap-
plied NLG systems o�er some subset of the above func-
tionalities. In general, knowledge that resides higher in the
NLG pipeline occurs more frequently in applied NLG sys-
tems than knowledge that is more grammar-oriented. It has
been hypothesized that, of all the functionalities of NLG
systems, discourse planning|rhetorical planning typically
includes both content selection and rhetorical structuring
in multi-sentential texts|may provide the strongest value-
added [Rei95]. While sentence planning (aggregation, refer-
ring expression planning, and lexical choice) and realization
(creating the syntactic form of individual sentences) may
also confer bene�ts to document creation systems, discourse
planning currently appears the most promising.

Discourse planning requires precisely the kind of linguis-
tic knowledge that is readily available from the analysis
of document corpora. By inspecting representative sam-
ples of the class of documents to be created, one can ab-
stract a generic set of rhetorical operators to provide com-
prehensive or near-comprehensive coverage. Furthermore,
discourse planning does not require extensive sentence plan-
ning knowledge or grammatical knowledge, both of which
would require signi�cant investments in developing represen-
tation formalisms, creating systems to reason with them|
o�-the-shelf sentence planners, for example, are not cur-
rently available|and maintaining them as surface struc-
tures of the documents evolved. By adopting a hybrid ap-
proach that employs the applied NLG techniques of dis-
course planning and simple (less sophisticated but less labor
intensive) approaches to sentence planning and realization,
a document creation system can enjoy the bene�ts of applied
NLG while avoiding much of the associated overhead.

3.3 NLG and Legal Documents

Two factors peculiar to legal documents make NLG tech-
niques particularly appropriate for them. The �rst con-
cerns the feasibility of NLG techniques and the second con-
cerns their necessity. First, many legal documents have
an extremely well-de�ned discourse structure arising from
subgoal relations between legal predicates. This subgoal
structure is the basis of models of legal discourse derived
from Toulmin's model of argument structure, which ana-



lyzed argumentative texts in terms of the concepts of war-
rant, ground, conclusion, backing, and quali�cation [Tou58].
Toulmin's model has been used for explanation generation
[ZS95], document drafting in Plaid [BCS95], and analysis
[FF96]. Goal trees were also the basis of the document mod-
els of Jeda [PRK89] and LawClerk [Bra93]. Performative
documents, such as orders, judgments, wills, and contracts,
and argumentative documents, such as briefs, generally con-
sist in part of text segments clearly connected to speci�c
legal predicates. Thus, the discourse structure needed for
NLG techniques is particularly clear and unambiguous in
legal documents.

The second factor is that text segments associated with
a given legal predicate are, in general, interleaved with text
associated with other legal predicates. In judicial orders,
for example, assignment of a value of \true" to a predicate
may require separate, noncontiguous text segments in the
\�nding," \ruling," and \order" sections of the order. For
documents with this interleaved text property the �nal docu-
ment text cannot in principle be generated by concatenating
text encountered during a recursive traversal of the infer-
ence tree. A fortiori, simpler template-based approaches
that lack even explicit representations of legal reasoning in
the form of an inference tree are extremely ill-suited for such
documents.

Various ad hoc approaches to mapping inference trees to
document text have been proposed, e.g., the mapping strate-
gies set forth in [Bra93]. However, a principled approach to
documents with the interleaved text property requires the
explicit representation of ordering constraints provided by
applied NLG techniques.

In summary, discourse knowledge is essential for the 
ex-
ibility to generate any but the simplest legal documents.

4 Domain Expertise for Document Drafting

Discourse knowledge is essential for 
exible and accurate
drafting of complex legal documents. Discourse knowledge
is not, however, su�cient per se for documents that embody
signi�cant legal expertise. Such documents also require ex-
plicit legal domain knowledge.

The illocutionary structure of legal documents consists of
two elements: an inference tree expressing subgoal relations
among the applicable legal predicates; and the connection
between performative text segments and the illocutionary
goals that they achieve. The former is precisely the goal
tree generated (explicitly or implicitly) by a rule-based or
logic-based reasoning system. Accordingly, if a document-
drafting system requires an explicit representation of illocu-
tionary structure, as is required by the discourse-based NLG
techniques discussed above, then an inference tree must be
generated in the process of document generation.

E�ective creation of an inference tree in turn requires
both a declarative representation of underlying legal rules
and a control strategy to guide acquisition of case facts and
inferences. Many of the familiar criteria for rule-based ex-
pert systems (see, e.g., [BS84]) are applicable to illocution-
ary tree creation:

� Users should be asked only the minimum number of
questions necessary to elicit the facts necessary for the
decision.

� The questions should be expressed in idiomatic natural
language.

� The questions should be ordered in a fashion that cor-
responds to the manner that users think about the
domain.

� The system should be capable of explaining why it is
asking a question and how it reached a conclusion.

� The system should be capable of mixed-initiative data
acquisition; the user should have the option of provid-
ing some data by �lling in forms, rather than being
asked about every data item.

� Search strategies should depend on the nature of the
particular goals, e.g., satis�cing for date calculations,
exhaustive for jurisdictional defects (since orders of
dismissal often set forth all jurisdictional defects).

Thus, legal domain knowledge is essential for e�ective
document drafting for two reasons. First, the top-level il-
locutionary structure of many legal documents consists of
an inference tree. Functions that depend on the illocution-
ary structure, such as the explanation capability necessary
for document \queryable liveness," therefore depend on the
legal domain knowledge necessary to generate such infer-
ence trees. Second, e�ective case fact acquisition requires a
declarative representation of the underlying legal rules to-
gether with knowledge about how experts use and think
about those rules. Thus, e�ective and 
exible document
drafting requires both discourse knowledge and legal exper-
tise.

The importance of both types of knowledge is illustrated
by our experience with DocuPlanner 1.0 [BLC98]. Given
a set of case facts, DocuPlanner 1.0 planned the rhetorical
structure of the documents and from this structure created
the documents themselves. While DocuPlanner 1.0 con-
stituted an advance over legal document drafting systems
without linguistic knowledge, it nonetheless su�ered from
an inadequate treatment of domain knowledge. It employed
a document grammar that represented not only discourse
knowledge, but also domain knowledge with which it drew
inferences about the given case facts to make �ndings. This
con
ation of linguistic knowledge and discourse knowledge
proved to be troublesome because it required the uni�cation-
based control mechanism of the document planner also to be
used for domain reasoning.

Unfortunately, while discourse planning can proceed in
a rather straightforward top-down manner, drawing infer-
ences to make �ndings needs to be a highly interactive pro-
cess involving signi�cant give-and-take with the user. Fur-
thermore, it often needs to invoke specialized computational
mechanisms, e.g., drawing inferences about dates. None of
these requirements is easily accommodated by a document
grammar.

Hence, attempts to subsume legal inference mechanisms
under a document planning mechanism are likely to meet
with limited success. We therefore argue for a model of doc-
ument generation that (1) provides both domain knowledge
and discourse knowledge, and (2) cleanly separates these
kinds of knowledge and their respective inference mecha-
nisms in a modular architecture.

5 DocuPlanner 2.0: A Modular Architecture

To address the design criteria set forth above, we have for-
mulated a document planning architecture that employs both
domain and discourse knowledge in a modular fashion. The
document creation model (Figure 1) relies on four primary



Document

Construction

Interface

Document

Generation

Manager

Inference
Rule Suites

Document
Grammars

Legal

Reasoning

System

Document

Planner

Text

Case Facts

Inference Tree

Discourse Tree

User

Document

Figure 1: The architecture of DocuPlanner 2.0.

components: a document generation manager, a document

construction interface, a legal reasoning system, and a docu-
ment planner. Implementation of each of these components
is currently underway in our laboratories. Below we sketch
their operation.

When a user wishes to draft a new document, she in-
dicates the class of documents, e.g., show-cause orders, to
which the new document should belong. This request is
passed to the document generation manager, which loads
(1) an inference rule suite and (2) a document grammar,
both designed speci�cally for creating documents of that
class. The inference rule suite is loaded into the legal rea-
soning system and the document grammar is loaded into
the document planner. The legal reasoning system begins
with the top-most legal predicate and subgoals on it. As it
encounters primitive goals, it poses questions to the user to
ascertain their values.

Primitive goals are marked as being unitary or collective.
Unitary goals cause questions to be posed immediately; col-
lective goals cause multiple questions to be asked of the user
at one time. This mechanism enables the system to com-
pose aggregate dialogue boxes that avoid the irritation some-
times experienced by users when subjected to a long series
of queries by the system. Users respond to these questions
with text strings and by indicating their choices with GUI
selections. At any time, users may ask why they are being
queried for the requested information, and the system will
provide an explanation of its line of interrogation.

Subgoaling continues until the top-most predicate has
been established, i.e., all information associated with prim-
itive subgoals has been provided. Where speci�ed by the

inference rule suite, the legal reasoner invokes specialized
computational mechanisms that are idiosyncratic to that
class of documents. The net result of the legal reasoner's
e�orts is a fully instantiated inference tree and a set of case
facts, which are returned to the document generation man-
ager.

Next, the document planner inspects the instantiated in-
ference tree created by the legal reasoner. Its task is to in-
terpret the �ndings of the legal reasoner in the context of
the appropriate document grammar to create a well-formed
document of the speci�ed class. To do so, it employs a two-
phase process in which document planning is followed by
document drafting. First, during document planning, the
planner constructs a fully instantiated discourse structure
[Hov93] for the evolving document. To construct the dis-
course structure, the planner employs a uni�cation-based
reasoner that takes the �ndings and case facts as input and
uni�es them with the document grammar.

Each leaf of the discourse structure consists of a small
number of propositions to be communicated, a sentence skele-
ton for communicating them, a set of bindings of case facts
to sentence skeleton variables, and (optionally) formatting
directives. The discourse structure also includes a set of
global formatting directives which are subsequently used in
the subsequent drafting phase. Next, during drafting, the
planner conducts a left-to-right traversal of the leaves of the
discourse structure to form a linear text. At each leaf, it
(1) instantiates the sentence skeleton(s) with the case fact
bindings, (2) invokes a morphological system to create words
with correct person, number, and gender, (3) invokes an or-
thographic system to construct necessary punctuation, and



Figure 2: A sample screen from DocuPlanner 2.0.

(4) applies the speci�ed formatting directives. Finally, the
drafting phase is completed by concatenating the text ob-
tained from the traversal to obtain the document. The plan-
ner then passes the fully instantiated discourse plan and the
document itself to the document generation manager, which
then instructs the interface to present it to the user.

At this juncture the user now has a number of options.
She may browse the document in one of two ways: by scrolling
through it, or by using the outline navigation tool, which dis-
plays headings and subheadings generated by internal nodes
in the instantiated discourse structure. While inspecting the
document, she may realize that one or more of the case facts
has been entered erroneously. By invoking the case facts ed-
itor she can modify the entries as she sees �t. Then, by
selecting regenerate, she can request the system take the
modi�cations into account as it creates a revised draft.

To address the \queryable liveness" requirement, the in-
terface provides the user with the ability to highlight a re-
gion of text and request an explanation of why that segment
was included in the document (Figure 2). An explanation
request triggers the following series of events. First, the in-
terface notes the region of text speci�ed by the user and
inspects the discourse tree to determine the most speci�c

(lowest) interior node of the instantiated discourse structure
to which the user is referring. It passes this information to
the document generation manager, which (1) inspects jus-
ti�cation annotations on the corresponding regions of the
discourse tree, (2) traverses regions of the inference tree ref-
erenced by the selected discourse tree regions, and the dis-
course tree, both of which are instantiated with case facts,
and (3) generates an explanation that links the case facts,
the �ndings of the legal reasoner, and the rhetorical struc-
ture speci�ed by the current document class. The user may
request either terse or verbose explanations and is free to
pose follow-up requests to obtain more detail. She may then
modify the case facts and regenerate the document until she
is satis�ed with its form and content. Finally, she can post-
edit the document into its �nal form.

This architecture is being implemented in DocuPlan-

ner 2.0, a document creation system for judicial document
assembly. DocuPlanner 2.0's legal reasoner builds on our
previous work on JSA [Bra98], a Lisp implementation of a
back-chaining reasoner for judicial screening. DocuPlan-

ner 2.0's document planner is being implemented in Fuf

[Elh92], a uni�cation system developed at Columbia that
we have been using in document planning projects over the



past several years.

6 Conclusion

Because of the complexities inherent in legal reasoning and
composition, document drafting presents serious challenges
to the AI and Law community. Not only must document
systems be able to semi-automatically create a broad range
of documents, they must be able to explain the reasoning
that underlies the content and structure of the documents
as well. Especially problematic is the fact that the structure
of the inference tree produced during legal reasoning is typ-
ically not isomorphic to the rhetorical tree that will de�ne
the organization of the resulting document.

To address these challenges, this paper has proposed
a model of document creation that exploits both domain
knowledge and discourse knowledge in a modular architec-
ture. Domain knowledge consists of inference rules, while
discourse knowledge consists of document grammars that
encode rhetorical structure relationships. Domain knowl-
edge is used by a legal reasoning system to interrogate the
user and makes �ndings by drawing inferences about user-
supplied case facts. Discourse knowledge is used by the doc-
ument planner to construct a discourse tree that de�nes the
organization of the document. This model is being imple-
mented in a document creation system for generating judi-
ciary documents whose content and structure can be queried
by the user and dynamically explained. A particularly chal-
lenging area of work lies in developing a uni�ed represen-
tational formalism that is amenable to both the generation
of 
uent text for documents and clear explanations for doc-
ument creators. We will be exploring these issues in our
future work as the implementation progresses.

Acknowledgments

This research was supported in part by the North Carolina
State University IntelliMedia Initiative, the University of
Kaiserslautern Center for Learning Systems and Applica-
tions, the German-American Fulbright Commission, and a
University of Wyoming Flittie sabbatical award.

References

[Ash90] K. Ashley. Modelling Legal Argument: Reasoning

with Cases and Hypotheticals. MIT Press, Cam-
bridge, Massachusetts, 1990.

[BCS95] T. Bench-Capon and G. Staniford. PLAID -
proactive legal assistance. In Proceedings of the

Fifth International Conference on Arti�cial Intel-

ligence and Law, pages 81{88, 1995.

[BL96] L.K. Branting and J. C. Lester. A framework
for self-explaining legal documents. In Proceed-

ings of the Ninth International Conference on Le-

gal Knowledge-Based Systems (JURIX-96), pages
77{90, Tilburg University, the Netherlands, De-
cember 1996.

[BLC97] K. Branting, J. Lester, and C. Callaway. Auto-
mated drafting of self-explaining documents. In
Proceedings of the Sixth International Conference

on Arti�cial Intelligence and Law (ICAIL-97),
pages 72{81, University of Melbourne, Melbourne,
Australia, June 30{July 3 1997. ACM Press.

[BLC98] L. Branting, J. Lester, and C. Callaway. Automat-
ing judicial document drafting: A uni�cation-
based approach. Arti�cial Intelligence and Law,
6(2{4):111{149, 1998.

[Bra91] K. Branting. Building explanations from rules and
structured cases. International Journal of Man-

Machine Studies, 34:797{837, 1991.

[Bra93] K. Branting. An issue-oriented approach to ju-
dicial document assembly. In Proceedings of the

Fourth International Conference on Arti�cial In-

telligence and Law, pages 228{235, Amsterdam,
The Netherlands, June 15{18, 1993. ACM Press.

[Bra98] L. Karl Branting. Techniques for automated draft-
ing of judicial documents. International Journal

of Law and Information Technology, 6(2):214{229,
1998.

[BS84] B. Buchanan and E. Shortli�e. Rule-Based Expert
Systems. Addison-Wesley Publishing Co., Menlo
Park, 1984.

[Dal92] Robert Dale. Generating Referring Expressions.
MIT Press, 1992.

[Elh91] M. Elhadad. FUF: The universal uni�er user man-
ual version 5.0. Technical Report CUCS-038-91,
Department of Computer Science, Columbia Uni-
versity, 1991.

[Elh92] M. Elhadad. Using Argumentation to Control Lex-

ical Choice: A Functional Uni�cation Implemen-

tation. PhD thesis, Columbia University, 1992.

[FF96] K. Freeman and A. Farley. A model of argumen-
tation and its application to legal reasoning. Arti-
�cial Intelligence and Law, 4(3{4):163{197, 1996.

[Gar87] A. Gardner. An Arti�cial Intelligence Approach

to Legal Reasoning. Bradford Books/MIT Press,
Cambridge, MA, 1987.

[Gor89] T. Gordon. A theory construction approach to le-
gal document assembly. In Pre-Proceedings of the

Third International Conference on Logic, Infor-

matics, and Law, pages 485{498, Florence, 1989.

[Gri75] H. Grice. Logic and conversation. In P. Cole
and J. Morgan, editors, Syntax and Semantics 2:

Speech Acts, pages 41{58. Academic Press, New
York, N.Y., 1975.

[GS86] Barbara J. Grosz and Candace L. Sidner. Atten-
tion, intentions, and the structure of discourse.
Computational Linguistics, 12(3):175{204, 1986.

[Hob79] J. Hobbs. Coherence and co-reference. Cognitive

Science, 3(1):67{82, 1979.

[Hov93] E. H. Hovy. Automated discourse generation us-
ing discourse structure relations. Arti�cial Intel-

ligence, 63:341{385, 1993.

[Lau92] M. Lauritsen. Technology report: Building legal
practice systems with today's commercial author-
ing tools. Law and Arti�cial Intelligence, 1(1),
1992.



[Lau93] M. Lauritsen. Knowing documents. In Fourth

International Conference on Arti�cial Intelligence

and Law, pages 185{191, Amsterdam, 1993. ACM
Press.

[McK82] K. McKeown. Generating Natural Language Text

in Response to Questions about Database Struc-

ture. PhD thesis, University of Pennsylvania,
1982.

[Moo95] J. D. Moore. Participating in Explanatory Dia-

logues. MIT Press, 1995.

[MT87] William C. Mann and Sandra A. Thompson.
Rhetorical structure theory: A theory of text
organization. Technical Report ISI/RS-87-190,
USC/Information Sciences Institute, Marina del
Rey, CA, June 1987.

[PRK89] V. P. Pethe, C. P. Rippey, and L. V. Kale.
A specialized expert system for judicial decision
support. In Proceedings of the Second Interna-

tional Conference on Arti�cial Intelligence and

Law, pages 190{194, Vancouver, B.C., June 13-16
1989.

[RD97] Ehud Reiter and Robert Dale. Building applied
natural-language generation systems. Journal of

Natural-Language Engineering, 3:57{87, 1997.

[Rei95] Ehud Reiter. NLG vs. templates. In Proceed-

ings of the Fifth European Workshop on Natural-

Language Generation, Leiden, The Netherlands,
1995.

[RML95] E. Reiter, C. Mellish, and J. Levine. Automatic
generation of technical documentation. Applied

Arti�cial Intelligence, 9:259{287, 1995.

[Sea69] J. Searle. Speech Acts: An Essay in the Philos-

ophy of Language. Cambridge University Press,
Cambridge, 1969.

[SL97] A. Soudako� and M. Lauritsen. Shopper's guide to
legal document assembly. Law O�ce Computing,
October/November 1997.

[Swa83] William R. Swartout. XPLAIN: A system for cre-
ating and explaining expert consulting programs.
Arti�cial Intelligence, 21:285{325, 1983.

[Tou58] S. E. Toulmin. The Uses of Argument. Cambridge
University Press, 1958.

[ZS95] J. Zeleznikow and A. Stranieri. The Split-Up sys-
tem: Integrating neural networks and rule-based
reasoning in the legal domain. In Proceedings of

the Fifth International Conference on Arti�cial

Intelligence and Law, pages 185{194, 1995.


