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Abstract: Affective reasoning holds significant potential for intelligent tutoring 
systems. Incorporating affective reasoning into pedagogical decision-making 
capabilities could enable learning environments to create customised 
experiences that are dynamically tailored to individual students’ ever-changing 
levels of engagement, interest, motivation and self-efficacy. Because 
physiological responses are directly triggered by changes in affect, biofeedback 
data such as heart rate and galvanic skin response can be used to infer  
affective changes in conjunction with the situational context. This article 
explores an approach to inducing affect models for a learning environment. The 
inductive approach is examined for the task of modelling students’ self-efficacy 
and empathy for companion agents. Together, these studies on affect in a 
narrative learning environment suggest that it is possible to build models of 
affective constructs from observations of the situational context and students’ 
physiological response. 
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1 Introduction 

Affect has begun to play an increasingly important role in intelligent tutoring systems. 
Recent years have seen the emergence of work on affective student modelling (Conati 
and Mclaren, 2005), detecting frustration and stress (Burleson, 2006; Burleson and 
Picard, 2004; Prendinger and Ishizuka, 2005), modelling agents’ emotional states (André 
and Mueller, 2003; Gratch and Marsella, 2004; Lester et al., 1999), devising affectively 
informed models of social interaction (Johnson and Rizzo, 2004; Paiva et al., 2005; 
Porayska-Pomsta and Pain, 2004; Wang et al., 2008), analysing student affective 
trajectories (Baker et al., 2007; D’Mello et al., 2007) and detecting student motivation 
(de Vicente and Pain, 2002). All of this work seeks to increase the fidelity with which 
affective and motivational processes are modelled in intelligent tutoring systems in an 
effort to increase the effectiveness of tutorial interactions and, ultimately, learning. 

Self-efficacy is an affective construct that has been found to be a highly accurate 
predictor of students’ motivational state and their learning effectiveness (Zimmerman, 
2000). Defined as “the belief in one’s capabilities to organize and execute the courses of 
action required to manage prospective situations” (Bandura, 1995), self-efficacy has  
been repeatedly demonstrated to directly influence students’ affective, cognitive, and 
motivational processes (Bandura, 1997). Self-efficacy holds much promise for Intelligent 
Tutoring Systems (ITSs). Foundational work has begun on using models of self-efficacy 
for tutorial action selection (Beal and Lee, 2005) and investigating the impact of 
pedagogical agents on students’ self-efficacy (Kim, 2005). Self-efficacy is useful for 
predicting what problems and sub-problems a student will select to solve, how long a 
student will persist on a problem, how much overall effort they will expend, as well as 
motivational traits such as level of engagement (Schunk and Pajares, 2002; Zimmerman, 
2000). Thus, if an ITS could increase a student’s self-efficacy, then it could perhaps  
enable the student to be more actively involved in learning, expend more effort, and be 
more persistent; it could also enable them to successfully cope in situations where they 
experience learning impasses (Bandura, 1997).  
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Because self-efficacious students are effective learners, it is important to incorporate 
mechanisms for diagnosing student affect, self-efficacy (Bandura, 1997), emotional  
state (Picard, 1997), and motivation (Malone and Lepper, 1987; Schunk et al., 2007) to 
effectively inform pedagogical decision making. Self-efficacy influences students’ 
reasoning, their level of effort, their persistence, and how they likely feel; it shapes how 
they make choices, how much resilience they exhibit when confronted with failure, and 
what level of success they are likely to achieve (Bandura, 1995; Schunk and Pajares, 
2002; Zimmerman, 2000).  

Emotional state is often an indication of how a student feels she is performing on a 
given task. For example, students often take pleasure in successfully completing tasks, 
while negative emotions, such as frustration, often accompany learning impasses. 
Motivation is an internal state that influences the activities students engage in and  
their persistence in such activities. It can also increase activity levels in students and 
guide students in the direction of particular goals (Maehr and Meyer, 1997). Adapting 
tutorial strategies that foster positive affective states affords a broad range of potential 
learning benefits, such as effectiveness, efficiency and transfer, because students tend to 
persist longer and put forth more effort in problem-solving activities when they enjoy 
what they are learning and believe in their abilities to succeed (Zimmerman, 2000). For 
these reasons, it is essential to coordinate affective reasoning with pedagogical and 
tutorial strategies. 

We are currently investigating a variety of information channels for reasoning about 
affect, and, in particular self-efficacy. For example, monitoring physical changes (such as 
physiological response) in the student, observing her behaviours and relevant events 
occurring in the virtual world, tracking both narrative and tutorial planning actions, and 
considering internal models of believable characters in a virtual world are a few of the 
potential sources of information available. However, recognising student affective states 
is a challenging task and many approaches to date have required the use of invasive or 
distracting technologies. For practical purposes, deployable systems will call for affective 
reasoning techniques that limit or eliminate learning disruption. The ability to reason 
about student affect could provide potentially useful information about how the student 
feels about her learning experience. This would allow narrative and tutorial planning to 
consider refinements that may increase student interest, engagement, motivation, and 
self-efficacy by selecting specific tasks and providing directed guidance given the 
student’s situation.  

Additionally, we have begun exploiting similar information channels for affect 
expression tasks, such as inducing models of empathy for companion agents. Empathy  
is the expression of emotion based on another’s situation and not merely one’s own 
(Davis, 1994; Hoffman, 2000; Ickes, 1997). Its expression can demonstrate that the 
target’s (the recipient of empathetic expression) feelings are understood or shared.  
To model empathy we employ a Wizard-of-Oz study design in which our inductive 
framework monitors situational attributes of the learning environment while the ‘wizard’ 
controls empathetic expressions of a companion agent and a learner controls her own 
character. The inductive framework utilises collected situational data to make predictions 
of wizard empathetic decisions. 

This paper summarises our work to date on modelling affect for the tasks of 
expression (companion agent empathy) and recognition (student self-efficacy). It is 
structured as follows. Section 2 discusses the challenges of guided discovery learning  
and how motivation and self-efficacy can be leveraged in narrative-centred guided 
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discovery learning environments. Next, Section 3 introduces the Crystal Island learning 
environment and illustrates its behaviour in a learning scenario. Section 4 summarises the 
results of affect expression and affect recognition studies conducted with Crystal Island. 

2 Affect in narrative inquiry-based learning environments 

2.1 Guided discovery learning 

It has long been recognised that discovery is a key element of the scientific enterprise, 
and recent years have seen a growing focus on discovery in education. For more than a 
decade, science education reform efforts by organisations such as the National Research 
Council (1996) American Association for the Advancement of Science (1993) have set 
forth standards promoting a greater emphasis on discovery learning. In discovery learning 
(or inquiry-based learning), students approach a new topic via learning-by-doing. Instead 
of being presented problems and solutions in an expository fashion, students are given 
problems to solve, a rich environment in which to explore the problems, and a set of tools 
and techniques for constructing solutions. While early accounts of discovery learning 
focused on concept discovery (Bruner, 1961), contemporary work views discovery 
learning as scientific investigation. Thus, the process of discovery learning is analogous 
to the scientific method: students design and perform experiments, collect data, and 
evaluate hypotheses (de Jong and van Joolingen, 1998). First and foremost, discovery 
learning is active learning. As noted in the National Science Education Standards 
(National Research Council, 1996), discovery learning is ‘something that students do, not 
something that is done to them’. 

Discovery learning offers several advantages over more didactic approaches. It tends 
to increase students’ ability to remember what they have learned, to apply their new 
knowledge, and to transfer it to new tasks more effectively than with more passive 
approaches such as reading textbooks (Blumenfeld et al., 2000; de Jong and van 
Joolingen, 1998). In addition to the cognitive benefits of discovery learning, it also offers 
potential motivational benefits. It enables students to become more active science 
learners (rather than passive consumers of information), it increases students’ beliefs that 
scientific theories change as new evidence becomes available (rather than being seen as 
unchangeable entities), and perhaps most importantly, it makes science more concretely 
meaningful (rather than seeming too abstract) (White and Fredricksen, 1998). 

Despite the potential benefits of discovery learning, in the absence of appropriate 
scaffolding, discovery learning can be ineffective. Early findings suggested that 
discovery learning augmented with guidance can be more effective than pure discovery 
learning in enabling students to apply their knowledge to new problems (Shulman and 
Keisler, 1996). Furthermore, students may sometimes learn incorrect concepts through 
discovery learning, and discovery learning may be inefficient (Hammer, 1997). A recent 
analysis of thirty years of studies of discovery learning suggests that discovery learning 
accompanied by guidance in the form of feedback and coaching is more effective than 
unguided discovery learning (Mayer, 2004). Thus, guided discovery appears to be a 
promising alternative to either didactic instruction or pure discovery learning. In our 
laboratory we are investigating guided discovery learning in narrative environments for 
science learning. 
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2.2 Motivation in narrative learning environments 

Narrative-centred guided discovery environments for learning may offer motivational 
benefits. Motivation is critical in learning environments, for it is clear that from a 
practical perspective, learning environments that fail to engage students will go unused. 
Game playing experiences and educational experiences that are extrinsically motivating 
can be distinguished from those that are intrinsically motivating (Malone, 1981). In 
contrast to extrinsic motivation, intrinsic motivation stems from the desire to undertake 
activities sheerly for the prospective reward. Narrative-centred discovery learning could 
provide the four key intrinsic motivators identified in the classic work on motivation in 
computer games and educational software: challenge, curiosity, control, and fantasy 
(Malone and Lepper, 1987). 

Narrative-centred discovery learning can feature challenging tasks of intermediate 
levels of difficulty, i.e., tasks that are not too easy and not too difficult, targeting 
desirable levels of student intrinsic motivation. Dynamically created narratives can 
feature problem-solving episodes whose level of difficulty is customised for individual 
students. In discovery approaches, learning is inherently presented as a challenge, a  
series of problem-solving goals, that once achieved provide a deeper understanding of  
the domain.  

Curiosity requires students to be inquisitive, an essential attribute for successful 
learning in narrative-centred discovery learning environments. Because discovery 
learning compels students to obtain knowledge throughout learning episodes, students are 
likely to question the completeness of their acquired knowledge as they progress and  
to search for new answers. Narrative-centred discovery learning environments can  
empower students to take control of their learning experiences; students can choose their 
own paths, both figuratively (through the solution space) and literally (through the story 
world), while being afforded significant guidance crafted specifically for them. The 
narrative structure of guided discovery learning can provide unobtrusive direction by 
indirectly highlighting a subset of possible goals (i.e., blinking lights in a particular room 
in the environment, or a character audibly coughing in the student’s right audio channel) 
to inform the student’s next action consideration and contribute to the student’s 
perception of control. 

Narrative-centred discovery learning is innately fantasy-based. Fantasy refers to a 
student’s identification with characters in the interactive narrative and the imaginative 
situations created internally and off-screen by the student. All narrative elements ranging 
from plot and characters to suspense and pacing can contribute to vivid imaginative 
experiences. The openness of discovery learning affords opportunities to support all 
levels of student imagination, thereby increasing motivation and engagement. Effective 
narrative tutorials will employ characters in the story world that either the individual 
students perceive as possessing some cognitive, emotional, or physical attributes similar 
to their own, or that the individual student admires, expresses feelings of compassion 
towards, or for which the student conveys empathetic feelings. 

In short, narrative can provide the guidance essential for effective discovery learning 
and the ‘affective scaffolding’ for achieving high levels of motivation and engagement. 
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2.3 Empathetic companion agents 

Devising computational models of empathy contributes to the broader enterprise of 
modelling affective reasoning (Picard, 1997). Beginning with Elliott’s implementation 
(Elliott, 1992) of the OCC model (Ortony et al., 1988), advances in affective reasoning 
have accelerated in the past few years, including the appearance of a sophisticated theory 
of appraisal (Gratch and Marsella, 2004) based on the Smith and Lazarus Appraisal 
Theory (Lazarus, 1991). We have also begun to see probabilistic approaches to assessing 
users’ affective state in educational games (Conati, 2002) and investigations of the role  
of affect and social factors in pedagogical agents (Baylor, 2005; Burleson and Picard, 
2004; Elliott et al., 1999; Johnson and Rizzo, 2004; Lester et al., 2000; Prendinger and 
Ishizuka, 2005). Recent work on empathy in synthetic agents has explored their affective 
responsiveness to biofeedback information and communicative context (Prendinger and 
Ishizuka, 2005). It has also yielded agents that interact with one another and with the  
user in a virtual learning environment to elicit empathetic behaviours from its users 
(Paiva et al., 2005). Empathy has also been investigated in embodied computer agents 
perceived to care about outcomes of human user experiences in a blackjack game  
(Brave et al., 2005). 

Empathy is a complex socio-psychological construct. Defined as “the cognitive 
awareness of another person’s internal states, that is, his thoughts, feelings, perceptions, 
and intentions” (Ickes, 1997), empathy enables us to vicariously respond to another via 
“psychological processes that make a person have feelings that are more congruent with 
another’s situation than with his own situation” (Hoffman, 2000). Social psychologists 
describe three constituents of empathy. First, the antecedent consists of the empathiser’s 
consideration of herself, the target’s intent and affective state, and the situation at hand.  
Second, assessment consists of evaluating the antecedent. Third, empathetic outcomes, 
e.g., behaviours expressing concern, are the products of assessment (Davis, 1994) 
including both affective and non-affective outcomes (e.g., judgement, cognitive 
awareness). Two types of affective outcomes are possible. In parallel outcomes, the 
empathiser mimics the affective state of the target. For example, the empathiser may 
become fearful when assessing a target’s situation in which the target is afraid. In 
reactive outcomes, empathisers exhibit a higher cognitive awareness of the situation to 
react with empathetic behaviours that do not necessarily match those of the target’s 
affective state. For example, empathisers may become frustrated when the target does not 
meet with success in her task, even if the target herself may not be frustrated. Accurately 
modelling parallel and reactive empathetic reasoning presents significant challenges. 

Introducing empathetic companion agents into learning environments may lead to 
enriched pedagogical agent-student interaction in which agents scaffold student affective 
experiences in support of learning. 

2.4 Self-efficacy in intelligent tutoring systems 

To supplement the natural motivational effects of narrative learning environments, we 
have begun to investigate techniques for modelling student affect. In particular, we are 
exploring techniques for diagnosing student efficacy. Self-efficacy influences students’ 
reasoning, their level of effort, their persistence, and how they feel; it shapes how they  
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make choices, how much resilience they exhibit when confronted with failure, and what 
level of success they are likely to achieve (Bandura, 1995; Schunk and Pajares, 2002; 
Zimmerman, 2000). While it has not been conclusively demonstrated, many conjecture 
that given two students of equal abilities, the one with higher self-efficacy is more likely 
to perform better than the other over time. Highly efficacious students exhibit more 
control over their future through their actions, thinking, and feelings than inefficacious 
students (Bandura, 1986). Self-efficacy is intimately related to motivation, which controls 
the effort and persistence with which a student approaches a task (Lepper et al., 1993). 
Effort and persistence are themselves influenced by the belief the student has that she will 
be able to achieve a desired outcome (Bandura, 1997). Students with low self-efficacy 
perceive tasks to be more challenging than they actually are, often leading to feelings  
of anxiety, frustration and stress (Bandura, 1986). In contrast, students with high  
self-efficacy view challenge as a motivator (Bandura, 1986; Malone and Lepper, 1987). 
Self-efficacy has been studied in many domains with significant work having been done 
in computer literacy (Delcourt and Kinzie, 1993) and mathematics education (Pajares and 
Kranzler, 1995). It is widely believed that self-efficacy is domain-specific; whether it 
crosses domains remains an open question. For instance, students with high self-efficacy 
in mathematics may be inefficacious in science, or a highly efficacious student in 
geometry may experience low efficacy in algebra. 

A student’s self-efficacy is influenced by four types of experiences (Bandura, 1997; 
Zimmerman, 2000). First, in enactive experiences, she performs actions and experiences 
outcomes directly. These are typically considered the most influential category. Second, 
in vicarious experiences, she models her beliefs based on comparisons with others.  
These can include peers, tutors, and teachers. Third, in verbal persuasion experiences,  
she experiences an outcome via a persuader’s description. For example, she may be 
encouraged by the persuader, who may praise the student for performing well or  
comment on the difficulty of a problem. Her interpretation will be affected by the 
credibility she ascribes to the persuader. Fourth, with physiological and emotional 
reactions, she responds affectively to situations. These experiences, which often  
induce stress and anxiety and are physically manifested in physiological responses  
such as increased heart rate and sweaty palms, call for emotional support and 
motivational feedback. 

Self-efficacy holds great promise for ITSs. Self-efficacy beliefs have a stronger 
correlation with desired behavioural outcomes than many other motivational constructs 
(Graham and Weiner, 1996), and it has been recognised in educational settings, that  
self-efficacy can predict both motivation and learning effectiveness (Zimmerman, 2000). 
Thus, if it were possible to enable ITSs to accurately model self-efficacy, they may be 
able to leverage it to increase students’ academic performance. Two recent efforts have 
explored the role of self-efficacy in ITSs. One introduced techniques for incorporating 
knowledge of self-efficacy in pedagogical decision making (Beal and Lee, 2005). Using a 
pre-test instrument and knowledge of problem-solving success and failure, instruction  
is adapted based on changes in motivational and cognitive factors. The second explored 
the effects of pedagogical agent design on students’ traits, which included self-efficacy 
(Kim, 2005). 
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3 Crystal Island 

In our laboratory we are developing a narrative-centred guided discovery learning 
environment, Crystal Island (Mott et al., 2006; McQuiggan et al., 2008) (Figure 1).  
Valve Software’s SourceTM engine, the 3D game platform developed for Half-Life2, was 
used to implement the world, interface, and semi-autonomous characters in Crystal 
Island, which serves as a testbed for investigating affective issues in inquiry-based 
learning in the domains of microbiology and genetics for middle school students. Crystal 
Island’s narrative takes place at a research outpost situated on a previously unexplored 
volcanic island. The student is cast as a visitor to the island and the child of the lead 
scientist. The narrative unfolds as members of the research team begin to fall ill, leaving 
the student to solve a developing science mystery, thereby saving the expedition. The 
student progresses by analysing the genetic makeup of chickens responsible for 
transmitting an unidentified infectious disease through their eggs. In doing so, she is free 
to explore and interact with the world, its objects, and other characters. Throughout this 
process, the structure of the developing narrative is characterised by inquiry-based 
learning activities of question development, hypothesis generation, data collection, and 
hypothesis testing. To solve the mystery the student must navigate the island, which 
includes the lead scientist’s house, the laboratory, the infirmary, the dining hall, and the 
men and women’s living quarters; manipulate objects, such as eggs, food, books, and 
mechanical devices; and interact with other research team members to gather relevant 
information. Ultimately, the student must deduce the species of the chicken that is 
responsible for the epidemic, and solve the mystery. 

Figure 1 Crystal Island Research Station (see online version for colours) 



   

 

   

   
 

   

   

 

   

   224 S.W. McQuiggan and J.C. Lester    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 Jin, the camp nurse, with Bryce, the lead research who has fallen ill (see online version 
or colours) 

Consider a ‘typical’ interaction with the Crystal Island environment: a student navigates 
the world for a period of time, interacting with characters, gradually gathering 
information about infectious diseases and related topics. As members of the  
research team fall ill, the accumulated information allows the student to conclude that  
an infectious disease is the culprit: an illness transmittable between organisms. After 
learning this concept, an interaction with the nurse suggests that the island’s eggs may be 
responsible for the spreading illness. If the student can deduce which chickens are 
responsible for the infected eggs, the mystery may be solved. The student interacts with 
several of the remaining healthy research team members to learn the relationships 
between the eggs and chickens and develop the necessary genetics background. The 
student also utilises an apparatus in the laboratory to perform tests on potentially 
contaminated eggs. Eventually, the student concludes that white-feathered chickens are 
responsible for the bad eggs due to a codominant trait, solves the mystery, and reports the 
finding to the nurse. 

4 Experimental results 

Effectively modelling student affect requires a representation of situational contexts. 
Because affect is fundamentally a cognitive process in which a person appraises the 
relationship between herself and her environment (Gratch and Marsella, 2004; Lazarus, 
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1991), affect recognition models for learning environments should take into account 
environmental information used in student appraisals as well as information encoding 
student responses to their appraisals, such as monitoring physiological changes. To  
this end we have investigated a rich representation of situational contexts to model 
empathetic behaviour (McQuiggan and Lester, 2007) and a comparable representation of 
environmental information extended to include student physiological response data 
(McQuiggan et al., 2008). 

4.1 Empathy modelling for companion agents 

A key challenge posed by affective reasoning, particularly for directing synthetic agent 
behaviour, is devising empirically informed models of empathy that accurately respond in 
social situations. We have developed Computational Affect Recognition and Expression 
(CARE), a data-driven affective architecture and methodology for learning models  
of empathy by observing human-human social interactions (McQuiggan and Lester, 
2006). First, in CARE training sessions, a trainer (the student), directs her synthetic  
agent to perform a sequence of tasks while another trainer manipulates companion 
agents’ affective states to produce empathetic behaviours (spoken language, gesture, and 
posture). CARE tracks situational data including locational, intentional, and temporal 
information to induce a model of empathy. At runtime, CARE uses the model of empathy 
to drive situation-appropriate empathetic behaviours for companion agents. We have 
conducted two complementary studies investigating the predictive accuracy and 
perceived accuracy of CARE-induced models of empathy.  

4.1.1 Method and procedure 

In a formal evaluation, more than 2 h of data were gathered from 31 subjects in an 
Institutional Review Board (IRB) of North Carolina State University approved user 
study. The subjects were divided into 25 targets and 6 empathisers. There were 20 male 
subjects serving as target trainers and 5 female subjects serving as target trainers varying 
in race, ethnicity, age and marital status who participated as training targets. There were 3 
male and 3 female subjects participating as training empathisers. On average, empathisers 
completed 4 training sessions, each with a unique training target participant. 

Each training target participant entered a conference room and was seated in front of 
a laptop computer with Treasure Hunt, a virtual environment in which a user and an 
embodied companion agent search for treasures. First, target participants completed the 
demographic survey at their own rate. Concurrently, empathisers entered a second room 
and were seated in from of another laptop computer. Training targets were unaware of  
the empathiser’s participation at this point. Empathisers were only aware that a target 
training participant was in the next room. There was no contact between the participants 
at any point disabling the empathisers’ ability to distinguish any characteristics of  
the target trainer other than those assumed from the interaction portrayed on their  
monitor. Empathisers also first completed the same demographic survey as the targets. 
Next, empathisers completed Davis’ IRI questionnaire while targets where given the  
Half-Life 2 controls reference sheet to read until the practice task was loaded on the 
laptop in front of the target. Target trainers were able to complete the practice task at 
their own rate until the task was accomplished. At this point empathisers were given the 
emotion and empathy reference sheet and instructed to read over the definitions and 
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empathiser controls. Next, one of the degrees of difficulty was randomly selected and the 
appropriate Treasure Hunt training environment was loaded on the target machine while 
the spectator view application was concurrently loaded on the empathiser machine.  

Once the training environment was loaded, target trainers had 7 min to explore  
the environment. Empathisers viewed the interaction and made empathetic behaviour 
decisions by selecting the appropriate control for the affective state they desired the 
companion agent to have. When empathetic behaviours were selected by the empathiser, 
both participants had the opportunity to hear the companion agent’s spoken language  
and see the associated gestural behaviours and posture. Upon completion of the 7 min 
training session, both training targets and empathisers were given post-session  
surveys and were interviewed. Finally, target trainers were offered information about the 
details of the experiment and informed about the presence of the empathiser during the 
training session. 

4.1.2 Summary of results 

The following procedural steps were used to generate models of empathy from the 
training sessions: 

Step 1 Data Construction. Each session log, containing 6000–9000 observation 
changes, was first translated into a full observational attribute vector. For 
example, if a treasure box came into view (and all other observable attributes 
remained constant), then the observational attribute vector would modify the 
previous vector to account for the noted change.  

Step 2 Data cleansing. After data was converted into the observational attribute  
vector format the data was ready to be cleaned. This step included generating  
the dataset containing only records in which the empathiser selected an 
empathetic emotion. 

Step 3 Naïve Bayes classifier and Decision Tree analysis. Once the dataset was ready  
it was loaded into the Weka machine learning package (Witten and Frank, 
2005), a naïve Bayes classifier and decision tree were learned, and tenfold  
cross-validation analyses were run on the resulting models. The entire dataset 
was used to generate models for empathetic assessment (when to be empathetic) 
and empathetic interpretation (how to be empathetic). Empathetic assessment  
is determined using the entire dataset, while empathetic interpretation is 
determined from a transformed dataset containing only empathetic records. 

Two sets of models were induced to model the empathisers’ decisions. The first model 
determines when to exhibit an empathetic behaviour. The other model selects which 
affective state should be expressed by the companion agent. The best performing CARE-
induced models have predicted training decisions of ‘when’ and ‘how’ to be empathetic 
with 89% (decision tree model) and 80% (naïve bayes model) accuracy, respectively.1 
These results suggest that the CARE paradigm can provide the basis for effective 
empathetic behaviour control in embodied companion agents. 

The results demonstrate that a decision tree classification approach is sufficient  
for modelling empathetic assessment and that significantly more training is needed to 
produce large quantities of empathetic instances for the same approach to have such 
compelling results for empathetic interpretation. Although the naïve Bayes approach 
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assumes that all attributes of the observational attribute vector are independent – this 
assumption is false – it nonetheless induces a model sufficient for controlling empathetic 
interpretation in companion agents. 

4.2 Evaluating empathy models 

This section reports on an evaluation of CARE models to determine their perceived 
accuracy. Perceived accuracy tells us whether the behaviours generated by a model  
are actually perceived to be socially appropriate in practice. Perceived accuracy is an 
important aspect of empathetic accuracy because, ultimately, we seek to create models of 
empathy that will generate behaviours that are deemed to be appropriate for a given 
social context by human observers. 

4.2.1 Method and procedure 

In a formal evaluation, 31 undergraduate students, in an IRB of North Carolina State 
University approved user study, evaluated empathetic responses of the companion agent 
in video clips from interactions with an interactive learning environment. There were  
29 male subjects and 2 female subjects varying in race, ethnicity, and age. Six and a half 
percent were aged 18–19, 87.0% were aged 20–24, and 6.5% were aged 25–29. 

Participants entered a conference room where they were first presented the details of 
the study and a consent form. They then completed the demographic survey, Davis’s IRI 
questionnaire, and Chapin’s Social Insight questionnaire. Next, they read the background 
on empathy and task directions. Research assistants then fielded any questions  
from participants regarding empathy and their prescribed task. Participants were then 
presented, in random order, a series of ten video clips of captured user-interactions in  
the virtual world. There were four clips of CARE-generated behaviours, three clips of 
inverse empathetic behaviours, and three clips of human-generated behaviours. After 
viewing each clip, participants completed the associated response worksheet at their  
own pace. Following the completion of reviewing and responding to all of the video 
clips, participants completed the post-experiment survey before the study session 
concluded. Each subject watched 10 clips, in random order, of empathetic companion 
agents expressing empathy in a given situation. The clips were derived from three sources 
including empathetic expressions controlled by human users (n = 3), those controlled by a 
CARE-induced model of empathy (n = 4), and crafted controlled expressions (expression 
of an opposing emotion determined by a CARE model, (n = 3). Subjects rated each clip 
along three dimensions on a five-point Likert scale (0 to 4): accuracy of the emotional 
response, accuracy of the timing of the response, and an overall accuracy of the 
response’s appropriateness for the situation.  

4.2.2 Summary of results 

The perceived accuracy of the displayed emotion when triggered by a CARE-induced 
model (M = 2.98, SD = 1.02) was not significantly different from the accuracy of 
emotions triggered by human users (M = 2.76, SD = 0.97), F(1,215)  = 2.39, p = 0.12.2 
However, the perceived accuracy of the timing of empathetic responses driven by  
a CARE-induced model (M = 3.06, SD = 1.01) was statistically significant from 
empathetic responses driven by human users (M = 2.76, SD = 1.16), F(1, 215)  = 3.97,  
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p = 0.047. Lastly, the perceived accuracy overall of the empathetic response for the 
situation depicted in the clip for CARE controlled empathy (M = 3.03, SD = 0.94)  
was weakly significantly better than human user driven agent empathetic expression  
(M = 2.80, SD = 0.98), F(1, 215) = 3.26, p = 0.073. These results suggest that  
CARE-induced empathy models can direct companion agent empathetic expression to  
the extent that it is perceived to be as accurate as human controlled agent expressions  
of empathy. In some cases, the CARE model was rated higher, indicating that the 
consumption of many examples used to induce CARE models of empathy are perceived 
as more accurate to a wider audience than expressions derived from a single example. 

Both human-controlled and CARE-controlled empathetic expressions were perceived 
to be more accurate than the crafted expressions (designed to use an inappropriate 
emotion) with convincing significance. For instance, the overall perceived accuracy  
of the displayed empathetic expression for the depicted situation in the clip for  
human-controlled expressions (M = 2.80, SD = 0.98) was significantly better than the 
crafted expressions (M = 0.84, SD = 1.09), F(1, 184) = 165.75, p < 0.0001. Similarly, 
CARE-controlled expressions (M = 3.03, SD = 0.94) were also significant from crafted 
expression (M = 0.84, SD = 1.09) in the overall rating, F(1, 215) = 253.99, p < 0.0001. 
This suggests that humans interacting with empathetic agents can very easily gauge 
appropriate and accurate empathy from inappropriate empathetic expression. 

Participant responses to clips of CARE-generated behaviours cannot be statistically 
distinguished from the responses to clips of human-generated behaviours from training 
episodes. This result indicates that CARE models generate empathetic behaviours that  
are similar to those made by humans and are perceived to be situationally appropriate. 
The fact that participants were able to distinguish, with statistical significance, inverse  
empathetic behaviours from both CARE-generated behaviours and human-generated 
behaviours suggests that both CARE models and human models of empathy differ 
fundamentally from ‘inverse’ empathetic models. 

4.3 Modelling student self-efficacy 

We have also begun to investigate inductive approaches to modelling student efficacy in 
intelligent tutoring systems (McQuiggan et al., 2008). Because self-efficacious students 
are effective learners, endowing intelligent tutoring systems with the ability to diagnose 
self-efficacy could lead to improved pedagogy. Accurately modelling self-efficacy 
requires a representation of the situational context that satisfies two requirements: it must 
be sufficiently rich to support assessment of changing levels of self-efficacy, and it must 
be encoded with features that are readily observable at runtime. Because affect is 
fundamentally a cognitive process in which the user appraises the relationship between 
herself and her environment (Gratch and Marsella, 2004; Smith and Lazarus, 1990) and 
because self-efficacy beliefs draw heavily on a student’s appraisal of the situation at 
hand, affect recognition models and models of self-efficacy should take into account both 
physiological and environmental information. For task-oriented learning environments, 
self-efficacy models can leverage knowledge of task structure and the state of the student 
in the learning environment to effectively reason about students’ efficacy levels. In 
particular, self-efficacy models can employ concepts from appraisal theory (Lazarus, 
1991) to recognise student efficacy levels generated from their assessment of how their 
abilities relate to the current learning objective and task. Thus, self-efficacy models can  
 



   

 

   

   
 

   

   

 

   

    Modelling affect expression and recognition 229    
 

    
 
 

   

   
 

   

   

 

   

       
 

leverage representations of the information observable in the learning environment – note 
that this refers to the same information that students may use in their own appraisals – to 
predict student efficacy levels. 

4.3.1 Method and procedure 

In a formal evaluation, data was gathered from thirty-three subjects in an IRB of  
North Carolina State University approved user study. There were 6 female and 27 male 
participants varying in age, race, and marital status. Approximately 12 (36%) of the 
participants were Asian, 20 (60%) were Caucasian, and 1 (3%) was Black or  
African-American. Twenty-seven percent of the participants were married. Participants 
average age was 26.15 (SD = 5.32). 

Each participant entered the experimental environment (a conference room) and  
was seated in front of the laptop computer. First, participants completed the demographic 
survey at their own rate. Next, participants read over the online genetics tutorial 
directions before proceeding to the online tutorial. On average, participants took 17.67 
(SD = 2.91) minutes to read through the genetics online tutorial. Following the tutorial, 
participants were asked to complete the Problem-Solving Self-Efficacy Scale considering 
their experience with the material encountered in the genetics tutorial. The instrument 
asked participants to rate their level of confidence in their ability to successfully complete 
certain percentages of the upcoming problems in the interactive learning environment. 
Participants did not have any additional information about the type of questions or the 
domain of the questions contained in forthcoming problems. Participants were then 
outfitted with biofeedback equipment on their left hand while the interactive learning 
environment was loaded. Once the system was loaded, participants entered the calibration 
period in which they read through the problem-solving directions. This allowed the 
system to obtain initial readings on the temporal attributes being monitored, in effect 
establishing a baseline for Heart Rate (HR) and Galvanic Skin Response (GSR). 
Participants used a self-efficacy slider representing the strength of their belief in their 
answers being correct as they progressed through the environment.  

4.3.2 Summary of results 

We have explored two families of self-efficacy models: a static self-efficacy model, 
learned solely from pre-test (non-intrusively collected) data with tutoring environment 
information, and a dynamic self-efficacy model, learned from both static data as well as 
runtime physiological data collected with a biofeedback apparatus.  

We have utilised naïve Bayes and decision tree modelling techniques for their 
preliminary predictive power and robustness to large multidimensional data. The highest 
performing static model is able to predict students’ real-time levels of self-efficacy with 
85.2% accuracy, while the best physiologically informed dynamic model performed  
at 86.9% accuracy.3 The experiment revealed two important implications for the design 
of runtime self-efficacy modelling. First, even without access to physiological data, 
induced decision-tree models can make reasonably accurate predictions about students’ 
self-efficacy. Sometimes physiological data is unavailable or it would be too intrusive  
to obtain the data. In these situations, decision-tree models that learn from demographic 
data and data gathered with a validated self-efficacy instrument administered prior  
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to problem-solving and learning episodes, can accurately model self-efficacy. Second,  
if runtime physiological data is available, it can significantly enhance self-efficacy 
modelling. Given access to HR and GSR, self-efficacy can be predicted more accurately. 

5 Conclusions and future work 

Recent advances in affective reasoning have demonstrated that emotion plays a  
central role in human cognition and should therefore play an equally important role in 
human-computer interaction. To support effective interactions, affect-informed systems 
must be able to accurately and efficiently recognise user affect from available resources 
and respond accordingly. A promising approach to constructing models of affect is 
inducing them rather then manually constructing them. With an inductive approach, 
machine learning techniques can be leveraged to induce models of affect for intelligent 
tutoring systems. In this article we have summarised two studies which induced models 
of self-efficacy and empathy. Incorporated into runtime intelligent tutoring systems, these 
models offer the potential for increasing motivation and learning effectiveness by alerting 
tutorial components of changes in student efficacy and recommending empathetic 
expressions for pedagogical agents. 

Several directions for future work are suggested by the results obtained to date. First, 
it will be important to investigate how to design pedagogical planning components that 
are informed by models of student affect, such as self-efficacy. Of particular interest here 
is the problem of dynamically creating pedagogical goals that take into account affective 
considerations. Second, it will be important to explore how models of self-efficacy  
can increase the utility of affect recognition models. Combining predictions of student 
efficacy with detection of student frustration could inform intervention decisions. For 
example, in potentially frustrating (but pedagogically useful) situations, efficacy may 
help predict how long a student may be capable of persisting without an intervention. 
Third, it will be important to integrate models of empathy with tutorial strategies to 
generate empathetically appropriate pedagogical feedback. Certainly, it is not always  
the case that pedagogical agents should respond to students with affect – frequently 
‘unaffective’ hints or explanations are most appropriate – but it is evident that affect 
should play an important role in supporting effective learning interactions.  
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