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Abstract—A distinctive feature of game-based learning 

environments is their capacity for enabling stealth assessment. 
Stealth assessment analyzes a stream of fine-grained student 
interaction data from a game-based learning environment to 
dynamically draw inferences about students’ competencies 
through evidence-centered design. In evidence-centered design, 
evidence models have been traditionally designed using statistical 
rules authored by domain experts that are encoded using Bayesian 
networks. This article presents DEEPSTEALTH, a deep learning-
based stealth assessment framework, that yields significant 
reductions in the feature engineering labor that has previously 
been required to create stealth assessments. DEEPSTEALTH utilizes 
end-to-end trainable deep neural network-based evidence models. 
Using this framework, evidence models are devised using a set of 
predictive features captured from raw, low-level interaction data 
to infer evidence for competencies. We investigate two deep 
learning-based evidence models, long short-term memory 
networks (LSTMs) and n-gram encoded feedforward neural 
networks (FFNNs). We compare these models’ predictive 
performance for inferring students’ knowledge to linear-chain 
conditional random fields (CRFs) and naïve Bayes models. We 
perform feature set-level analyses of game trace logs and external 
pre-learning measures, and we examine the models’ early 
prediction capacity. The framework is evaluated using data 
collected from 182 middle school students interacting with a game-
based learning environment for middle grade computational 
thinking. Results indicate that LSTM-based stealth assessors 
outperform competitive baseline approaches with respect to 
predictive accuracy and early prediction capacity. We find that 
LSTMs, FFNNs, and CRFs all benefit from combined feature sets 
derived from both game trace logs and external pre-learning 
measures. 
 

Index Terms—Computational Thinking, Deep Learning, 
Educational Games, Game-Based Learning, Stealth Assessment 
 

I. INTRODUCTION 
ecent years have seen growing interest in intelligent game-
based learning environments because of their potential to 
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create personalized and engaging learning experiences [1]. 
These environments simultaneously merge adaptive 
pedagogical functionalities delivered through intelligent 
tutoring system functionalities with the engaging learning 
experiences provided by digital games [2], [3], [4], [5]. Recent 
work on game-based learning has explored a broad spectrum of 
subject matter ranging from K-12 mathematics [4], [6], 
elementary school social behaviors [7], middle school computer 
science [8], anti-bullying [9], social language and culture 
learning [3], science inquiry [10], and biosafety training [11]. 

A key benefit of game-based learning environments is their 
ability to embed problem-solving challenges within interactive 
virtual environments, which can enhance students’ motivation 
[1], [12]. These environments facilitate learning through 
customized narratives, feedback, and problem-solving support 
[13], [14], [15]. Game-based learning environments are a 
promising laboratory for a wide range of artificial intelligence-
driven student modeling efforts to infer development of 
competencies [14], [16], study affective states centering around 
learning [17], [18], and monitor progression towards learning 
goals [19] by utilizing fine-grained streams of students’ 
interaction data that represent problem-solving behaviors. 

A significant design challenge posed by intelligent game-
based learning environments is understanding how to robustly 
measure learning without disrupting engagement. Stealth 
assessments address this challenge by embedding unobtrusive 
assessments within game mechanics, offering a real-time non-
disruptive assessment method [14]. Stealth assessment 
examines student interaction data to provide real-time behind-
the-scenes measurement of students’ learning processes and 
outcomes [16], [20]. Specifically, students’ learning is inferred 
by analyzing detailed sequences of observed behavioral cues 
that indirectly reveal competencies for knowledge and skills 
without conducting explicit formative assessments. This 
information can be utilized to provide tailored problem-solving 
support for individual learners in a way that is both timely and 
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contextually appropriate [20], [21]. It can also inform teachers 
of potential pedagogical adaptations or integration with 
additional curricular activities, which are key components of 
distributed and integrated scaffolding [22], [23], [24].  

Stealth assessment is methodologically grounded in 
evidence-centered design (ECD), a process for designing valid 
knowledge assessments [25]. ECD features task, evidence, and 
competency models for diagnostic measurement of multiple 
aspects of students’ proficiency and performance. Built on the 
three models presented in ECD, stealth assessments utilize a 
rich stream of student interactions (i.e., an evidence model) 
collected from various problem-solving tasks (i.e., a task model) 
in game-based learning environments to draw inferences about 
student knowledge and skills (i.e., a competency model). The 
evidence model provides the connections between the 
competency model and the stream of low-level observations 
from student interactions with the task, enabling the 
competency model to update competency variables in the 
respective topic or skill [20]. Real-time processing of these three 
models points the way toward intelligent, adaptive game-based 
learning environments with development of robust evidence 
models being a key goal. 

Developing stealth assessments is a labor-intensive process 
requiring highly skilled subject matter experts to manually 
design reliable evidence and competency models to accurately 
infer student knowledge and skills. This typically demands 
stealth assessment designers to undertake manual feature 
engineering efforts and design probabilistic graphical models 
(e.g., [14], [20], [26]). As an approach to reducing this cost, we 
present DEEPSTEALTH, a stealth assessment framework that 
leverages deep learning (DL) for automatically devising 
evidence models [16]. DL is a family of machine learning 
algorithms that utilize deep neural networks to automatically 
extract hierarchical features from low-level data (e.g., a 
sequence of student behaviors in a game-based learning 
environment) [27]. DEEPSTEALTH has shown significant 
promise for alleviating the expensive and labor-intensive 
process of designing evidence models [8], [16]. Findings 
indicate that an evidence model implemented as a long short-
term memory network, which is a particular type of DL 
architecture, outperforms an n-gram encoded feedforward 
neural network, an alternative type of DL architecture, as well 
as non-DL models that were induced using expert-engineered 
features [8]. This current work further investigates the 
capabilities of DEEPSTEALTH focusing on three key research 
questions (RQs): 

RQ1. Can DEEPSTEALTH-based evidence models outperform 
other competitive approaches with respect to predictive 
accuracy when models are trained using only raw, low-level 
action sequences along with external pre-learning measures? 

RQ2. Which features of game interaction logs and external 
learning measures serve as strong predictors for evidence 
modeling with respect to predictive accuracy? 

RQ3. Can DEEPSTEALTH evidence models outperform other 
competitive approaches with respect to early prediction?  

To answer RQ1, we examine four computational methods 
including two DEEPSTEALTH models (long short-term memory 

networks and n-gram encoded feedforward neural networks), 
conditional random fields (probabilistic models dealing with 
sequential inputs), and n-gram encoded naïve Bayes models 
(probabilistic models dealing with fixed size inputs), where the 
input for these models are pre-learning measures and low-level 
sequences of student actions instead of engineered features, and 
the output of the models is evidence for one of the core 
competencies in a computational thinking curriculum.  

To address RQ2, we investigate the independent influence of 
the game interaction log feature set (i.e., action-level student 
behaviors in our game-based learning environment) and the 
external pre-learning measure feature set (i.e., content 
knowledge pre-test scores, self-efficacy questionnaire scores 
[28], and self-reported computer science attitudes [29] 
measured prior to gameplay). We evaluate the predictive 
capacity of the two independent feature sets by devising two 
distinct evidence models per computational approach. We 
compare these two models to a combined model that utilizes 
both feature sets together. This feature set-level analysis 
investigates how different machine learning techniques handle 
data from two different modalities. 

To address RQ3, we evaluate the early prediction capability 
of the four computational methods. Early prediction is 
particularly important in game-based learning environments 
because run-time adaptive scaffolding is a central objective of 
stealth assessment. We measure models’ early prediction 
capacity using standardized convergence point, which is a 
metric that estimates how early predictions converge to the 
correct competency level in each sequence [30]. For this metric, 
a lower score is more desirable since it indicates that model 
predictions converge to the correct label sooner. 

This article is organized as follows. Section II presents 
related work on intelligent tutoring systems and stealth 
assessment. Section III describes ENGAGE (Figure 1), a game-
based learning environment for computational thinking targeted 
in middle school, which is used as a testbed environment for 
DEEPSTEALTH. Section IV describes the student data corpus and 
instruments administered in multiple classroom studies across 
four public middle schools in the southeastern United States. 
Section V introduces the DEEPSTEALTH framework, and 
Sections VI and VII present empirical results centering on the 
three research questions along with a discussion of the findings. 
Finally, the article concludes with directions for future work. 

II. RELATED WORK 

A. Intelligent Tutoring Systems 
Intelligent game-based learning environments are situated at 

the intersection of (1) digital games that increase students’ 
motivation through rich settings, engaging characters, and 
compelling plots in virtual environments, and (2) intelligent 
tutoring systems (ITSs) that foster students’ learning through 
tailored scaffolding and context-sensitive feedback [1]. A rich 
body of work on ITSs has explored a broad range of 
computational approaches for student knowledge modeling, 
particularly inferring competencies in knowledge and skills 
using observed sequences of performance on tasks. Examples 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 

include factor analysis techniques, such as learning factors 
analysis [31], performance factors analysis [32], [33] and 
matrix/tensor factorization [34], [35], [36], which have been 
investigated for modeling latent knowledge states based on 
student performance on exercises. Item response theory (IRT) 
adopts a logistic function to model the probability of correctly 
answering an exercise [37]. For example, one variant of IRT 
models features three parameters: the difficulty of an exercise, 
the random guess, and the discrimination, in which the 
probability is inferred depending on the student’s skill level 
associated with the exercise.  

Bayesian knowledge tracing (BKT) assesses students’ latent 
knowledge and skills in the context of cognitive modeling to 
predict their performance on future exercises [38]. Based on 
hidden Markov models, standard BKT models aim to predict 
students’ latent knowledge utilizing four parameters: the initial 
probability of knowing a skill a priori, the probability of 
transitioning knowledge of a skill from unknown to known, the 
probability of a slip (i.e., making a mistake when applying a 
known skill), and the probability of a guess (i.e., successfully 
applying a skill without having mastered it). Parameter values 
can be fit using optimization techniques such as expectation 
maximization and conjugate gradient search [39]. 
Individualized BKT models that consider learner-specific 
aspects such as initial probability of mastery [40], speed of 
learning [39], and student-based parameter fit [41] have 
demonstrated improved predictive performance compared to 
classical BKT approaches. 

More recently, deep knowledge tracing (DKT) has 
demonstrated an approach to knowledge tracing that uses 
recurrent neural networks [42]. Instead of requiring hand-
crafted model parameters as well as labeling a skill for each 
exercise, DKT takes as input a sequence of a student’s exercise 
results (i.e., correctness of exercises) in order to predict the 
probability of answering the next exercise correct at the 
following time step, thereby exhibiting improved scalability for 
student knowledge modeling compared to BKT. 

B. Stealth Assessment 
Evidence-centered design (ECD) is an assessment framework 

that harnesses evidentiary arguments to connect task-level 
evidence (e.g., what students do, say, or create) with higher-
level skills and knowledge concepts in order to infer ones’ 
competencies [25], [43], [44]. Specifically, the conceptual 
assessment framework in ECD defines three operational 

models, centering around what is being learned (competency 
model), where the knowledge is being demonstrated (task 
model), and how to connect the two models (evidence model), 
which together can be used to deliver student-adaptive learning 
content and feedback [43]. 

Stealth assessment extends ECD to game-based assessment 
[26]. Student interactions with game-based learning 
environments produce fine-grained evidence in the form of raw 
game trace logs, such as a history of places that the students 
have visited, interactions with non-player characters, and a 
sequence of steps taken to solve a task situated within the 
learning environment.  

Various families of machine learning techniques have been 
investigated for evidence modeling in these environments. Kim 
and colleagues investigated Bayesian network-based evidence 
modeling, which requires two primary steps: (1) defining 
targeted competency and observable variables and building a 
directed graphical model, and (2) specifying the conditional 
probabilities between parent nodes and corresponding child 
nodes [26]. Falakmasir et al. presented the SPRING data 
analysis pipeline that does not require costly domain knowledge 
engineering [45]. Specifically, SPRING trains two hidden 
Markov models (HMMs), one for high-performing and the other 
for low-performing students per game level. Two log-
likelihoods of an observed sequence of student events are 
computed based on the two HMMs, and the difference between 
the two log-likelihoods for each game level is used as an 
independent variable for a linear regression model that predicts 
post-test scores. 

III. ENGAGE GAME-BASED LEARNING ENVIRONMENT 
To investigate deep learning-based evidence models for stealth 
assessment, we utilize a game-based learning environment 
designed to introduce computational thinking to middle school 
students, ENGAGE (Figure 1). ENGAGE features a rich immersive 
3D storyworld built with the Unity multi-platform game engine 
and Flare user interface toolkit [46]. The curriculum underlying 
ENGAGE is based on the AP Computer Science Principles course 
[47] with adapted learning objectives that are developmentally 
appropriate for U.S. middle school students (ages 11-13).  

Computational thinking is an approach to problem solving 
that involves several key practices, including abstracting, 
algorithmic thinking, systematic information processing, and 
leveraging computational tools for data analysis, modeling, or 

Fig. 1. Screenshots from the ENGAGE game-based learning environment: (A) an instructional video that explains how to run a device program, (B) a 
moving platform task in the Introduction level, and (C) a bubble-sort task in the Big Data level. 
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TABLE I 
DESCRIPTIONS OF ENGAGE’S THREE GAME LEVELS 

Levels Key Concepts to Learn CS Principles Objective Statements 

Introduction 

• Game mechanics (e.g., controlling player character, 
using the visual programming language) 

• Introductory programming skills and interactions with 
gameworld devices (e.g., moving platforms, cranes) 

• Programming languages are a tool through which people 
implement algorithms to solve problems using their creativity and 
skills.  

Digital World 

• The concept that binary numbers can represent various 
types of data such as decimal numbers, alphabetical 
characters, and colors 

• Intermediate programming skills (e.g., iteration, 
conditionals, data conversion) using various gameworld 
devices (e.g., binary locks/lifts for numbers, floor tiles for 
colors and alphabetical characters) 

• Binary is an abstraction that computers use to communicate, and 
the meaning of any binary sequence will depend on its 
interpretation and use. 

 

Big Data 

• Data analysis including filtering, sorting, visualizing, and 
discovering empirical findings from the analysis 

• Advanced programming skills that require programming 
based on computational thinking (e.g., developing 
algorithms) using various gameworld devices (e.g., 
bubble sorting device, screen devices for filtering, 
sorting, and visualization) 

• People use computers to analyze data and discover new 
information with practical applications to real-world problems. 

 

simulations [48], [49]. The problem-solving challenges within 
ENGAGE were designed to develop computational thinking 
skills and strategies through the creation and analysis of 
computational artifacts. In addition to focusing on development 
of computational thinking strategies, these challenges also aim 
to increase interest in computer science and provide a 
foundation for more advanced computer science work in high 
school. 

In ENGAGE, students play the role of the protagonist who has 
been sent to an underwater research facility to restore its 
communication systems, which have been sabotaged by a non-
player villain character. As students explore the research 
facility, they progress through each level of the game, which 
consists of a series of interconnected rooms. Each room 
presents students with a set of computational challenges 
students must solve by either programming devices located in 
the room or interacting with devices to appropriately execute 
written programs. To program devices, students use a visual 
programming interface to drag and drop “blocks” that represent 
functional units to create programs that contain an ordered 
series of commands and controls to be executed by the device. 
Programming in ENGAGE is inspired by the Scratch visual 
programming environment [50]. As students develop block-
based programs, scaffolding is provided through brief 
instructional videos (Figure 1A) and non-player character 
dialogue, which unfolds using animated vignettes sequenced in 
three thematic levels: Introduction (Figure 1B), Digital World 
(Figure 2), and Big Data (Figure 1C). Table I introduces key 
learning concepts and the Computer Science Principles 
Objective Statement associated with each level. Each level was 
iteratively refined and developed through a series of curriculum 
design activities with middle school teachers and students based 
on the AP Computer Science Principles course [47]. Through a 
series of highly interactive learning activities, students repair 
the communication systems and stop the villain from causing 
further harm on the research station.  

Several studies have investigated student learning in the 
ENGAGE game-based learning environment. One thread of 
research investigates how to achieve gender equity in ENGAGE 
with respect to learning gains through collaboration [51] and 
levels of frustration through a learning companion [52]. 
Students who interacted with ENGAGE and had no prior 
programming experience increased their confidence subscale of 
the computer science attitudes survey [29] to nearly the level of 
those who also interacted with ENGAGE but came with prior 
programming experience [53]. Frankosky and colleagues 
conducted a latent class growth analysis on students’ 
interactions on six programming challenges within the ENGAGE 
game [54]. They identified three distinct groups of students: (1) 
the “steady performance” group (consistently spending less 
programming time than average), (2) the “quickly improving” 
group (after spending higher than average time for the first two 
challenges, trending rapidly downward in programming time), 
and (3) the “gradual lag” group (exhibiting higher than average 
programming time). In addition, students’ interaction trace data 
have been analyzed to infer their learning outcomes in the 
context of stealth assessment [8], [16], [55].  

In this work, we focus on students’ problem-solving 
activities within ENGAGE’s Digital World level, in which 
students investigate how binary sequences are used to represent 
digital data. In problem-solving activities, students find the 
binary representation of a base-ten number to activate a lift 
device (Figure 2, Left), which requires them to review an 
existing program for the lift device (Figure 2, Right) to 
determine what base-ten number activates the lift. Students 
thereby gain an understanding of the concept of bits in binary 
numbers and the weight assigned to each bit. Students first pair 
the lift device, which is the process of registering a device with 
their virtual in-game computer in order to manipulate or view a 
device’s program. Then, students read the program using the 
visual programming interface, and flip binary tiles on the lift 
device (e.g., the white squares at the top of the lift device in 
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Figure 2, Left) to change the binary sequence until it matches 
the given base-ten number (Figure 2, Right). Upon executing 
its program, the lift device evaluates whether the binary 
sequence equals the base-ten number, and if they match, the 
device ascends and waits for one minute, which enables the 
student to navigate a previously inaccessible area. In these 
tasks, students are provided immediate feedback on the base-
ten interpretation of the binary sequence as they flip tiles 
through a display above the binary sequence (e.g., see numeral 
‘20’ in Figure 2, Left).  

In the Digital World level, students solve eleven binary 
representation tasks associated with binary lifts or binary lock 
devices. The eleven tasks introduce several symbols to 
represent binary numbers such as “True and False,” “Yes and 
No,” and “White and Black,” as well as the typical way of 
denoting them using “1” and “0” to teach the concept of binary 
representations. Figure 3 illustrates a sample sequence of steps 
to solve a binary problem for a base-ten number, 20, by a 
student who is learning the conceptual knowledge about binary 
numbers. Initially, all binary tiles are off (0), which results in 
the default base-ten value of 0. If the students flip the fifth (i.e., 
left-most) bit as in step (a), the base-ten value is updated to 16. 
Then, if the fourth bit is flipped as in step (b), the value is 
updated to 24. Then, she notices that the current binary 
representation makes the value greater than the target value of 
20 and decides to flip the fourth bit back to 0 as in step (c). She 
continues in this manner to find a binary representation that 
matches 20, executes the program, operates the binary device, 
and eventually advances to the next task. 

It is possible, but not optimal, for the tasks to be solved in a 
brute-force manner without understanding the concept of binary 
representations or the programs that control the devices. 
Therefore, it is critical to dynamically assess students’ 
competency levels in order to provide tailored instructional 
support for helping students acquire the knowledge. In the 
following section, we describe the studies we conducted with 
ENGAGE, which yielded the dataset that we use to investigate 
deep learning-based stealth assessment. 

IV. CLASSROOM STUDIES WITH ENGAGE 
ENGAGE was deployed in multiple teacher-led classroom 

studies conducted in four public middle schools in the 

southeastern United States. In each round of the study, teachers 
led a 9-week in-school implementation of ENGAGE. Teachers 
who led the ENGAGE activities participated in professional 
development and training sessions before beginning the 
implementation. Prior to starting the activities students 
completed pre-surveys (e.g., demographics questionnaire, 
computer science content knowledge assessment, self-efficacy 
and computer science attitude surveys). ENGAGE gameplay 
sessions alternated with classroom activity sessions, and 
students completed content knowledge tests after completing 
each ENGAGE game level. Final post-surveys for content 
knowledge, computer science attitudes, and engagement were 
administered at the end of the game.  

During game-play sessions, ENGAGE was played in either 
single-player or two-player mode, the latter of which was 
inspired by prior work on paired programming for introductory 
computer science [56]. In two-player mode, one student 
assumed the role of the “driver,” who controlled the game using 
the keyboard and mouse, and the other student assumed the role 
of the “navigator,” who provided guidance and feedback. They 
collaboratively solving the programming challenges. Students 
switched roles at pre-defined checkpoints within the game. We 
posit that paired students shared problem-solving strategies and 
skills while collaboratively playing the game. Therefore, the 
same sequence of problem-solving logs was associated with 
both students in every pair. 

A. Assessments and Instruments 
Among the assessments and instruments administered during 

the studies, we utilized (1) a self-efficacy survey, (2) a computer 
science attitude survey, and (3) a content knowledge 
assessment. We use students’ responses on these instruments 

Fig. 3. An example of binary representation learning activities, in which 
there are three flip actions, step (a), step (b), and step (c). 

Fig. 2. (Left) A lift device with an existing program in the Digital World level, and (Right) the programming interface displaying the lift’s program. 
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and their assessment scores to train DEEPSTEALTH’s evidence 
models.  

Self-efficacy is the belief in one’s capabilities to mobilize the 
motivation, cognitive resources, and courses of action needed 
to meet given situational demands [57]. We measure student 
self-efficacy because previous work has demonstrated that self-
efficacy predicts several important work-related outcomes 
including job performance [58]. Student self-efficacy was 
measured using the new general self-efficacy (NGSE) scale 
[28]. Empirical studies suggest that NGSE achieves higher 
construct validity than Sherer et al.’s general self-efficacy scale 
(SGSE) [59], while the NGSE scale (8 items) is shorter than 
SGSE (17 items).  

The computer science attitudes (CSA) survey measures 
attitudes towards computer programming and computer science 
[29]. The instrument consists of five subscales measuring 
confidence in learning, usefulness, effective motivation in 
computer science and programming, attitude towards success in 
computer science, and attitude on computer science as a male 
domain. In this work, students completed the three subscales 
mapping to confidence in learning, perceptions of usefulness, 
and effective motivation in computer science and 
programming. 

Finally, students completed knowledge assessments 
developed by the research team to assess how well students 
mastered concepts in the computational challenges within 
ENGAGE [60]. We focus on pre- and post-test scores for the 
items that specifically assess knowledge of computational 
concepts covered in the Digital World level centering on binary 
representation. Figure 4 shows example questions in the 
knowledge assessment.  

B. Participants 
We analyze interaction data from 191 students (101 males, 

88 females, 2 unreported) from a teacher-led deployment of 
ENGAGE in four public middle school classrooms. Students 
achieved improvements in content knowledge covered in the 
Digital World level. A paired t-test comparing pre-test 
(M=0.44, SD=0.21) to posttest (M=0.60, SD=0.25) indicated 
that students’ learning gains were statistically significant with a 
sizable effect size, t(184) = 12.18, p < .001, d = .70, where 185 
out of 191 students took both the pre- and post-knowledge tests. 

Of the 191 students, 182 students completed all of the binary 
representation learning tasks and pre-external learning 
measures (i.e., NGSE, CSA, knowledge assessment) 

investigated in this work. Although it is possible to deal with 
student data with missing values using imputation techniques 
(e.g., mean imputation) as in [8], [16], we only use data from 
the 182 students with all valid scores and game interaction logs 
to minimize any potential noise that might be introduced. 

V. DEEPSTEALTH: DEEP LEARNING-BASED  
STEALTH ASSESSMENT FRAMEWORK 

Stealth assessment based on evidence-centered design 
utilizes three models:  

• Task Model: We use 11 binary tasks from the Digital 
World level, the objective of which is finding the binary 
representation that matches the base-ten number specified 
in an in-game device’s program. 

• Evidence Model: Observed sequences of actions in the 
game reveal evidence of student competencies. A generic 
feature set is used to represent actions. For ENGAGE, there 
are 19 possible actions, and thus 19 distinct features are 
used to represent each action using one-hot encoding, a 
technique that represents a categorical variable with a 
binary vector. In addition to the game interaction evidence, 
students’ five pre-learning measures on the knowledge 
assessment, self-efficacy, and three measures of computer 
science attitudes are utilized as evidence (i.e., 24 features 
in total). The evidence model informs the competency 
model in order to update the stealth assessor’s measure of 
student competencies. 

• Competency Model: We examine one competency model 
variable with respect to students’ overall knowledge about 
binary representation, where the actual labels for their 
competency levels are acquired from students’ post-test 
performance on the content knowledge assessment. 

As noted above, students interact with 11 binary-lock/lift 
challenges in ENGAGE, which are defined in the task model. 
Game interaction logs featuring the series of student behaviors 
taken to solve these challenges were recorded to a remote 
MySQL database for post-hoc analyses [61]. Interactions with 
the tasks reveal action-level evidence about various 
competencies including one defined in our competency model.  

The evidence model processes the raw interaction log data 
and estimates beliefs about the state of competency variables 
defined in the competency model. Evidence models generally 
consists of evidence rules and statistical models [62]. Evidence 
rules produce observable, predictive features that effectively 
summarize students’ performance from work products, while 
statistical models, often designed as Bayesian networks, 
account for estimating beliefs about competency variables 
given observations.  

In prior work, we hand-authored evidence rules to create four 
features from the raw problem-solving interactions and train 
deep feedforward neural network (FFNN)-based evidence 
models [16]. The four key features derived from the evidence 
rules include the number of binary tile flips, the number of 
binary tile double flips (i.e., a binary tile flipped and then 
immediately flipped again), the number of times the device 
programs were executed, and the amount of time students spent 

Fig. 4. Two sample questions from the concept knowledge assessments. 
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in the programming interface, which appeared to be important 
for inferring one’s understanding about the concept of binary 
representations. The features were engineered based on a 
speculation that students knowledgeable about binary 
representations were more likely to show fewer binary tile flips, 
fewer program executions (i.e., they found solutions with fewer 
attempts), and interpret programs written on the programming 
interface more quickly. Similarly, for students who gradually 
learned the concept, they may have exploited double-flip 
actions to learn the weight associated with each bit in the early 
phase, but showed fewer double flips as they progressed 
through and mastered each bit’s weight.  

While manually engineered features are useful for devising 
reliable evidence models as demonstrated in [16], feature 
engineering is a labor-intensive process that requires domain 
experts’ knowledge and substantial effort. Domain experts must 
scrutinize observable sequences of interactions with given 
tasks, identify salient characteristics from the observation that 
could be useful to infer students’ levels of proficiency for a set 
of constructs, and design hand-crafted features that capture the 
identified characteristics. Further, compared to raw, observed 
interaction logs, feature engineering often fails to capture fine-
grained, sequential information in students’ learning behaviors 
by extracting aggregated, static evidence from low-level trace 
data.  

This work presents the low-level action-based generic 
feature set that can represent any type of action without being 
bound to a specific learning environment, thereby yielding 
enhanced scalability for the stealth assessment framework. In 
ENGAGE, the binary learning tasks allow 19 possible actions, 
including 11 pairing actions associated with 11 devices 
described in the task model (e.g., binary lock device in Figure 
2, Left), 5 bit-click actions (e.g., clicking a binary tile in Figure 
2, Left), two actions for operating the programming interface 
(open and close; Figure 2, Right), and a program execution 
action to run the device’s program. Thus, this action-level 
feature set is composed of 19 low-level features, where each 
action is represented using one-hot encoding, which is an 
encoding process that produces a bit vector whose length is the 
size of the vocabulary of tokens (i.e., 19 actions), where only 
the associated token bit is on (i.e., 1) while all other bits are off 
(i.e., 0). 

To effectively learn from a sequence of raw action features, 
we investigate a recurrent neural network (RNN) based 
evidence modeling approach. RNNs are a type of deep neural 
network particularly designed for sequence labeling of temporal 
data. RNNs extract patterns in sequential data and learn 
predictive features through backpropagation-based training 
techniques without human interventions. In contrast to FFNNs 
that assume a fixed length of inputs and outputs, RNNs take 
variable length sequential inputs while predicting a single 
output or sequential outputs depending on the task. 

Finally, for the competency model, we consider a single 
competency variable that aggregates students’ understanding of 
binary representations informed by their post-test score on the 
content knowledge assessment. Each student’s data is labeled 
with a discretized measure of post-test performance that is 

based on a tertile split (i.e., Low, Medium, or High). Thus, the 
evidence model’s task is cast as a three-class classification 
problem that infers beliefs about student competency from their 
raw low-level game trace data and pre-learning measures.  

Under this problem formulation, four machine-learning 
techniques are explored, including two deep learning-based 
models (deep feedforward neural networks and long short-term 
memory networks) and two competitive baseline models 
(linear-chain conditional random fields and naïve Bayes), 
where every method learns evidence models utilizing low-level 
action sequences represented with one-hot encoding. Because 
feedforward neural networks and naïve Bayes classifiers do not 
support time-series inputs, we adopt n-gram encoding that 
encodes the most recent n actions instead of taking into 
consideration the entire sequence of actions. Below we describe 
the two deep learning models utilized in DEEPSTEALTH. 

A. Feedforward Neural Networks Pre-Trained Using Stacked 
Denoising Autoencoders 

Deep learning is a family of machine learning techniques 
grounded in deep artificial neural networks, which are capable 
of extracting hierarchical representations by inducing multi-
level abstractions of training data [27]. Researchers have 
undertaken a rich line of investigation into how to effectively 
train deep neural networks (DNNs), including (1) 
improvements in hardware (e.g., fast CPUs, GPU acceleration, 
parallel computing), (2) increasing amounts of data including 
both labeled and unlabeled data, (3) novel neural network 
architectures along with effective optimization/regularization 
techniques, and (4) unsupervised pre-training techniques, 
among others [63]. Deep learning forms the basis for state-of-
the-art techniques for a broad range of classification tasks 
associated with computer vision, speech recognition, and 
natural language processing [27].  

An approach to pre-training DNNs leverages an 
unsupervised method called autoencoders (AEs), which aim to 
minimize the reconstruction error of the original input in a DNN 
without using labels associated with the input [64], [65]. This 
unsupervised pre-training technique helps to find a region of 
parameter space that can reach a better local optimum in a non-
convex optimization graph, without which optimizing deep 
neural networks often becomes challenging due to 
vanishing/exploding gradient issues [66].  

More formally, AEs feature (1) encoding (f) that 
deterministically maps (𝑊") an input vector (𝑥) into a hidden 
representation 𝑓(𝑥)  using a non-linear transformation 
characterized by an activation function, 𝑠 (Equation 1) and (2) 
decoding (𝑔) that maps (𝑊)) the hidden representation 𝑓(𝑥) 
back to 𝑔(𝑓(𝑥)), a reconstructed vector of the input vector (𝑥), 
using 𝑠  (Equation 2). The objective in AEs is learning 
representations (𝑊" and 𝑊)) along with two bias terms (𝑏" and 
𝑏)) by minimizing the reconstruction error between the input 𝑥 
and the reconstructed input 𝑔(𝑓(𝑥)) through backpropagation 
methods (e.g., stochastic gradient descent).  

𝑓(𝑥) = 𝑠(𝑊"𝑥 + 𝑏")                             (1) 
𝑔(𝑓(𝑥)) = 𝑠(𝑊)𝑓(𝑥) + 𝑏))                       (2) 
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As a regularized variant of AEs, a denoising autoencoder 
(DAE) performs a corruption process by injecting noise (we set 
random units to 0 such as in the dropout mechanism [67]) into 
the original input vector (𝑥 ). A DAE aims to recover the 
original uncorrupted input from the corrupted input as 
illustrated in Figure 5. In this method, the input vector 𝑥  is 
partially corrupted into x’ based on the corruption level that 
defines the probability of corrupting input units. Then, x’ is 
deterministically mapped to 𝑓(𝑥′) via an encoding process, and 
𝑓(𝑥′) is recovered to the original input x by a decoding process, 
𝑔(𝑓(𝑥.)) , by following the standard AE process. A key 
difference in DAE is that the objective function is to minimize 
the reconstruction error (L) between the uncorrupted input 𝑥 
and the decoded output based on the corrupted input, 𝑔(𝑓(𝑥.)), 
interpreted as denoising corrupted inputs.  

We induce feedforward neural network (FFNN)-based 
stealth assessors pre-trained with stacked denoising 
autoencoders (SDAEs) [65]. We adopt an approach to training 
stacked denoising autoencoders using greedy, layer-wise pre-
training. Instead of training the deep autoencoders at once, we 
construct multiple DAEs sequentially from the bottommost 
layer (i.e., input layer) to the top hidden layer, where previously 
pre-trained parameters serve to create an input for the next 
DAE. The objective of each pre-training step is to minimize the 
reconstruction error of the uncorrupted input. Once the pre-
training process is complete, we use pre-trained weight 
configurations as initial weights for the original network and 
the entire network gets fine-tuned using the supervised learning 
criterion. As a result, it has been demonstrated that SDAEs 
leveraging perturbed input data provide benefits over stacked 
AEs by effectively dealing with noisy input data utilizing 
denoising techniques and preventing weights from reaching a 
trivial solution (i.e., identity function) that could cause 
overfitting [65].  

To fine-tune SDAE-pre-trained models, the input layer is fed 
with a student’s action sequence (the number of actions to 
consider should be determined prior to training an evidence 
model) along with the external pre-learning measures, and the 
output layer is set with the student’s competency level. 

B. Long Short-Term Memory Networks 
Long short-term memory networks (LSTMs) are a variant of 

recurrent neural networks (RNNs) that are specifically designed 
for sequence labeling [68]. LSTMs have achieved high 
predictive performance in various sequence labeling tasks, 
often outperforming standard RNNs by preserving a longer-
term memory and effectively addressing the vanishing gradient 
problem [69]. LSTMs have achieved state-of-the-art 

performance in a diverse set of computational sequence-
labeling tasks, including speech recognition and machine 
translation [63].  

LSTMs (Figure 6A) feature a sequence of memory blocks. 
Each memory block includes one self-connected memory cell 
along with three gating units: an input gate, a forget gate, and 
an output gate. In LSTMs, the input and output gates modulate 
the incoming and outgoing signals to the memory cell, and the 
forget gate controls whether the previous state of the memory 
cell is preserved or forgotten. The three gating units (input gate, 
output gate, and forget gate) featured in LSTMs enable 
modeling long-term dependencies within temporal sequences 
by allowing gradient information to flow over many time steps. 

In an implementation of LSTMs, the input gate (𝑖0), forget 
gate (𝑓0), candidate value of the memory cell (�̃�0), and output 
gate ( 𝑜0 ) at time t are computed with Equations 3–6, 
respectively, in which 𝑊  and 𝑈  are weight matrices for 
transforming the input (𝑥0) at time t and the cell output (ℎ06") 
at time t-1, b is the bias vector of each unit, and 𝜎 and tanh are 
the logistic sigmoid and hyperbolic tangent functions, 
respectively: 

𝑖0 = 𝜎(𝑊8𝑥0 + 𝑈8ℎ06" + 𝑏8)                       (3) 
𝑓0 = 𝜎9𝑊:𝑥0 + 𝑈:ℎ06" + 𝑏:;                      (4) 
𝑐0< = 𝑡𝑎𝑛ℎ(𝑊@𝑥0 + 𝑈@ℎ06" + 𝑏@)                   (5) 
𝑜0 = 𝜎(𝑊A𝑥0 + 𝑈Aℎ06" + 𝑏A)                      (6) 

As described in Equation 7, the current memory cell’s state 
(𝑐0) is calculated by modulating the current memory candidate 
value (�̃�0) via the input gate (𝑖0) and the previous memory cell 
state (𝑐06") via the forget gate (𝑓0 ). Through this process, a 
memory cell decides whether to keep or forget the previous 
memory state and regulates the candidate of the current memory 
state via the input gate. The current memory cell state (𝑐0) is 
controlled by the output gate (𝑜0) to compute the memory cell 
output (ℎ0) of the LSTM block at time t. This step is described 
in Equation 8: 

𝑐0 = 𝑖0𝑐0< + 𝑓0𝑐06"                              (7) 
ℎ0 = 𝑜0	𝑡𝑎𝑛ℎ(𝑐0)                               (8) 

Lastly, we use the final memory cell output vector (ℎ0) to 
predict the class label, which is the belief of the competency 
level of the student. This step is executed in a softmax layer 
(top-right in Figure 6A), which is interpreted as a calculation of 
posterior probabilities of the possible class labels. The LSTM 
is end-to-end trainable, where all the parameters such as 𝑊, 𝑈, 
and 𝑏  are machine-learned using backpropagation through 
time.  

C. Configuring Deep Neural Networks for Evidence Models 
While the output layer of DNN models is fixed to three units 

(Low, Medium, and High) that represent students’ post-test 
performance (i.e., competency), the input layer size varies 
according to the model.  

Since FFNNs take fixed size inputs, we design an n-gram 
encoded FFNN architecture to partially capture sequences of 
actions. N-gram encoding formulates an input using the most 
recent n actions (i.e., the current action along with [n-1] 

Fig. 5. Illustration of stacked denoising autoencoders; red crosses denote 
corruption [65].  
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immediately preceding actions) by concatenating the n actions. 
In our work, each action is represented in one-hot encoding with 
24 features (19 action types + 5 external pre-learning 
measures), and thus the total number of features is 24 × n. In 
this work, we set n to 200, by which we consider the past 200 
actions to predict students’ competencies. On the other hand, 
LSTMs can deal with sequential inputs without constraining the 
input set to a static size. Thus, as illustrated in Figure 6B, 24 
input features are utilized, which consist of 19 action types (bit 
1 to bit 19) + 5 external pre-learning measures (e1 to e5), and the 
model extracts temporal patterns from the time-series training 
data.  

As in other machine learning techniques, selecting 
hyperparameters for deep neural networks often must be 
empirically determined [70]. We investigate FFNNs with two 
hidden layers exploring the number of units (256 or 512) per 
hidden layer. Further, we explore the corruption level (0.5 or 
0.75), which is fractional rate of corrupted input units during 
pre-training, for SDAEs. In a similar fashion, we explore two 
hyperparameters for LSTMS: the number of hidden units (70 or 
140) and the dropout rate (0.5 or 0.75) [67], a regularization 
technique applicable to neural networks. A grid search method 
is adopted for each of the DEEPSTEALTH models to perform 
hyperparameter optimization.  

Other than these two hyperparameters, we have fixed the 
following: (1) for FFNNs, the number of hidden layers is set to 
two, and Rectified-Linear-Unit and Softmax activation 
functions are used for hidden layers and the output layer, 
respectively, and mean squared error and categorical cross 
entropy are adopted as loss functions for pre-training and fine-
tuning, respectively, and (2) for LSTMs, we investigate a 

single-layer LSTM with the categorical cross entropy as the loss 
function. For both models, we use the Adam stochastic 
optimization method [71]. Finally, we set the maximum number 
of epochs to 100, and model training stops if there is no 
improvement in the validation accuracy rate within the last 
seven epochs. 

VI. EVALUATION 
To answer our three research questions, we conducted an 

empirical evaluation of DEEPSTEALTH. We first investigate the 
predictive performance of the four evidence modeling 
techniques, including two deep learning-based models induced 
using the DEEPSTEALTH framework. The evaluation was 
conducted using student-level ten-fold cross-validation, where 
the student split is fixed across different evidence models to 
conduct a fair comparison. Then, we explore how each of the 
sub-feature sets influence the top-performing models’ 
performance during cross-validation, and lastly we report early 
prediction capacity of the top performing models. Below, we 
briefly introduce two additional competitive baseline models, 
conditional random fields and naïve Bayes classifiers. Among 
the 182 students, 55, 51, and 76 are labeled as Low, Medium, 
and High performing students based on a tertile split, 
respectively. Thus, the majority-based baseline accuracy is 
41.76%. 

A. Baseline Approaches: Conditional Random Fields and 
Naïve Bayes Classifiers 

Conditional random fields (CRFs) are discriminative, 
undirected graphical models, which are specifically designed to 
learn interdependencies among output variables for structured 

Fig. 6. (A) An illustration of an LSTM memory block that features three gating units and a memory cell [68]. (B) An illustration of how an original input (inputt) 
is transformed to a trainable format (xt). The discrete action variable, at, is one-hot encoded into a 19-dimensional vector using bit 1 to 19, and then the induced 
vector is concatenated with numeric external learning measure variables (e1 to e5) to create the final input, xt [8]. 
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prediction [72]. CRFs are regarded as a sequential extension of 
logistic regression models or a discriminative analog of hidden 
Markov models [73]. As a sequence-labeling approach, CRFs 
have yielded encouraging results in a broad range of structured 
prediction tasks in natural language processing as well as 
computer vision and bioinformatics by effectively modeling 
spatial, contextual relationships characterized in data. We 
investigate linear-chain CRFs that extract flat, sequential 
patterns from a series of learning behaviors. Similar to the 
hyperparameter optimization applied to neural networks, we 
run a grid search for choosing CRFs’ hyperparameters. We 
investigate two optimization techniques between a one-slack 
cutting plane method solved using CVXOPT [74] and block-
coordinate Frank-Wolfe [75], and the regularization parameter 
(C) for both optimization techniques among {1.0, 1.5}. The 
maximum number of iterations over a dataset to find constraints 
and perform updates is set to 100.  

Naïve Bayes classifiers (NBs) are a type of Bayes network 
that uses a naïve assumption of conditional independence 
across features. The posterior probability 𝑝(𝑦|𝑋)  is 
proportional to the prior, 𝑝(𝑦), multiplied by the likelihood of 
the features, ∏ 𝑝(𝑥8|𝑦)8 . The distribution of the likelihood, 
𝑝(𝑥8|𝑦) , such as a Gaussian distribution or Bernoulli 
distribution, should be determined depending on the 
characteristics of the data. Our feature set includes (1) pre-
learning measures, which are continuous variables, and (2) 
game interaction logs, which are a categorical variable that are 
represented in a one-hot encoded binary feature vector. Due to 
this heterogeneity in the features, we discretize the pre-learning 
measure features into binary features using a median split 
obtained from the training set, and then train Bernoulli naïve 
Bayes classifiers that model both in-game actions and learning 
features. As in FFNNs, NBs utilize the past 200 actions to 
predict students’ competencies for the current action. 

B. Predictive Performance of Evidence Models 
Table II shows the results of student-level ten-fold cross-

validation results of the four computational evidence modeling 
approaches using all available features. The rows and columns 
represent the hyperparameters for each evidence model, and the 
average predictive accuracy is reported within a corresponding 
cell associated with a pair of hyperparameters. The performance 
of the four techniques are evaluated using the same data split 
per fold for a pair-wise comparison. Each evidence model infers 
students’ competencies derived from their post-test 
performance utilizing their action sequences and external pre-
learning measures. 

Results indicate that LSTM-based evidence models (number 
of hidden units: 140, dropout rate: 0.75, accuracy rate: 63.71, 
standard deviation: 4.78) outperform the other competitive 
baselines: FFNNs (number of hidden units: 256, corruption 
level: 0.5, accuracy rate: 58.80, standard deviation: 5.84), CRFs 
(one-slack cutting plane method, regularization parameter=1.5, 
accuracy rate: 61.70, standard deviation: 11.10), and NBs 
(accuracy rate: 46.63, standard deviation: 14.10) as well as the 
majority class baseline (accuracy rate: 41.76) in terms of the 
average competency prediction accuracy. Notably, the LSTM-

based models exhibit the lowest standard deviation in test 
accuracies across ten folds as well as the highest average 
predictive accuracy. 

 
TABLE II 

PREDICTIVE PERFORMANCE: AVERAGE CROSS-VALIDATION  
ACCURACY RATES OF LSTM, FFNN, CRF, AND NB MODELS 

LSTM Dropout Rate of 0.50 Dropout Rate of 0.75 

70 Hidden Units 57.19 63.22 

140 Hidden Units 57.66 63.71 

FFNN Corruption Level of 
0.50 

Corruption Level of 
0.75 

256 Hidden Units 58.80 57.14 

512 Hidden Units 55.53 53.24 

CRF C of 1.0 C of 1.5 

One Slack 60.53 61.70 

Frank Wolfe 60.53 60.53 

NB 46.63  
Majority Class 

Baseline 41.76  

 
TABLE III 

FEATURE SET-LEVEL ANALYSIS: AVERAGE CROSS-VALIDATION ACCURACY 
RATES OF THE HIGHEST PERFORMING LSTM, FFNN, CRF, AND NB MODELS 

 
External 
Measure 
Feature 

Game Log 
Feature 

Combined 
Feature 

LSTM 60.50 49.47 63.71 

FFNN 56.05 50.06 58.80 

CRF 56.67 52.75 61.70 

NB 38.00 46.77 46.63 

 

C. Feature Set-Level Predictive Performance 
To further investigate the features examined in the evidence 

modeling work, we split the combined feature set into the 
external pre-learning measure feature set and the game 
interaction log feature set, and we analyze individual predictive 
performance of the two sub-feature sets on the best performing 
LSTM, FFNN, CRF, and NB evidence model architectures 
presented in Section VI.B. This evaluation is conducted using 
the same method as in Section VI.B; we use the same student 
split in ten-fold cross-validation, but we re-train the models 
utilizing game features or pre-learning measure-based features. 
As reported in Table III, results demonstrate that the combined 
feature set yields the highest predictive performance for every 
model but naïve Bayes, while the external measure feature set 
yields a higher accuracy rate than the game log feature set for 
most of the models. 

D. Early Prediction Analysis 
Since the highest performing evidence models take 

advantage of the combined feature set, we measure early 
prediction using all the features except for NB. We adopt 
standardized convergence point (SCP) as a metric to measure 
models’ early prediction capacity [30].  

SCP is calculated by ∑ (𝑘8/𝑛8)L
8M" /𝑚, in which m is the total 
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number of action sequences, and 𝑛8  is the total number of 
actions in the ith action sequence. 𝑘8 is contingent on whether 
predictions on the ith action sequence converged to the correct 
label or not; if converged, 𝑘8  is the number of actions after 
which the stealth assessor consistently makes accurate 
predictions as in the conventional convergence point metric 
[76]; otherwise, 𝑘8 is 𝑛8 + 𝑝8, where 𝑝8 that is greater than zero 
is the penalty parameter for the ith action sequence. Thus, a 
lower value is better for this metric.  

For example, suppose we have two action sequences (𝐴𝑆Q 
and 𝐴𝑆R ) from two different students (A and B), who 
demonstrated three and four actions, respectively, and an 
evidence model’s prediction results are as follows: 

𝐴𝑆Q = 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝐶𝑜𝑟𝑟𝑒𝑐𝑡, 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 
𝐴𝑆R = 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

SCP for 𝐴𝑆Q  is 2/3 since the model consistently makes 
correct predictions after observing the first two actions, and 
SCP for 𝐴𝑆R  is (4 + 𝑝R )/4 since it does not converge to the 
correct prediction. The penalty parameter (p) should be 
determined considering the learning environments’ 
characteristics. Our stealth assessment corpus shows that a 
student’s action sequence to complete 11 binary representation 
learning tasks often takes place in one classroom period (40 
minutes). To deal with possible long-term inefficiency driven 
by learning environments with poor stealth assessment models, 
we set 𝑝8  to 𝑛8 , so that every non-converged sequence gets 
penalized to have SCP of 2.  

Table IV shows SCP results for the high-performing 
evidence models identified in Sections VI.B and VI.C. Using 
SCP with the aforementioned penalty parameter (lower is 
better), LSTM shows the best early prediction capacity 
followed by CRF. SCPs of NBs based on the game log feature 
set and LSTMs, FFNNs, and CRFs based on the combined 
feature set are reported. 

 
TABLE IV 

EARLY PREDICTION ANALYSIS: AVERAGE CROSS-VALIDATION SCPS OF THE 
HIGHEST PERFORMING LSTM, FFNN, CRF, AND NB MODELS 

 LSTM FFNN CRF NB 

SCP 86.16 104.77 92.32 122.39 

 

VII. DISCUSSION 
DEEPSTEALTH demonstrates significant potential for robust 

stealth assessment modeling. Addressing RQ1 (overall 
predictive accuracy), the evaluation reported in Section VI.B 
indicates that DEEPSTEALTH using long short-term memory 
networks (LSTMs) (63.7%) outperform three competitive 
baseline models, including the best performing feedforward 
neural networks pre-trained with stacked denoising 
autoencoders (FFNNs) (58.8%), conditional random fields 
(CRFs) (61.7%), and naïve Bayes models (NBs) (46.6%) in ten-
fold cross-validation for predicting student competency on 
binary representations.  

Addressing RQ2 (feature set-level predictive accuracy), the 
feature set-level analysis (Section VI.C) for the same dataset 

found that three of the best performing evidence models took 
advantage of all available features: the game interaction log 
features and external pre-learning measure features. For 
LSTMs, a contribution ratio calculated by a feature set-based 
model predictive accuracy divided by the combined feature set-
based model predictive accuracy indicates that the external 
measure feature set and the game log feature set contributes to 
94.96% (= 60.50/63.71) and 77.65% (= 49.47/63.71) of the total 
predictive accuracy, respectively (Table III). The external 
measure feature set’s high contribution ratio inspired us to 
conduct a correlation test between the pre-test score and the 
post-test score. A Pearson correlation test indicates that there 
was a strong, positive correlation between content knowledge 
pre- and post-test scores, which was statistically significant (r 
= .702, p < .001). This result suggests why the machine learning 
methods significantly benefit from the external measure feature 
set.  

The game log feature set yields lower predictive performance 
than the external measure feature set for the computational 
evidence models with the exception of NB. However, when the 
two feature sets are utilized together, the combined feature set 
further improves the predictive performance compared to 
models solely leveraging the external measure feature set. In 
contrast to LSTM, FFNN, and CRF, naïve Bayes could not take 
advantage of the combined feature set. Overall, NB is not a 
robust evidence-modeling approach as it achieves low 
predictive performance across all the three feature sets. In 
contrast, deep learning models and CRFs show improved 
performance by utilizing both feature sets over the external 
measure feature set, where the normalized gain for LSTM, 
FFNN, and CRF are 8.13%, 6.26%, and 11.61%, respectively. 
Game interaction logs represent a trajectory of students’ 
progressive learning process, and they provide granular 
evidence about how students have learned over their prior 
knowledge. These three models effectively learn from complex 
patterns between the external learning measures and students’ 
problem-solving behaviors, thereby achieving improved 
accuracy rates. 

Finally, addressing RQ3 (early prediction capacity), because 
run-time game and curricular adaptation are central objectives 
of stealth assessment, early prediction (i.e., making consistently 
correct assessment predictions as early as possible) is an 
important measure for evidence models. Results (Section VI.D) 
indicate that LSTM is the most reliable evidence-modeling 
technique among the set of computational approaches. It 
achieves the best early prediction score as well as the highest 
predictive accuracy using the standardized convergence point 
metric. It is interesting to observe that the rankings for early 
prediction echo the predictive accuracy results with the best 
performance yielded by LSTMs followed by CRFs, FFNNs and 
NBs, while sequence-labeling approaches involving LSTMs 
and CRFs outperform the FFNNs and NBs assuming a fixed 
length for inputs.  

DEEPSTEALTH demonstrates significant predictive accuracy 
for stealth assessment, but it is important to note two limitations 
in the current work. First, the framework is evaluated with 
evidence models that infer a single competency variable in the 
ENGAGE game-based learning environment. Evaluating the 
framework with a multi-task learning capability [77] to deal 
with a broader range of competency variables (e.g., variables 
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related to computational thinking practices and computer 
science concepts [49]) would strengthen the overall reliability 
of the stealth assessment framework. Second, the deep learning-
based framework lacks reliable methods to interpret trained 
models and explain how assessment decisions are made. More 
investigation is warranted with respect to model interpretability 
and explainability to understand deep neural network-based 
evidence models devised with DEEPSTEALTH. 

VIII. CONCLUSION AND FUTURE WORK 
We have introduced DEEPSTEALTH, a deep learning-based 

stealth assessment framework for measuring learners’ 
competency during game-based learning. Adopting a data-
driven approach based on multiple weeks of classroom studies 
within four public middle schools, we formulated three research 
questions: (1) Do deep learning-based evidence models 
outperform other competitive approaches with respect to 
predictive accuracy? (2) Which feature set among game 
interaction logs, external pre-learning measures, and combined 
is the strongest predictors? and (3) Which computational model 
achieves the best early prediction performance? Evaluation 
results indicate that long short-term memory network-based 
evidence models outperform three competitive baselines 
including feedforward neural networks pre-trained with stacked 
denoising autoencoders, linear-chain conditional random fields, 
and naïve Bayes models, as well as the majority class baseline, 
with respect to predictive accuracy and early prediction 
capacity. A further evaluation of the top three modeling 
approaches suggests that the highest predictive accuracy is 
attained when models are devised using all available feature 
sets by modeling complex, sequential patterns within students’ 
prior knowledge and in-game learning behaviors during 
interactions with the game-based learning environment. 
DEEPSTEALTH shows promise for scalability to other learning 
environments because it directly utilizes low-level action 
sequences to predict students’ competencies. Thus, in contrast 
to previous work using probabilistic graphical models, evidence 
models can be easily devised without labor-intensive feature 
engineering. 

These findings point toward three promising directions for 
future work. First, it will be important to explore other forms of 
deep neural network-based evidence models for stealth 
assessment. These include stacked LSTMs and neural models 
with a self-attention mechanism [78], [79], which may be able 
to effectively model students’ complex learning behaviors for 
stealth assessment. Alternative fusion approaches handling 
different sources of the input feature set [80] might further 
improve the predictive performance of the models as well. 
Second, in addition to this evidence modeling work, it will be 
important to investigate competency models that represent fine-
grained relationships between knowledge and skills. Finally, it 
will be important to investigate how game-based learning 
environments can most effectively leverage deep stealth 
assessment to support individualized learning experiences, 
adaptively select learning tasks scaffolding students’ problem 
solving, and support teachers in the classroom.  
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