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Abstract 
Recent years have seen a growing interest in player model-
ing, which supports the creation of player-adaptive digital 
games. A central problem of player modeling is goal recog-
nition, which aims to recognize players’ intentions from ob-
servable gameplay behaviors. Player goal recognition offers 
the promise of enabling games to dynamically adjust chal-
lenge levels, perform procedural content generation, and 
create believable NPC interactions. A growing body of 
work is investigating a wide range of machine learning-
based goal recognition models. In this paper, we introduce 
GOALIE, a multidimensional framework for evaluating 
player goal recognition models. The framework integrates 
multiple metrics for player goal recognition models, includ-
ing two novel metrics, n-early convergence rate and stand-
ardized convergence point. We demonstrate the application 
of the GOALIE framework with the evaluation of several 
player goal recognition models, including Markov logic 
network-based, deep feedforward neural network-based, and 
long short-term memory network-based goal recognizers on 
two different educational games. The results suggest that 
GOALIE effectively captures goal recognition behaviors 
that are key to next-generation player modeling. 

Introduction   
While open-world digital games aim to promote players’ 
engagement and replayability by enabling players to ex-
plore and achieve goals within expansive virtual worlds, 
the high degree of autonomy granted to players is often at 
odds with the task of game designers who have to provide 
coherent storylines and gameworld events (Riedl and 
Bulitko 2013; Min et al. 2014). To address the demands for 
player modeling, a broad range of computational ap-
proaches have been investigated for modeling players’ 
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cognitive, affective and behavioral states in digital games 
(Yannakakis et al. 2013). Player modeling can support per-
sonalized game experiences in the context of interactive 
narrative (Riedl and Bulitko 2013), game balancing (Lopes 
and Bidarra 2011), and procedural content generation 
(Shaker et al. 2015). 

Goal recognition, a central player modeling functionali-
ty, aims to dynamically identify high-level objectives that a 
player is attempting to achieve based on observable game-
play behaviors (Mott et al. 2006; Harrison et al. 2015). 
Open-world digital games pose a significant challenge for 
goal recognition (Min et al. 2016): these games do not ex-
plicitly provide a specific sequence of goals to complete in 
the game and there are a vast number of possible ways in 
which players can achieve a goal. Especially, in situations 
where players have limited prior experience with an open-
world digital game, it may be the case that they perform 
exploratory actions instead of goal-directed actions, identi-
fy goals through a sequence of events that they have en-
countered and environments that they have observed, and 
then pursue a goal. This characteristic of open-world digi-
tal games results in highly idiosyncratic action sequences, 
and thus the task of recognizing players’ goals exhibits 
significant uncertainty. Devising reliable computational 
models is key to the success of goal recognition in open-
world digital games. 

In this paper, we present a generalized multidimensional 
evaluation framework for goal recognition, GOALIE 
(Generalized Observable Action Learning for Intent Evalu-
ation). The objective of this framework is to identify relia-
ble goal recognition models that should not only correctly 
predict player goals on overall sequences of actions, but 
also make early predictions (i.e., making consistently cor-
rect predictions as early as possible) since run-time game 
adaptation is a central objective of goal recognition. 
GOALIE supports multidimensional evaluations of goal 



recognition models through five metrics including three 
conventional metrics (accuracy rate, convergence point, 
and convergence rate) (Blaylock and Allen 2003) and two 
novel metrics (standardized convergence point and n-early 
convergence rate).   

Our previous work (Min et al. 2014) found problems 
with the conventional convergence point metric: it can be 
misleading with respect to favoring goal recognition mod-
els with lower convergence rates. GOALIE addresses this 
problem by introducing two novel metrics. To illustrate 
goal recognition model evaluation, we use GOALIE to 
analyze three competitive computational goal-modeling 
techniques: long short-term memory networks (LSTMs) 
(Min et al. 2016), n-gram encoded feedforward neural net-
works pre-trained with stacked denoising autoencoders 
(Min et al. 2014), and Markov logic networks (Baikadi et 
al. 2014) on two goal recognition data corpora from two 
independent open-world educational games with data from 
137 students and 828 students, respectively.  

Results suggest that GOALIE can be used to identify the 
goal recognition models that are most promising for player 
modeling. For example, GOALIE finds that LSTM-based 
goal recognition harnessing distributed action embeddings 
significantly outperforms the other two approaches, with 
respect to predictive accuracy, convergence rate, standard-
ized convergence point, and n-early convergence rate, 
across the two benchmark datasets. Even though the 
LSTM-based approach does not achieve the highest per-
formance in terms of the conventional convergence point, 
its complementary metric, standardized convergence point, 
suggests that the LSTM-based approach outperforms the 
competitive baseline approaches with respect to the mod-
els’ early prediction capacity.  

Related Work 
Because plan recognition focuses on inferring plans and 
goals of observed agents, it is formulated as a generalized 
task of goal recognition (Baker et al. 2009; Sukthankar et 
al. 2014). While much previous plan recognition work has 
utilized a hand-crafted plan library and a decision model 
(Geib and Goldman 2009; Bisson et al. 2015), a salient line 
of investigation has addressed plan recognition by learning 
a plan library in a data-driven approach (Fagan and 
Cunningham 2003; Synnaeve and Bessière 2011) or dis-
pensing with the need for a plan library (Baker et al. 2009; 
Ramírez and Geffner 2011) by interpreting plan recogni-
tion as an inversion of action planning given a goal. How-
ever, in open-world digital games, particularly those in 
which players have little or no prior experience, players’ 
exploration-based actions are marked by highly idiosyn-
cratic sequences of player actions and often sub-optimal 
for achieving goals (Min et al. 2016);  thus, devising a reli-

able plan library or using a planning approach that assumes 
a rational agent is infeasible. Corpus-based, statistical goal 
recognition (Blaylock and Allen 2003) effectively deals 
with this challenge in open-world digital games by requir-
ing only a list of goals and a corpus containing action se-
quences that achieve the goals, and thus holds significant 
potential for performing high-level game adaptations. 

Along with deep learning’s significant advance in com-
puter vision, speech recognition and natural language pro-
cessing (LeCun et al. 2015), it has demonstrated consider-
able success in goal and plan recognition (Bisson et al. 
2015; Min et al. 2016), perhaps because of the focus on 
extracting hierarchical representations from lower-level 
inputs (i.e., actions) to higher-level outputs (i.e., goals) 
(Min et al. 2014). Bisson and colleagues (2015) investigat-
ed recursive neural network-based decision models and 
evaluated the approach on plan recognition domains in-
cluding a real-time strategy game. Min et al. (2016) exam-
ined goal recognition with LSTMs, which achieved state-
of-the-art predictive accuracy by effectively modeling 
player behavior sequences in an open-world game. In this 
paper, we illustrate the application of GOALIE with the 
LSTM-based goal modeling technique along with two 
competitive baseline approaches on two different data cor-
pora.  

GOALIE Framework 
A standard framework and set of metrics for goal recogni-
tion have not been established (Sukthankar et al. 2014). A 
commonly used approach measures models’ predictive 
performance such as their accuracy rate (Ha et al. 2011). 
As a supplementary set of metrics, Blaylock and Allen 
(2003) proposed the convergence point and convergence 
rate that capture models’ early prediction capacity, which 
has been investigated in a wide range of goal recognition 
work (Mott et al. 2006; Baikadi et al. 2014). Early predic-
tion is of significant importance because goal recognizers 
that lack an early prediction capacity cannot effectively 
support goal-driven gameplay adaptation at run-time.  

In this work, we present GOALIE, a generalized multi-
dimensional evaluation framework, equipped with two 
novel complementary metrics: standardized convergence 
point and n-early convergence rate as well as the conven-
tional metrics. These two new metrics are associated with 
the convergence point and rate, and suggest reinterpreted 
results with respect to goal recognition models’ early pre-
diction capacity. In the subsequent paragraphs, we describe 
how the new metrics featured in GOALIE differ from the 
conventional convergence metrics.  

The metric of convergence point (Blaylock and Allen 
2003) measures how early goal recognition models can 
consistently make accurate predictions within a converged 



sequence, i.e., an action sequence in which the last goal 
prediction is correct. More formally, convergence point is 
calculated by (𝑘!/𝑛!)!

!!! /𝑚, in which m is the number of 
converged action sequences, and ni and ki are the total 
number of actions and the number of actions after which 
the goal recognizer consistently makes accurate predictions 
in the ith converged action sequence, respectively (Min et 
al. 2016). Note that convergence point ignores all action 
sequences that do not converge to a correct goal.  

In this paper, we revisit the convergence point metric, 
which provides misleading results with respect to early 
prediction in some cases. For example, suppose that we 
have two goal recognition models: GR1 and GR2, and there 
are two action sequences (AS1 and AS2) to predict: 
• AS1: Action11, Action12, and Action13, whose goal is GA. 
• AS2: Action21, Action22, and Action23, whose goal is GB.  

In this situation, assume that both GR1 and GR2 correct-
ly predict the goal (GA) associated with the three actions in 
AS1, while GR1 makes incorrect predictions on all three 
actions’ of AS2, but GR2 makes correct predictions for the 
goal of the last two actions (Action22 and Action23). The 
convergence point of GR1 is 0.33 since it consistently 
makes correct predictions after observing the first action 
for AS1, which is the only converged sequence. However, 
the convergence point of GR2 is 0.5 which is computed as 
(1/3+2/3)/2, and thus GR1 is identified as the model with 
better early prediction capacity based on convergence point 
(lower is better and the maximum possible value is one for 
this metric) even though GR2 accurately predicts actions 
sooner than GR1 in AS2. This issue is exacerbated for a 
majority class-based goal recognition model that predicts a 
single goal for all actions. This model, which is unreliable, 
will yield a low convergence point by making correct pre-
dictions for all actions in converged action sequences. To 
overcome this issue with the conventional convergence 
point, we introduce standardized convergence point.  

Standardized convergence point 
The standardized convergence point metric measures a 
convergence point regardless of whether an action se-
quence converged to a correct goal or not. To compute this 
metric, a non-converged action sequence has a conver-
gence point of (the total number of actions + penalty) di-
vided by (the total number of actions), thereby yielding a 
convergence point greater than one. In this manner, non-
converged action sequences are penalized in terms of early 
prediction.  
Definition 1. Standardized convergence point is calculated 
by (𝑘!/𝑛!)!

!!! /𝑚, in which m is the total number of action 
sequences, and ni is the total number of actions in the ith 
action sequence. ki is contingent on whether the ith action 
sequence converged or not; if converged, ki is the number 
of actions after which the goal recognizer consistently 

makes accurate predictions as in the conventional conver-
gence point metric; otherwise, ki is ni+pi, where pi (pi > 0) 
is the penalty parameter for the ith action sequence. Lower 
is better for this metric.  

Returning to the example presented in the preceding 
subsection, standardized convergence point (in this work, 
we set pi to 1 for all action sequences) of GR1 is 0.83, 
computed by (1/3+4/3)/2, while standardized convergence 
point of GR2 remains the same as 0.5. Thus, using this def-
inition, the standardized convergence point of GR2 is lower 
than GR1. Since early prediction is more accurately cap-
tured using the standardized convergence point than the 
convergence point as discussed, GOALIE measures mod-
els’ early prediction capacity with this new metric.  

N-Early Convergence Rate 
Convergence rate (Blaylock and Allen 2003) measures the 
percentage of action sequences in which the last goal pre-
diction is correct. While the goal recognition system gen-
erally makes correct predictions on individual actions (i.e., 
high accuracy rate), if it makes an incorrect prediction on 
the last action (i.e., low convergence rate), the model lacks 
reliability since incorrect game adaptation at the end of an 
action sequence might confuse players who are about to 
achieve the planned goal. We extend this metric to consid-
er the last (n+1) action predictions through a new metric, 
n-early convergence rate.  
Definition 2. N-early convergence rate is calculated by 

𝑘!!
!!! /𝑚, in which m is the total number of action se-

quences. ki is 1 if the last (n+1) goal predictions are all 
correct in the ith action sequence; otherwise, ki is 0 for the 
action sequence. In a special case of this metric when n 
equals 0, the definition of n-early convergence rate is the 
same as the conventional convergence rate. Higher is better 
for this metric, in which the maximum value is one. 

N-early convergence rate views goal recognizers’ early 
prediction from a different perspective compared to stand-
ardized convergence point. The n-early convergence rate 
takes a static approach (i.e., a fixed window size of n+1) 
backward from the end of an action sequence, while stand-
ardized convergence point takes a dynamic approach for-
ward from the beginning of an action sequence. These two 
novel measurements are designed to complement the cor-
responding conventional convergence metrics when evalu-
ating goal recognition models’ early prediction capacity. 

It should be noted that neither of these novel conver-
gence metrics nor the conventional convergence metrics 
can be dynamically computed during gameplay since play-
ers’ goals are hidden from the goal recognizer. Nonethe-
less, offline measurements of these metrics offer consider-
able insight into selecting the most reliable goal recogni-
tion model to best support runtime game adaptation. 



Goal Recognition Corpora 
In this section, we describe two different educational open-
world digital games featuring middle-grade science educa-
tion (CRYSTAL ISLAND: OUTBREAK) and elementary-grade 
science education (CRYSTAL ISLAND: UNCHARTED DIS-
COVERY). Goal recognition corpora were collected from 
players’ trace logs playing the two educational games, 
which allow us to perform post-hoc data analyses of goal 
recognition.  

As noted above, players’ action sequences do not neces-
sarily represent optimal paths for achieving goals in both 
games since the players did not have prior experience play-
ing them. Rather, players often explore the virtual envi-
ronment in order to familiarize themselves with the game-
world, and make gradual but possibly circuitous progress 
toward each objective, eventually culminating in the final 
action that achieves a goal (Min et al. 2016). 

CRYSTAL ISLAND: OUTBREAK (Rowe et al. 2011) is an 
open-world educational game for middle school science. In 
the game players are tasked with identifying the cause of 
an illness afflicting a team of scientists on a remote island 
research camp. Implemented in the Half-Life 2 Source 
engine, its gameplay is similar to many exploration-centric 
games in which players perform actions such as navi-
gating, discovering important items, and talking with non-
player characters. The non-linear narrative consists of sev-
en key goals that players must accomplish to complete the 
game. Five of these goals involve speaking with NPCs 
about the spreading illness, while the remaining two in-
volve testing contaminated food in the camp’s laboratory 
and submitting a completed diagnosis to the camp nurse.  

The data were collected during a 60-minute-long study 
involving 137 eighth grade students from a public middle 
school. The CRYSTAL ISLAND: OUTBREAK data corpus con-
sists of 77,182 player actions (i.e., the total number of pos-
sible goal recognitions) and 893 achieved goals, with an 
average of 86.4 player actions per goal. 

CRYSTAL ISLAND: UNCHARTED DISCOVERY (Baikadi et 
al. 2014; Lester et al. 2014) is an open-world educational 
game for upper elementary science. The game takes place 
on a fictional island in the Oceania region of the Pacific 
Ocean. The player joins a cast of virtual characters on the 
island in establishing a new life, and explores an expansive 
virtual world as she performs tasks for the island inhabit-
ants. As the player learns about landforms, navigation and 
modeling, she is asked to perform several quests that assess 
their problem-solving skills.  

In the dataset used in this work, players completed four 
quests. Two of the quests focused on understanding land-
forms, such as plateaus, deltas and waterfalls. The other 
two quests involved understanding navigation, both 
through reading a map and following a heading for a speci-
fied distance. Each quest was associated with three goals. 

Once a quest has begun, players can pursue its three goals 
in any order, and also can initiate multiple quests at the 
same time. The total number of possible goals is 12. 

The data used in the evaluation of our goal recognition 
model was collected during a four-week study involving 
828 fifth grade students from eight public elementary 
schools. The dataset consists of 811,647 player actions and 
7,652 achieved goals, with an average of 106.1 player ac-
tions per goal. 

Long Short-Term Memory Network-Based 
Goal Recognition Model 

We cast goal recognition as a multiclass classification 
problem in which a trained classifier predicts the most like-
ly goal associated with the currently observed action se-
quence (Min et al. 2016). We assume that a given sequence 
of actions maps to a single goal, and no interleaving occurs 
between actions associated with different goals, since the 
goal recognition corpus does not lend itself to this type of 
analysis (Ha et al. 2011).  

To devise a reliable goal recognition model that effec-
tively deals with noisy player actions, our preliminary 
work has focused on the exploratory nature in open-world 
digital games. Player goals and actions constitute cyclical 
relationships (Ha et al. 2011); players’ previously achieved 
goals may inform their subsequent actions, and their cur-
rent actions may influence their upcoming goals. Conse-
quently, modeling sequential patterns from a series of 
player actions and previously achieved goals is crucial for 
accurate goal recognition (Min et al. 2016). Inspired by 
these characteristics, our previous work investigated long 
short-term memory networks (LSTMs) (Min et al. 2016), 
n-gram encoded feedforward neural networks pre-trained 
with stacked denoising autoencoders (Min et al. 2014), and 
Markov logic networks (Ha et al. 2011; Baikadi et al. 
2014). In the remainder of this section, we present a brief 
overview of LSTM-based goal recognition in UNCHARTED 
DISCOVERY. Details regarding LSTM-based goal recogni-
tion in OUTBREAK can be found in (Min et al. 2016). 

LSTMs are a type of recurrent neural networks (RNNs) 
that are specifically designed for sequence labeling of tem-
poral data (Graves 2012). LSTMs have achieved high pre-
dictive performance in various sequence labeling tasks, 
often outperforming standard RNNs by preserving longer-
term dependencies than standard RNNs and effectively 
addressing the vanishing gradient problem that occurs 
when training standard RNNs.  

LSTMs (Figure 1) feature a sequence of memory blocks 
that include one or more self-connected memory cells 
along with three gating units: an input gate, a forget gate, 
and an output gate. In LSTMs, the input and output gates 
modulate the incoming and outgoing signals to the memory 



cell, and the forget gate controls whether the previous state 
of the memory cell is remembered or forgotten.  

A player action is encoded with four properties: action 
type, action location, narrative state (the player’s progress 
in solving the game’s narrative), and previously achieved 
goals (Min et al. 2014). For UNCHARTED DISCOVERY, ac-
tion types include 126 distinct types of player actions un-
der 19 high-level action categories, action location includes 
84 non-overlapping sub-locations within the gameworld, 
narrative states contain 16 possible values based on the 
interactive storyline’s plot structure, and there are 13 pos-
sible goals that could be previously achieved, including 
‘None’ in case the player has not yet achieved any goals.  

As depicted in Figure 1, the input layer is fed with a 
(N+3)-dimensional discrete vector (we set N to 12 in this 
work). The first three dimensions of the vector are allocat-
ed to represent the action type, action location, and current 
narrative state with integer-based indices, while the follow-
ing N dimensions represent a sequence of previously 
achieved goals also with integer-based indices.  

The next layer is a projection layer that creates dense 
distributed vector representations out of discrete represen-
tations in the input layer (Bengio et al. 2003; Min et al. 
2016). To support the projection layer, a shared action-
property embedding matrix, the size of which is 239 (the 
sum of possible values of action properties computed as 
126+84+16+13) by d (embedding size), is created (Figure 
1). The action-property embedding matrix is randomly 
initialized following a uniform distribution and is fine-
tuned during supervised machine learning.  

At prediction time, once a distributed representation per 
action property of an action at time t is retrieved from the 
embedding matrix, these vector representations are concat-
enated into a single (N+3)*d dimensional vector, which is 
fed into the LSTM model as an input (xt) at time t. The 
final memory cell output vector (ht in Figure 1) is used to 

predict the most likely goal for the sequence of actions in a 
softmax layer. 

For LSTM model configurations, we explore one hy-
perparameter: the number of hidden units between 100 and 
200, while fixing other hyperparameters. This hyperparam-
eter was found to make the most significant influence on 
the goal recognition model performance for OUTBREAK 
(Min et al. 2016), and we investigate it with higher priority 
over other hyperparameters. We use the embedding size 
(d) of 20 and the dropout rate of 0.75 (Srivastava et al. 
2014), adopt a mini-batch gradient descent with the mini-
batch size of 128, and utilize categorical cross entropy for 
the loss function and the Adam stochastic optimizer 
(Kingma and Ba 2015). For training efficiency, action se-
quences longer than ten are pruned to keep only the last ten 
actions. Finally, the training process stops early if the vali-
dation score has not improved within the last seven epochs. 
In each fold, 10% of the training data is used to determine 
early stopping, and 90% is utilized for supervised training, 
while the validation data is purely used for calculating the 
validation score. The maximum number of epochs is set to 
100. 

Evaluation 
We illustrate the GOALIE framework by applying it to 
multiple goal recognition models for the two CRYSTAL 
ISLAND game-based learning environments. For OUT-
BREAK, the distribution of the 7 goals ranges from 6.4% 
(“Speaking with the camp nurse”) to 26.6% (“Running 
laboratory test on contaminated food”), which is the major-
ity class baseline. The UNCHARTED DISCOVERY data cor-
pus consists of 12 goals, in which the most frequent goal 
(“Picking up the dark blue flag”) and the least frequent 
goal (“Placing a sign at volcano”) appeared 13.5% (i.e., 
majority class baseline) and 3.1% out of the entire set of 
players’ achieved goals, respectively. 

For n-gram encoded feedforward neural networks 
(FFNNs), we explore two hyperparameters: the number of 
hidden units among {100, 200} and the number of hidden 
layers among {2, 3}, while using a fixed value for other 
hyperparameters as follows: n of 5 for n-gram encoding 
and the corruption level of 0.5 for stacked denoising auto-
encoders (these values were found to be the best configura-
tions for OUTBREAK (Min et al. 2014)). For FFNNs, we 
adopt stochastic gradient descent for both unsupervised 
pre-training and supervised fine-tuning, with learning rates 
of 0.1 for pre-training and 1 for fine-tuning. 

Through GOALIE, we compare three goal-modeling 
techniques, including LSTMs, FFNNs, and Markov logic 
networks (MLNs) (Domingos et al. 2006) on the two data 
corpora, and identify the most reliable goal recognition 
model for each data corpus. We evaluate induced models 

Figure 1. LSTM-based goal recognition (Min et al. 2016). 



using three conventional metrics: accuracy rate, conver-
gence rate, and convergence point as well as the two pro-
posed novel metrics, standardized convergence point and 
n-early convergence rate. Due to space limitations, we only 
report 1-early convergence rate for n-early convergence 
rate, by which we evaluate whether goal recognizers cor-
rectly predict the goal for the last two actions in every ac-
tion sequence. While LSTMs and FFNNs have identified 
the best performing models through a machine-driven ap-
proach (i.e., grid search of hyperparameters based on cross 
validation results), MLNs have utilized human expert-
crafted logic formulae in terms of discovery events, do-
main-specific representations of user progress specifically 
targeted to each digital game (Baikadi et al. 2014). We use 
the same data split in 10-fold cross validation for fair com-
parisons.  
Table 1. Averaged rates of MLNs, FFNNs, and LSTMs for 
CRYSTAL ISLAND: OUTBREAK.  
 MLN FFNN LSTM 

Accuracy Rate (%) 55.21 62.43 66.35 
Convergence Point (%) 30.80 41.30 33.34 

Stand. Convergence point (%) 67.66 62.66 53.19 
Convergence Rate (%) 49.09 70.06 71.32 

1-Early Convergence Rate (%) 46.71 64.93 68.81 

Table 1 presents results of the three computational goal 
recognition approaches for the OUTBREAK data corpus. In 
this table, only the model that achieves the highest cross-
validation accuracy per approach is reported, which are 
100-hidden-unit models for LSTMs and 2-hidden-layer 
models with 100 hidden units per layer for FFNNs. LSTMs 
achieve the best goal recognition accuracy (66.35%), con-
vergence rate (71.32%), 1-early convergence rate 
(68.81%), and standardized convergence point (53.19%), 
while MLNs achieve the best (i.e., lowest) convergence 
point (30.80%). As noted above, the convergence point is 
calculated only for converged sequences (i.e., 49.09% of 
the total action sequences for MLNs), and the result indi-
cates that MLNs achieve the most efficient early prediction 
for a relatively smaller number of action sequences. 
LSTMs and FFNNs overall produce more reliable predic-
tions on more action sequences than MLNs as evidenced 
by higher accuracy rates and convergence rates, but the 
high convergence rates led the models to consider more 
noisy action sequences that eventually converged to correct 
goals but are not trivial to predict, thereby inducing higher 
convergence points. This phenomenon has been called in-
herent tension between convergence rate and convergence 
point in previous work (Min et al. 2014). The standardized 
convergence point suggests reinterpreted results on the 
early prediction. LSTMs achieve the lowest standardized 
convergence point with sizable difference over the other 
two approaches. Based on these results, we conclude that 

LSTM is the best goal modeling technique for the CRYS-
TAL ISLAND: OUTBREAK game. 

Table 2 presents results for UNCHARTED DISCOVERY fol-
lowing the same process described in OUTBREAK. For this 
data corpus, the best model configurations for LSTMs and 
FFNNs are 200-hidden-unit models and 2-hidden-layer 
models with 200 hidden units per layer, respectively.  

Similar to the results for OUTBREAK, GOALIE suggests 
that LSTM-based goal recognition models achieve the best 
performance for UNCHARTED DISCOVERY in every evalua-
tion metric except for convergence point. The standardized 
convergence point modulates the inherent tension between 
convergence rate and convergence point for the models, 
and therefore GOALIE concludes that LSTM is the best 
goal modeling technique for this dataset as well. 
Table 2. Averaged rates of MLNs, FFNNs, and LSTMs for 
CRYSTAL ISLAND: UNCHARTED DISCOVERY.  

 MLN FFNN LSTM 
Accuracy Rate (%) 24.40 32.26 35.32 

Convergence Point (%) 75.54 47.38 53.66 
Stand. Convergence Point (%) 91.71 75.73 75.63 

Convergence Rate (%) 43.64 49.94 56.15 
1-Early Convergence Rate (%) 39.05 44.56 49.19 

Conclusion 
Goal recognition is a core player modeling functionality in 
open-world digital games. We have introduced the GOAL-
IE framework that performs multidimensional evaluation 
of goal recognition models. Empirical evaluations with 
GOALIE indicate that LSTMs achieve the most reliable 
results across all metrics on the two examined digital 
games, except for the convergence point. However, stand-
ardized convergence point, a novel early prediction metric 
proposed in GOALIE, suggests that LSTMs exhibit an 
improved early prediction capacity over FFNNs and MLNs, 
and thus, with GOALIE, we conclude that LSTM is the 
best performing goal modeling technique for the two open-
world digital games. 

In the future it will be important to investigate how to 
set the penalty parameter for the standardized convergence 
point and n in n-early convergence rate for goal recogni-
tion models targeting open-world digital games, and priori-
tize goal recognizers when having conflicting evaluation 
results with GOALIE. Moreover, an additional set of met-
rics that quantify unmeasured aspects of goal recognizer 
performance and a visualization tool that illustrates dynam-
ic performance changes of goal recognition models across 
time would complement the current implementation of 
GOALIE. Finally, it will be important to investigate how 
goal recognition models identified through GOALIE sup-
port game adaptation at run-time. 
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