Predicting Dialogue Acts for Intelligent Virtual Agents
with Multimodal Student Interaction Data
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ABSTRACT

Recent years have seangrowing interest in intelligent game
based learning environments featuringtual agents A key

challenge posed bincorporatingvirtual agents in gambased
learning environmentsis dynamically determiningthe dialogue
moves they should make in order to best support student®
problem solving This paper presentsa datadriven modeling
approachthat uses a Wizardf-Oz frameworkto predicthuman
wizardsOdialogue act based ora sequence of multimodalata
streams of student interactions with a gamebased learning
environmentTo effectively deal withmultiple, parallelsequential
data streas) this paper investigates two sequedabeling

techniques:long shoriterm memory networkgLSTMs) and

conditional random fieldsWe train predictive models utilizing

data corpora collected from two WizanftOz experimentsn

which a human wizard plag the role of thevirtual agent
unbeknownst to the stude@mpirical esultssuggesthatLSTMs

that utilize gametrace logs and facial action unitsachieve the
highest predictive accuracyhis work caninform the design of
intelligent virtual agents that leverageh multimodal student
interactiondata ingamebased learning environments.
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1. INTRODUCTION

Recent years have witnessadgrowing interest in intelligent
gamebased learning environmeniecause otheir potential to
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simultaneously promotestudent learning and creatngaging
learning experiences[23]. These environmentsincorporate
personalizedpedagogical furtionalities deliveredwith adaptive
learning techniqueand the motivational affordances ofdigital
games featuring believable characterand interactive story
scenariossituatedin meaningful context§l3, 23] A key feature
of gamebased learning environments is their ability to embed
problemsolving  challenge within  interactive  virtual
ervironments, which can enhance studengs@agementand

facilitate learning through customized narratives, feedback, and

problemsolving supporf18, 25]

Gamebased learning environmentsoffer  considerable
opportunities for implementing virtual agents by delivering
visually contextualized pedagogical strategidg]. Intelligent
virtual agents havéeen showrto deliver motivational benefits,
promote problersolving, and positively affect students®
perception oflearning experiense[14]. Virtual agentsplay a
variety of roles in interactive learning environmernitgcluding
intelligent tutors, teachable agerdsdlearning companiongl].

A key challengein developing intelligent virtual agens is
devisng accurate predictivemodels thatdynamically attune
pedagogical strategies to individual studammgevidencefrom
student® interactions with the learning environmenev®us
research hafcusedon whento intervendg21] and what types of
dialogue moves to make during students® probigoiving
activities[3] to provide supporin a timely, contextually relevant
manner. Selecting appropriate pedagogicalialogue moves is
critical [24] because failingo provide effective feedback may
leadto decreased learning instudentexperiencing boredorfi],
lead a studentwho is confusedo becomedisengagé [10], or
negativelyimpact the outcome of dialogsif5].

Much of the previous workin this line of investigationhas
addressed this challenge through computatipnahodeling
agentsQlialogue acts, the underlyingintention (e.g., greeting,
question, suggestiorf the utterancs, by utilizing sequences of
actionswithin learning environmentas evidencé2]. The current
work builds on thishy examining multimodal data streamvhich



can providerich evidence of students® cognitive and affective this paper is the first tinvestigatedialoguemove classification
statesjn addition to evidence captured from game trace logs. To usingLSTMs and CRFghattake as inpusequentiamultimodal
effectively deal withthe granularsequential data irparallel data streas) which canserve as the foundation for guiding the
multimodal data streash we investigate two sequence labeling dialogue of intelligent virtual agents in gantsased learning
techniques:a deeplearning techniquelong shoriterm memory environments

networks (LSTMs)[11]; and a competitive baseline approach,
conditional random field¢CRFs)[26]. This work is inspired by
therecentsuccess of LSTM# dealing with lowlevel data(e.g.,
speech signalg, and particlarly by their stateof-the-art
performance in speech recogniticlasks [16]. Additionally,
hierarchical representation learning supported dgep learning
providesadvantage over other machine learning techniquss
avoiding the need fdaborintensivefeature engineerinf.6].

Our sequence labelinmodek are evaluated with211 dialogue
acts made by human wizards who interacted with 11 students
playing CRYSTAL ISLAND, a gamebased learning environmefur
middle schoolmicrobiology [23]. The interactio data include
game trace logs, facial action units7] processedrom facial Figure 1. The CRYSTAL ISLAND game-based learning
video recordings, and galvanic skin responses, all of which aregnvironment.

utilized as input features for devising predictive modélgzards

used predesigned utterances, which they selected from menus3  CRYSTAL ISLAND

organized by dialogue act. Each selected utterance was the
delivered to the stud¢ via speech synthesi8Vizards could
observe the studentse, gaze, game screen, and voideile
selecting dialogue movedbut facal action units, galvanic skin
responses, and game trace logs were not directly accedsible.
hypahesize that thesenobserved multimodal datireamsserve

as proxes for the wizards@ialoguedecisionsand examinethese

as explanatory variableso predictthe next dialogue adhat a
human wizard might choose.

"Bver the past several years, our lab has been develGpEyAL
IsLanD (Figure 1), agamebasedearning environment for middle
school microbiology[23]. Designed as a supplement to classroom
science instructionCRYSTAL IsLanDOs curricular focus has been
expanded to include literacy education based on Common Core
Stae Standards for reading informational texts. The narrative
focuses on a mysterious illness afflicting a research team on a
remote island. Students play the role of a visitor who is drawn into
a mission to save the team from the outbreak. Students expéore t

LSTM and CRFmodebk are devisedutilizing subsetsof the research camp from a firgerson viewpoint, gather information
parallel multimodal data streamStudentlevel crossvalidation about patient symptoms and relevant diseases, form hypotheses
studies indicatehat LSTMsutilizing game trace logs and facial ~about the infection and its transmission source, use virtual lab
action unis outperform both CRFs and the majority ctassed equipment and a diagnosis worksheet to record their findamgs,

baseline with respect to predictieecuracy Further, we find that ~ report their conclusions to the campOs nurse.
the LSTM model effectively takesadvantage of multimodal data
streamsandit mosteffectively utilizes both game trace logs and
facial action unit datalThe results suggest that LSTiodek can
serve as the foundation fofatbgue act modeling fointelligent
virtual agens that dynamically adaptdialoguesto individual

Extending the previous edition of CRYSTAL ISLAND, we
incorporated grototypevirtual agentinto the gamdo investigate
both affective and cognitive influences on students® learning
processes This virtual agent a young female scientistamed
Layla (Figure 2) was designed as a ngaer mentor who

students. supports the studettirough dialoguéased interactions
2. RELATED WORK
Recent work in gambased learninghas explored a broad

spectrum of subject matteranging from computer scieng&8]
andlanguagedo cultural learning[13]. Narrativecentered learning
environmentswhich provide narrative adptation for individual
students in the context of intelligent gaim&sed learning, have
been found to deliver experiences in which learning and
engagement are synergisi8, 23] Student interaction data from
gamebased learning activities has provided a rich sowte
information from which studentsO development of competencies
[18, 25] and progresstowards learning goal419, 20] are
diagnosed Gamebased learning environments calso be
populated by virtual agents, whose design should consider Figure 2. CRYSTAL ISLAND virtual agent.
students@ognitiveand affective statdg, 14].

In CRyYsSTAL IsLANDG virtual world, students interactwith

In parallel work on tutorial dialogue, it has been found that learning resources such as books and posters, as wéthason
tutorial planning can take into account studentsO cognitive andplayer charactershrough informative mentbased dialogue. As
affective stateg7]. Planning dialogue moves and inducing turn  students progress through the game, they collect evidence and
taking policieshave been widely examined supervised learning  record their hypotheses in a Odiagnosis worksheet.O That stude
(e.g., hidden Markov model$2], directed graph repsentations meets Layla when the diagnosis worksheet is opened (R2yure

[5]) and reinforcement learniri§, 21]. The approach described in



With LaylaOs visual and speech synthesis prototypes in place, bl 2 Galvanic Skin Response
no adaptive dialogue model implemented yet, a Wizard of Oz Gayanic skin response (GSR) is a measurement of the level of

system was implemented &mablea human operator to provide
the intelligence behind LaylaOs dialogud/hen the human
QuizardOdecidesto initiate a dialogue moveshechoosesone of
six dialogue act§Table 1)from a menunterface, therselects a
dialogue utteranciom the actOset of predetermined utterances
Layla then speaks the utterance through speech synthidss
selection of dialogue movesas informed by the literature on
dialogue systems$or learning[8], as well as experience with a
recent study conducted in the same middle s¢hiwathich pairs
of middle school students interacted WitBRYSTAL ISLAND
together

Three wizardscontrolled LaylaOs dialogue in the game fram
room separatedrom the students, whileobservingthe students
through a live feed that included the studeri&Oml videq the

conductance across the surface of the skin, which is driven by the
activity of the sympathetic nervous systeaSRreflects a variety
of cognitive and affective processes, includiagention and
engagemeni6, 22]. In addition, thepresence of significant spikes
in studentsOGSR in response to certain evendsiring a
technologysupported learning activithas beenfound to be
associated with learnidiinked emotions and learning momes
[12]. In this study, EmpaticaE4 bracelets on both wrists were
used for GSR recording. These bracelets were chbeeause,
unlike palmar andifigertip GSR recording devicethey do not
restricttherange ofhand movementeeded to play the game

4.3 Facial Action Units

Facial expressions have been shown to have a relationship-to self

student®s gaze superimposed in real time over a video capture &fPorted and judged leamimgntered affective statefd, 17]

the game screen, and the studentOs voice as recorded throug

headset microphone

Data was collected itwo studies implementeith the spring and
summer of 2015 at gublic middle school in Raleigh, North
Carolina. In thespring study, participats were drawrfrom an
afterschool activity, and theummer studyOs participants were
from classroom puibuts. Of the 11 students who participated, 7
were female and 4 were maleith an average age of 12 (SD =
1.1). The data corpus contains 211virtual agentdialogue acts
acrossthe students(average number of act€9.2 maxmum
number of acts: 41, and niinum number of acts: )3

Table 1. Agent’s dialogue acts and distributions of their use.

Dialogue Act | Distributions | Dialogue Act |Distributions
Greeting 58 (27.5%) | Suggestion | 51 (24.2%)
Question 35 (16.6%) Feedback 8 (3.8%)

Acknowledge 43 (20.4%) Affective 16 (7.6%)

ment ' Statement )

4. MULTIMODAL DATA

During the students® interactions WERYSTAL ISLAND, both
game actions angarallel sensordata were captured to collect
both cognitive and affective features of students® experience.
the following subsections, we descritiee three types of input
datinvestigated in the present work.

4.1 Game Trace Logs

Studens play CRYSTAL ISLAND using a keyboard and mouse
Student actions areodiged for gameplay analysis and game
telemetry [20]. In the presentmodeling work, seven key
categoriesof actions are examinednoving around the camp,
using the laboratoryOs equipmémttesta hypothesis about the
disease andts source, conversing witmonplayer characters,
reading complex informational texts about microbiology congepts
taking embedded assessmemtssociatedvith the informational
texts interactingwith the diagnosisvorksheet and experiencing
dialogue moveswith the virtual agent The total number of
distinct actiongs 143.

A total of 4,117 studentactions werelogged along with 211

dialogue act by the virtual agentin the training dataStudents

took an average 0f9.5 actionsbetweentwo adjacentdialogue

acts, where the minimum and maximum number of actions
between any two adjacentdialogue ac are 1 and 217,

respectively.

HPLevious work has also found that facial expressions during

learning can help predict a studentOs learning gains, frustration
and engagemerj27]. Facial expressions can be examined-non
invasively through video recordings taken during a studentOs
interaction with a learning environment.

In this work, we observe facial expressions by analyzing a
studentOdacial action units, which gature movement of the
muscles in the facé=acial action units are grounded irefacial
Action Coding Systemwhichwas devised to make observations
about facial movementfd]. In this study, facial videos were
recorded via a webcam and analyzed uSiA€ET, ax automated
system devised for tracking facial action untiecause it allows
for frameby-frame trackingn the facial videowithout the time
intensive effort ofhumantaggng facial action units.FACET is
the next generation of th€omputer Expression Recognition
Toolbox [17], which has beenvalidated for both adults and
children. In this study, ve consideredhe subsetof facial action
units provided byFACET (Table2). In the following section, we
describe the deep learnibgised dialogue act classifier that
utilizes these three data sources.

Table 2. Facial action units examined.

Inner Brow Raiser Upper Lip Raiser Tightener (AU23)

(AU1) (AU10)
Outer Bow Raiser Lip Corner Puller Lip Pressor (AU24)
(AU2) (AU12)

Brow Lowerer (AU4) | Dimpler (AU14) Lips Part (AU25)

Upper Lid Raiser Lip Corner Depressor | Jaw Droop (AU26)

(AU5) (AU15)

Cheek Raiser (AU6) | Chin Raiser (AU17) Lip Suck (AU28
Lid Tightener (AU7) | Puckerer (AU18)

Nose Wrinkler (AU9) | Lip Stretcher (AU20)

5. LSTM-BASED DIALOGUE MOVE
DECISION MODEL

Long shortterm memory networks (LSTMs) have demonstrated
significant success in dealing withseries of raw signalsuch as
speech, vyielding statef-the-art performance in speech
recognition task$16]. This inspires our workwhich deals with
low-level sensor data such as GSRs dadal AUs. In the
following subsections, we present a higkel descriptionof
LSTMs [11], introduce how multimodal input datare
synchronized and encoded into a trainable format, and describe
how the LSTMbased dialogue moverediction models are
configured.



5.1 LSTM Background

LSTMs are atype of gatedrecurrent neural network specifically
designed for sequence labeling on tempaata. LSTMs, like
standard recurrent neural networkake the approachf sharing
weights across layers at different time stepSTMs feature a

were triggeredin the game wheneer the actions described in
Section 4.1 were performed.

In contrastto GSR or AUs, which have continuous values, the
game trace log§GAME) consist of discrete indices for specific
actions,indexedl to 143 To represent actions in a vector format,

sequence of memory blocks that include one or more- self e empoy the one-hot-encoding technique, in whicta bit vector

connected memory cells along with three gating uffif§. In

whose length is the total number of actiohd3in this work) is

LSTMs, the input and output gates modulate the incoming and created while only the associated action bit is on (i.e., 1) while all
outgoing signals to the memory cell, and the forget gate controlspther pits are off (i.e., 0). Once the vector representations

whether the previous state of the memory cell is remembered ofGAMEs are created, the next step is to synchronize the three data
forgotten. This structure allows the model to preserve gradien representations into an integrated representation.

information over longer periods of tinfil].

In theimplementation oL STMs investigated herethe input gate
(1)), forget gate!(), and candidate memory cell stafg) @t timet

are computed by Equations £13), respectively, in which? and

U are weight matrices for the input,f at times and the cell
output {,_,) at times1, b is the bias vector of each unit, and
andtanh are the logistic sigmoid and hyperbolic tangent function,
respectively.

NG
f|| O'!!!!!.
n!

! (1)
1) 2
PE LI L, 11 3)

To keep the length of data sequencesmanageablewhile
preservingkey gameactions we synchronize the multimodal data
based on the gae trace logsAll GSR andAU datacollected
betweenany two adjacentgameactions are transformed into two
vectors, using théollowing method:

¥ Vector 1:(75th percentileminus 50th percentile)per feature
across althe datapoints betweetthe two adjacentctions

¥ Vector 2: (50th percentileminus 25th percentile) per feature
across all the data points between the &adacentactions

We hypothesize thathesetwo quartilebasedvectorscan capture
variance of signalsvithin an interval while effectvely avoidng

Once these three vectors are computed, the current memory cell%tners smootling out individual differencesand keepinghe

state is updated to a new state) (by modulating the current
memory cellstatecandidate value'Y) via the input gate!() and
the previous memory cell staté, (;) via the forget gate!().
Through this process, a memdipck decides whether to keep or

number ofinput features(183 or the sum of 143 for GAME, 38
for AU, and 2 for GSR) small enough éfficiently trainLSTMs.
Once these two vectoere createdor the GSR streamand for
each AU, the vectorsare concatenated to the game trace log

forget the previous memory state and regulates the candidate ofector.

the current memory state via the input gate. This stepsisritbed
in Equation (4)in which! denotes elememise multiplication
(AR PR 4)

! Iy
The output gate!() calculated in Equatior{5) is utilized to
compute the memory cell output, | of the LSTM memory block
at time¢, modulatingthe updatedell state [,) (Equation 6):

BRI (5)
b gl (6)
Once the cell output () is calculated at time, the next step is to
usethe computed celloutput vectors to predict the label the
current training example. Fahe dialogue move decision model
we use the final cell output vect@r,), assuming thdt, captures
long-term dependencies from the previous time steps.

5.2 Data Encoding for Dialogue Move
Decision Model

5.3 LSTM Model Configurations for Dialogue

Move Decision

Prior to training LSTMsthe hyperparameters of the modehsist

be determined LSTM hyperparameters have oftbaenexplored
using grid search or random search settingsthe process of
minimizing validation errors[20]. We adopt the grid search
approach to empirically find an optimal configuration for a set of
hyperparameters. In this work, we consider two hyperparameters:
the number of hidden units for LSTMs among {32, 64} and the
dropout ratg16], a model regularization technique, among {0.4,
0.7}. Both hyperparameterbave significantinfluence on the
performanceof deepneural network§l1, 20]

In addition to LSTMwide hyperparameters, this work also

analyzegheisolated impacts of multimodal data sources. In order
to perform this analysis, we examine all possible combinations of
features, generating the following seven input feature sets:

Each data stream from a suite of multimodal interaction data is ofgalvanic skin response§&ER9, facial action units (Ald), game

a sequential form.Because these datainclude fixed-rate
recordings(e.g., facial action unitsand galvanic skin responses
with rates that differ between streams, as welhagameaction
driven recordingge.g., game trace logs)ith no set ratethe first
step of data encoding is synchromg input data across
modalities.

We obtained from each student two series of galvaskin
responses (GSRs), one each forlgfeandright hand,as well as
19 facial action unitsAUs). Inthe modeling work reported here

trace logs(GAMEs), GSRs andAUs, AUs andGAMEs, GSRs
and GAMEs, and all three data sources. The dimension of a
feature set is decided by summing up the dimessmithe
featuregsee Section 5.2hat comprise the feature set.

In addition tothe hyperparameters @&xined in the grid search,
we apply a fixed value to the following hyperparameters for
LSTMs: employing a softmax layer for classifying given
sequences of interactions, adopting riiatch gradient descent
with a mini-batch size of 32, utiling categorichcross entropy

only the GSR information from the subject®s dominant hand isfor the loss function, an@mploying a stochastic optimization

utilized, so GSRs representethy a onedimensional vectorAUs
are representely a 19dimensional vector space per time stamp.
GSR andAUs were logged with thirequendes of approximately
4Hz and 30 Hz, respectively. Game traces were recordexkass

method. The training process stops early if the validation score
has not improved within the last 15 epochs. In this work, we
evaluate our modelasing studentlevel leaveoneout cross
validation, and so in each fold, 1 studdstata is used for tasg



(completely hidden) out of 11 students, while 8 stud@atsl 2
studensOdata are utilized as the training and validation set,
respectively. Finally, the maximum number of ep®és set to 100.

6. EVALUATION

To evaluate the proposed LSThhsed dialoguact classification
(cast assix-class classification)we searcHor an optimal set of
hyperparameters through cresdidation in the previously
discussedyrid search setting, anthen perform featurset level
predictive performance analyses based on the
hyperparameters. Additionally, we compasach LSTM-based
computational model ta competitive approach based on lirear
chain conditional random fields (CRH2p6] as well asa majority
class baseline usintje same crosgalidation splitfor a pairwise
comparisonCRFs are trained using the Ble€loordinate Frank
Wolfe optimization technique [15], and we adjust the
regularization parametefor the optimization techniguamong
{0.1, 0.5, 1.0} to find optimal CRFs as we do in LSTMs.

Table 3 presentdeaturesetlevel crossvalidation resultsLSTMs

with the hyperparameter configuration of 64 hidden units and 0.7
dropout rateachieve the highest predictive accuracy (34,18ad
CRFs trained with the regularization parameters of 0.5 achieved
the second highest accuracy (32.2%Je use raw correct and
incorrect prediction count® calculate accuracy rates rather than
reporting foldbased averaged accuracy ratesan effot to avoid

the potential for skew brought on by the wide variation in the
number of data pointgerstudent (min: 3max: 4J.

Table 3. Student-level leave-one-out cross validation results
across feature sets (64 hidden units and 0.7 dropout rate for
LSTMs and 0.5 regularization parameter for CRFs).

LSTMs CRFs

GSRs 28.0% 19.9%

AUs 21.8% 25.6%
GAMEs 29.4% 32.2%
GSRs/ AUs 26.1% 22.3%
AUs / GAMEs 34.1% 30.8%
GSRs/ GAMEs 29.9% 29.4%
GSRs / AUs /| GAMEs 31.3% 27.0%

In the evaluation, LSTMs that achieve the highest predictive
accuracyutilize AUs andGAMESs (LSTMaucame), the accuracy
of which constitutesa 43.9% marginal improvement over the
baseline accuracy (23.7%lNote that the baseline accuracy is
different from Tablel, because it is influenced by the random
split made in cross validatioWe conduatd a Wilcoxon signed
rank, a norparametric statistical test for two related samptes,
comparecrossvalidation results between the LSEKMsamve and
the majority class baseline per fold. The tdstds a statistically
significant difference between LSTMcave and the baseline
(Z=-2.25, p=0.024). The difference betweenLSTMay,came and
the best performing CRKp=0.67) and betweethhe CRFs and the
baseling(p=0.099 are not statistically significant

It is noteworthy thatAUs by themselves do not achieve a high
predictive accuracy. This can be partially explainechdngthat

the facial action unit data stream was oftemporarily lost (a
vector filled with zers is used irthis casefor the missingdata),
usuallywhen the subjectOs face was not properly situated within
the camera screen. It is surprising, however, to seeé#rtally-
missingAUs synchronized witlsAMEs datahelpedimprove the
prediction of thenextvirtual agentdialogueactby outperforming
GAMEs models Z=-1.71,p=0.088) as well a®\Us models Z=-
2.24,p=0.025).

The LSTMauicame©Os outperformance might beplained bythe
information available to the human wizards they chose
dialogue acts: thewere able to watch the subjectOs game play as
well asfacial expressions during the interaction with the game,
which togetherpotentially influenced the dialogue decision©n

the other hand, th&Us likely characterizegects ofthe subjectOs
affective statesand they cawontribue to the improved predictive
performance yergistically with GAMESn LSTMs.

chosenOverall, GAMEs serve as a strong predictor relative to other

independent data sourceSAMEs models (29.4%) outpenfm
the other two independent models induced utilizing GSRs (28.0%)
or AUs (21.8%); in the meantimeachfeature set that leverages
GAMEs in addition to other data sources outperforthe
corresponding feature set without tBAMEs (e.g., GSRSAUSs,
and GAMEs (31.3%) vs. GSRs anilUs (26.1%)). Sequences of
actions in theGAMEs may reflectstudensOunderlyingcognitive
statessuch as plans, goals, and knowledge during proisielring
activities [19, 20} which wizards attempted to address through
their dialogue act choices.i expected that LSTMXapacity for
hierarchical feature abstracti@nablesthem to recognize these
high-level patterns from lovlevel action sguences.

It is interesting to observthat GSRs by themselves outperform
the baselinebut incorporating GSRs with AUs and GAMEs
(31.3%) does not outperform LSTMuycave (34.1%) Although
much of the previous researdtas usel GSR data streamas
evidence ér modeling humans® affective and cognitive states
[22], the findings of the study presedt here suggest that GSR
collected using wrist sensamgay not behe mostinformativedata
source for predicting a humanoperated virtual agentOs next
dialogue act, particularly when other data souscesavailable

7. CONCLUSION AND FUTURE WORK

Dialogue modeling is acritical functionality for pedagogically
adaptivevirtual agents This paper has presented two sequence
modeling approaches to classifying human wizardsibgue
moves when utilizing multimodal observation sequence®oth
conditional randonfields (CRFs)and long shofterm memory
networks (LSTMs) have demonstrated significatbmise as
effective modeling techniqse on the sequential, parallel
multimodal datafrom game trace logs, galvanic skin response,
and facial action units. Bot@GRFsand LSTMs outperformthe
majority classbased baseline with respect to predictive accuracy
while LSTMs achieve the highest predictive accurdegature
level analysesof LSTMs suggestthat even incompletefacial
action unit data can augmehSTMsOpredictive performance
along with game trace logs, while game trace logs serve as strong
predictor in both computational approach&kng with achieving

a substantialimprovementin the use ofsequence labeling
techniquesthis work suggestsa number ofdirections forfuture
work.

First, it will be important to extend the curremhodels to
determinethe timing ofdialogueacts Togetherwith the current
work, this will further enhancethe potential capaciy for
intelligent virtualagens to provide adaptie pedagogical support
Second it will be important toexaminethe relationships between
studentsO cognition and affasperceived by human wizargsnd
to investigate howthey influencewizardsCdialogue decision
making. Becausemultimodal interaction data may reflect
studentsO afféet and cognitive states identifying the
relationship between student models and dialoguecactguide
the design of advanced tutorial dialogue management capabilities
for pedagogical agents.
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