
 
 

Multimodal Goal Recognition in Open-World Digital Games 

Wookhee Min1, Bradford Mott1, Jonathan Rowe1, Robert Taylor1,  
Eric Wiebe1, Kristy Elizabeth Boyer2, James Lester1 

1Center for Educational Informatics, North Carolina State University, Raleigh, NC 27695 
2Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32601 

1{wmin, bwmott, jprowe, rgtaylor, wiebe, lester}@ncsu.edu, 2keboyer@ufl.edu 
 
 
 

Abstract 
Recent years have seen a growing interest in player model-
ing to create player-adaptive digital games. As a core play-
er-modeling task, goal recognition aims to recognize play-
ers’ latent, high-level intentions in a non-invasive fashion to 
deliver goal-driven, tailored game experiences. This paper 
reports on an investigation of multimodal data streams that 
provide rich evidence about players’ goals. Two data 
streams, game event traces and player gaze traces, are uti-
lized to devise goal recognition models from a corpus col-
lected from an open-world serious game for science educa-
tion. Empirical evaluations of 140 players’ trace data sug-
gest that multimodal LSTM-based goal recognition models 
outperform competitive baselines, including unimodal 
LSTMs as well as multimodal and unimodal CRFs, with re-
spect to predictive accuracy and early prediction. The re-
sults demonstrate that player gaze traces have the potential 
to significantly enhance goal recognition models’ perfor-
mance. 

Introduction   
With the objective of creating player-adaptive games that 
are dynamically customized to individual players, player 
modeling is becoming the subject of increasing attention. 
Player modeling aims to identify players’ changing cogni-
tive and affective states during gameplay. In addition to 
player behaviors and gameworld events, player modeling 
may also be able to leverage multimodal sensor data cap-
turing players’ verbal behaviors, non-verbal behaviors, and 
physiological signals (Yannakakis et al. 2013). A wide 
range of player-modeling tasks have been investigated, 
including player affect modeling (Martínez, Bengio, and 
Yannakakis 2013), plan recognition (Bisson, Larochelle, 
and Kabanza 2015), intent recognition (Min et al. 2016a), 
and experience estimation (Burelli, Triantafyllidis, and 
Patras 2014). Player modeling has broad applications in 
interactive narrative (Riedl and Bulitko 2013), game design 
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(Yannakakis et al. 2013), dynamic game balancing (Lopes 
and Bidarra 2011), procedural content generation (Shaker, 
Togelius, and Nelson 2016), and personalized tutoring in 
educational games (Mott, Lee, and Lester 2006). 

Open-world digital games provide players with self-
directed gameplay by allowing free exploration of expan-
sive gameworlds in which players choose their own paths 
to achieve their goals (Squire 2008). However, the high 
degree of autonomy granted to players poses significant 
challenges to game designers who have to design coherent 
storylines and gameworld events (Min et al. 2014; Riedl 
and Bulitko 2013). Player modeling addresses this chal-
lenge in open-world games by supporting the creation of 
tailored game content attuned to individual players’ cogni-
tive and affective states.  

As a primary focus of player-modeling research, goal 
recognition has been the subject of growing attention 
(Harrison et al. 2015). Player goal recognition is the task of 
dynamically identifying the high-level objectives that a 
player is attempting to achieve based on a variety of evi-
dence that is captured during interactions with a game. 
Goal recognition in open-world games exhibits significant 
uncertainty: there are a vast number of possible ways to 
achieve goals, and players may perform exploratory ac-
tions, instead of taking focused goal-directed actions, to 
familiarize themselves with the gameworld (Ha et al. 
2011). This characteristic of open-world digital games 
yields idiosyncratic action and goal achievement sequenc-
es. Thus, it is critical to devise goal recognition models that 
robustly handle uncertainty. 

While player modeling based on multimodal data such 
as facial action units (Hoegen, Stratou, and Gratch 2017) 
and skin conductance (Martínez, Bengio, and Yannakakis 
2013) has been the subject of growing interest, and some 
work outside of digital games has investigated multimodal 
intent recognition, such as using hand motions and gaze 
data in hand-eye coordination tasks (Razin and Feigh 
2017), there has been limited exploration of multimodal 



data for goal recognition in digital games. In this paper, we 
present a multimodal goal recognition framework for open-
world digital games. To evaluate the effectiveness of mul-
timodal data for goal recognition, we investigate players’ 
real-time gaze traces along with game event traces, and 
compare multimodal goal recognition models to those in-
duced utilizing only game event traces. We devise goal 
recognition models using two machine learning techniques 
that have demonstrated significant success in many se-
quence-labeling tasks, long short-term memory recurrent 
neural networks (LSTMs) (Hochreiter and Schmidhuber 
1997) and conditional random fields (CRFs) (Lafferty, 
McCallum, and Pereira 2001). Our prior work has shown 
that LSTM-based goal recognition models outperform 
competitive baseline models, but these models have exclu-
sively utilized gameplay trace data (Min et al. 2016a). In 
this work, we hypothesize that player gaze traces represent 
an external manifestation of players’ goal-directed cogni-
tive processes and that multimodal LSTM-based goal 
recognition models outperform baseline approaches. 

Related Work 
Recognizing users’ goals and plans holds great promise for 
increasing the effectiveness of user-adaptive environments. 
Plan recognition (Sukthankar et al. 2014) is often formu-
lated as a generalized task of goal recognition because it 
focuses on inferring plans and goals of observed agents. 
Plan recognition approaches often require a plan library 
consisting of all potential agent behaviors to be explicitly 
provided (Bisson, Larochelle, and Kabanza 2015) or they 
adopt a planning technique assuming close-to-rational 
agents (Baker et al. 2009; Ramírez and Geffner 2011). We 
adopt a corpus-based, statistical goal recognition approach 
that is well suited to the characteristics of open-world 
games, in which players take exploratory actions in expan-
sive, virtual gameworlds (Blaylock and Allen 2003; Min et 
al. 2016a). 

Recent work on player modeling has investigated mul-
timodal data sources, including body movement (Burelli, 
Triantafyllidis, and Patras 2014) and head movement 
(Shaker et al. 2013) for player experience estimation, facial 
expressions for opponent modeling (Hoegen, Stratou, and 
Gratch 2017), and physiological signals such as skin con-
ductance and blood volume pulse for player affect model-
ing (Martínez, Bengio, and Yannakakis 2013). However, 
multimodal data sources have not been previously investi-
gated with the objective of enhancing computational mod-
els of player plan, activity, and intent recognition. 

Deep learning (LeCun, Bengio, and Hinton 2015) has 
shown particular success in player modeling. Summerville 
and colleagues (2016) investigated procedural content gen-
eration using LSTMs that learn latent play styles from 

gameplay videos, generating levels and predicted paths. 
Harrison and colleagues (2017) investigated encoder-
decoder LSTMs for AI rationalization, which translates 
agents’ state-action representations into natural language 
describing the rationales behind agents’ behaviors. Mar-
tínez and colleagues (2013) examined convolutional neural 
networks to model player affect using physiological signals 
collected during gameplay with a 3D prey-predator game.  

In our previous work, we introduced an LSTM-based 
goal recognition architecture featuring distributed action 
representations, which significantly outperforms previous 
state-of-the-art approaches based on deep feedforward neu-
ral networks (Min et al. 2014) and Markov logic networks 
(Ha et al. 2011) with respect to predictive accuracy (Min et 
al. 2016a). In this paper, we explore an LSTM-based ap-
proach to goal recognition that leverages multimodal game 
trace data. We also evaluate the performance of multimod-
al goal recognition with more granular goals than was used 
in prior work. 

Multimodal Goal Recognition Framework 
In our multimodal goal recognition framework, the inputs 
to our models consist of low-level game event trace data 
and player eye gaze trace data. The outputs are the set of 
possible goals that the player may next achieve in the 
gameworld. We describe the key components of the goal 
recognition framework, which we test using the CRYSTAL 
ISLAND game environment below. 

CRYSTAL ISLAND Goal Recognition Testbed 
CRYSTAL ISLAND (Figure 1) is an open-world educational 
game implemented with the Unity game engine for middle 
school science and literacy education. CRYSTAL ISLAND’s 
gameplay is similar to many exploration-centric games in 
which players experience the world from a first-person 
viewpoint and perform actions such as navigating from one 
location to another, discovering important items, and talk-
ing with non-player characters (NPCs). In the game, play-
ers are tasked with identifying the cause of an illness 

Figure 1: The CRYSTAL ISLAND open-world educational game. 



afflicting a team of scientists on a remote island research 
station. Due to the nature of open-world games, players’ 
behavior sequences do not necessarily represent optimal 
paths for achieving goals. Players typically make gradual 
progress toward each objective, eventually culminating in 
the final actions that solve the science mystery (Min et al. 
2016a).  

During gameplay, CRYSTAL ISLAND logs all player ac-
tions, which can be retrieved for offline data analysis. The 
data used in the evaluation of the multimodal goal recogni-
tion models was collected during a series of data collec-
tions for a study involving 140 players from two public 
middle schools in the United States. Before starting the 
game, students were given a brief overview of CRYSTAL 
ISLAND. They played the game during science class over 
three consecutive days. Prior to each game play session 
they undertook a brief calibration activity with the eye 
tracker affixed to their laptop. In the dataset, trace data 
from 118 players contain eye gaze logs as well as game 
event logs, while 22 players’ data only contain game event 
logs because there were an insufficient number of eye 
trackers to provide one for each laptop in the study. In this 
work, we use data from all 140 players regardless of 
whether it contains gaze logs because goal recognition 
models do not need to limit themselves to specific types of 
data.  

Multimodal Inputs 
In this paper, we focus on two data channels: game event 
traces and player gaze traces.  
Game event traces. Game event traces record sequences 
of actions that are triggered by either the player or an NPC, 
where the former consists of players’ in-game behaviors 
and the latter consists of gameworld events that the player 
encounters. In our previous work (Min et al. 2014), a play-
er action was encoded with five action properties: action 
type, action arguments, location, narrative state (an indica-
tion of whether a player achieved a set of pre-defined key 
milestone events within the narrative scenario), and previ-
ously achieved goals. In this work, we exclude narrative 
state because it requires domain-specific knowledge about 
a game’s narrative, which would have hindered generaliza-
bility of the goal recognition framework. The remaining 
four properties are the following:  

• Action Type: The type of current action taken by the 
player, such as “Move” to a particular location, and 
“Talk” to an NPC. Our data includes 9 distinct types of 
player actions. 

• Action Arguments: Arguments that an action type is 
associated with, such as (EX1) “Player” moves to “In-
firmary” and (EX2) “Camp Nurse” talks to “Player” 
about “Spreading Illness”, where the number of action 
arguments depends on the action type. In this work, we 

consider two arguments, the actor (e.g., Player in EX1 
and Camp Nurse in EX2) and target (e.g., Infirmary in 
EX1 and Player in EX2). Our data, in sum, includes 14 
and 180 distinct values for the actor and target argu-
ments, respectively. 

• Location: The location in the gameworld, where a cur-
rent player action is taken. It can be either a grid-based 
coordinate or discretized region within the virtual world. 
Our data includes 24 non-overlapping, discrete regions 
that decompose the eight major camp locations (Fig-
ure 2). 

• Previously Achieved Goals: An encoding of the previ-
ous goals achieved by the player. A vector initialized 
with “None” values is populated. Vector elements are 
updated sequentially as the player achieves goals. 

Player gaze traces. As eye trackers have become more 
affordable and integrated into laptops and monitors, a 
growing number of digital games (e.g., For Honor and 
Assassin’s Creed® Origins) are adopting players’ eye 
movements as game input. In the evaluation study, we used 
Tobii EyeX eye tracking sensors (Figure 3, Top), which 
use near-infrared light to track the eye movements and 
gaze points of a player. 

To collect eye gaze data during gameplay, we imple-
mented a novel gaze-target-labeling module to enable 
CRYSTAL ISLAND to automatically process eye tracking 
data at runtime and identify which objects the player is 
looking at in the 3D virtual world. The module utilizes ray 
casting to automatically detect virtual objects that the play-
er fixates upon in the 3D environment. For example, the 
bottom of Figure 3 shows a fixation on an NPC. Fixations 
are timestamped and recorded in the trace data with the 
“Look” action type, an actor argument of “Player,” and a 
target argument of the gaze object. “Look” actions are 
logged when a fixation event lasts longer than 250 milli-
seconds, a threshold that is based upon previous research 
on eye fixations during reading (Rayner 1998). In this 
manner, the gaze-target-labeling module produces a com-
pact data stream of gaze event data, and it mitigates the 

Figure 2: Map of the CRYSTAL ISLAND research camp.  



need for extensive feature engineering with coordinate-
based eye gaze data.  

Since both game event traces and player gaze traces are 
represented in action properties, we use actions to denote 
both game events and player gaze traces in the following 
sections of this paper.  

Goal Recognition Corpus Generation 
The first step in training multimodal goal recognition mod-
els is to create a goal recognition corpus. In this subsection, 
we describe input and output encodings for LSTM and 
CRF-based goal recognition models.  

A key capability provided by deep learning-based ma-
chine-learning techniques is automatically extracting hier-
archical, multi-level features from data (LeCun, Bengio, 
and Hinton 2015). Along with multiple levels of nonlinear 
transformations, deep learning techniques can represent 
data in a continuous, distributed vector space via a linear 
projection layer (Figure 4A), which is an approach that has 
been widely investigated in natural language processing 
(Mikolov, Yih, and Zweig 2013). Compared to vectors 
induced by one-hot encoding, which are inherently sparse 
and high-dimensional (i.e., the size of the vector equals the 
number of possible values for the variable), distributed 

representation-based encodings have a representational 
benefit by efficiently encoding inputs, providing computa-
tional efficiencies (Turian, Ratinov, and Bengio, 2010).  

We investigate two input representation techniques for 
LSTM-based goal recognition: (1) distributed representa-
tions learned through linear projection supported by an 
Action-property Embedding Matrix (Figure 4A) (Min et al. 
2016a), and (2) one-hot representations (Figure 4B). Since 
CRF does not support representation learning by itself, we 
use a one-hot encoding for the input representation in 
CRF-based goal recognition models.  

In the version of CRYSTAL ISLAND utilized in the class-
room study, we define 12 goals (i.e., output labels) follow-
ing (Rowe et al. 2011), where 11 goals are associated with 
the game’s nonlinear narrative and 1 goal is associated 
with players’ off-task behaviors, which are particularly 
important in educational games (Sabourin et al. 2013). 
Seven of the narrative-based goals involve speaking with 
NPCs about the spreading illness, patients’ symptoms, 
food items that may be transmitting the disease, and mi-
crobiology concepts. Two narrative-based goals involve 
(1) testing food items in the virtual laboratory, and (2) dis-
covering the food-based transmission source of the disease 
through a positive lab test. The two-remaining narrative-
based goals involve (1) submitting a diagnosis to the camp 
nurse for the first time, and (2) submitting a correct diag-
nosis that solves the mystery.  

Figure 3: (Top) Students’ gameplay. The yellow dashed box is 
the Tobii EyeX eye tracker used to capture player gaze traces. 
(Bottom) Gaze label indicated with green eye icon. The game 
logs the gaze target’s name in the game trace data. This screen-
shot was captured for demonstration purposes. Gaze labels are 
not displayed during gameplay.  

Figure 4: (A) LSTM incorporating a projection layer to learn dis-
tributed representations of actions (Min et al. 2016a). The number 
of input features for a single action is N+4, (B) LSTM with one-
hot encoded action inputs. The number of input features is 
227+13*N, where 13 is derived from 12 possible goals plus 
“None”, and 227 are the total number of possible values for the 
other action properties. In both figures, N is the number of previ-
ously achieved goals to be considered by the models. In this work, 
it is set to 12. 



Table 1 presents descriptive statistics on the goal recog-
nition corpus based on 140 players’ gameplay traces. Note 
that we use “Look” actions as predictors for multimodal 
goal recognition, but goal predictions are made only for 
non-Look actions, since unimodal goal recognition models 
do not consider Look actions. In this manner, the number 
of goal predictions between multimodal and unimodal goal 
recognition models are the same. Table 1 reports statistics 
excluding Look actions. The highest number of player ac-
tions associated with accomplishing a goal are for “Test 
Contaminated Object (Goal A),” which serves as a majori-
ty-class baseline of 19.1%. The lowest number of actions 
was associated with the “Talk to Camp Nurse (Goal B),” 
which is typically the first goal that the player accomplish-
es in the game.  

Total Number of Observed Actions 93,844 
Total Number of Goals Achieved 1,287 

Total Number of Actions Labeled as Goal A 17,916 
Total Number of Actions Labeled as Goal B 1,872 

Table 1: Descriptive statistics of the goal recognition corpus. 

Goal Recognition Model Training 
We cast goal recognition as a multiclass classification 
problem in which a trained classifier predicts the most like-
ly goal associated with the currently observed action se-
quence (Min et al. 2014). In this work, we investigate two 
sequence-labeling techniques: LSTMs and CRFs. LSTMs 
are a variant of recurrent neural networks that feature three 
gating units to adaptively maintain long-term memory in 
time-series data and alleviate vanishing and exploding gra-
dient problems in model training (Hochreiter and Schmid-
huber 1997). CRFs are discriminative, undirected graphical 
models, which are specifically designed to learn interde-
pendencies among output variables for structured predic-
tion (Lafferty, McCallum, and Pereira 2001). In this work, 
we examine single-layer LSTMs and linear-chain CRFs. 

We evaluate LSTM-based goal recognition using uni-
modal (i.e., game trace) and multimodal (i.e., game trace + 
eye gaze trace) data and different input encoding methods 
(distributed action representations vs. one-hot encoding) 
along with CRF-based competitive baselines. Both for 
LSTMs and CRFs, a set of hyperparameters are chosen 
prior to training models. We adopt a grid search method 
using 10-fold cross-validation (100 players’ data), and the 
best performing model configurations are evaluated on a 
held-out test set (40 players’ data). Hyperparameters ex-
plored for LSTMs include the two input encoding meth-
ods—one-hot encoding (one.) and distributed representa-
tions (dist.)—and the maximum length of sequences in the 
input among {50, 100}. CRFs also explore the maximum 
length of sequences in the input among {50, 100}, along 

with the maximum number of iterations to find constraints 
and perform updates for models among {10, 20, 30, 40}.  

For the LSTM models, we use an action-property em-
bedding size of 20 (only for the distributed representation 
setting), 100 hidden units, and a dropout rate of 0.75 (Sri-
vastava et al. 2014). We adopt a mini-batch gradient de-
scent with a mini-batch size of 128, and we utilize categor-
ical cross entropy for the loss function and the Adam sto-
chastic optimizer (Kingma and Ba 2015). Finally, the train-
ing process stops early if the validation score has not im-
proved within the last seven epochs. In each fold, 10% of 
the training data is used to determine early stopping, and 
90% is utilized for supervised training, while the validation 
data is purely used for calculating the validation score. The 
maximum number of epochs is set to 100. For CRFs, we 
use a structured support vector machine solver using the 1-
slack formulation and cutting plane method (Joachims, 
Finley, and Yu 2009) for model optimization and a regular-
ization parameter of 1.  

Evaluation 
To evaluate the predictive capabilities of the multimodal 
goal recognition models, two input feature sets are de-
signed: (1) unimodal, which uses game event traces only 
(U), and (2) multimodal, which uses both game event trac-
es and gaze traces (M). As noted, since goal predictions are 
made on all non-Look actions, models trained on U and M 
have the same number of data instances for both the train-
ing set (100 players containing 87 players with gaze data) 
and held-out test set (40 players containing 31 players with 
gaze data), respectively.  

We conducted 10-fold cross-validation for model hy-
perparameter optimization based on the training set. In 
cross-validation, we used the same player-level data split 
and performed a grid search on hyperparameters, and 
chose the best performing model configurations based on 
accuracy rate only. During testing, models’ early predic-
tion capacity was measured with standardized convergence 
point (SCP) and n-early convergence rate metrics (n-CR) 
(Min et al. 2016b) for hyperparameter-optimized models 
based on the held-out test set. We also calculated models’ 
accuracy rates during testing.  

SCP measures how early goal recognition results con-
verge to a correct goal within an action sequence while 
penalizing non-converged action sequences (e.g., the last 
action’s goal prediction in an action sequence is incorrect). 
In contrast to other metrics for early prediction, such as 
convergence point (Blaylock and Allen 2003), SCP 
measures early prediction capacity by calculating scores 
less than 1 for converged sequences and scores greater than 
1 for non-converged sequences. The penalty parameter in 
SCP should be determined considering the game’s charac-



teristics. Based on our corpus, the average number of non-
Look actions to achieve a goal is 73, which constitutes a 
sizable amount of gameplay time. To penalize goal recog-
nition models’ long-term inefficiency on non-converged 
sequences, we set the parameter value to “4 times the total 
number of actions in the sequence,” which results in every 
non-converged sequence’s SCP of 5.  

n-CR measures if goal predictions on the last n+1 ac-
tions in an action sequence are consistently correct. Due to 
space limitations, we only report n of 0 and 1 for n-CR, by 
which we evaluate whether goal recognizers correctly pre-
dict the goal for the last one and two actions in every ac-
tion sequence. Lower is better for SCP, and higher is better 
for n-CR.  

CRF U M LSTM U M 
{10-50} 26.30 27.88 {Dist.-50} 36.97 35.55 
{20-50} 27.71 30.64 {One.-50} 37.55 38.49 
{30-50} 28.84 31.77 {Dist.-100} 34.68 33.72 
{40-50} 30.78 29.29 {One.-100} 38.14 34.05 

{10-100} 22.33 22.98    
{20-100} 27.69 24.89    
{30-100} 28.19 32.86    
{40-100} 32.08 29.69    

Table 2: Averaged 10-fold cross-validation results on predictive 
accuracy (%). The convention used in CRFs and LSTMs is 
{number of iterations-maximum sequence length} and {encoding-
maximum sequence length}, respectively. The best accuracy rate 
per algorithm paired with a feature set is marked bold. 

Table 2 presents predictive accuracy rates of the best 
performing LSTMs and CRFs based on the two feature sets 
in cross-validation. Overall, the highest accuracy rate 
(38.49%) is achieved by LSTMs with a one-hot encoding 
and a maximum sequence length of 50 when trained using 
both the game event traces and player gaze traces. It is 
noteworthy that both LSTMs and CRFs (32.86%) achieve 
higher cross-validation accuracy rates when utilizing both 
modalities, and they also significantly outperform the ma-
jority class-based baseline (19.1%).  

Based on the optimized hyperparameter sets for LSTM-
U/M and CRF-U/M, we further evaluate models’ generali-
zation performance on the held-out test set. In this step, all 
four models are retrained using all training data (i.e., 100 
players’ data). Table 3 reports test set-based evaluation 
results.  

Test results indicate that the multimodal LSTM-based 
goal recognition model attains the highest predictive accu-
racy with a marginal improvement of 6.7% over the se-
cond-best model (unimodal LSTM), which shows LSTMs 
are also generalizable to unseen player data. It is notable 
that this multimodal approach outperforms the unimodal 
LSTM model as well as the CRF-based competitive base-

line models with respect to all the targeted metrics. It 
should be noted that the multimodal CRF-based goal 
recognition model exhibits sizable decreases in accuracy 
rate (32.86% to 27.17%) in the generalization test. These 
findings suggest that the multimodal, linear-chain CRF is 
not an efficient goal-modeling approach in this domain. 
The accuracy rates reported in (Min et al. 2016a) are higher 
relative to this work; however, the previous unimodal work 
was based on a different version of CRYSTAL ISLAND that 
used a different goal recognition corpus and a smaller 
number of goals (seven goals) compared to the 12 fine-
grained goals in this work. 

 CRF-U CRF-M LSTM-U LSTM-M 
Accuracy Rate 33.69 27.17 37.15 39.65 

SCP 304.73 333.48 302.33 298.56 
0-CR 41.81 35.59 42.09 44.07 
1-CR 39.27 32.77 40.96 42.09 

Table 3: Test set evaluation results (%) for hyperparameter-
optimized goal recognition models. The best score per metric is 
marked bold. 

Conclusion 
Goal recognition is a key component of player modeling. 
Multimodal data streams show significant promise as 
sources of evidence for goal recognition models to deal 
with the significant uncertainty inherent in player modeling 
in open-world digital games. We have presented a multi-
modal goal recognition framework that analyzes bimodal 
data channels—player gaze traces along with game event 
traces—for open-world digital games. Empirical results 
indicate that multimodal LSTM-based goal recognition 
models achieve high performance on both predictive accu-
racy and early prediction. Player gaze traces serve as an 
external manifestation of goal-directed cognitive processes, 
complementing game event traces that have been a tradi-
tional source of input for player goal recognition. In the 
future, it will be important to investigate additional modali-
ties, including facial expressions, body movements, pos-
ture, and biometrics. In addition, it will be important to 
investigate how multimodal goal recognition models sup-
port game adaptations at runtime. 
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