
Inducing Stealth Assessors
from Game Interaction Data

Wookhee Min, Megan H. Frankosky, Bradford W. Mott,
Eric N. Wiebe, Kristy Elizabeth Boyer*, and James C. Lester

Center for Educational Informatics, North Carolina State University, Raleigh, NC 27695

{wmin, rmhardy, bwmott, wiebe, lester}@ncsu.edu
*Department of Computer & Information Science & Engineering, University of Florida,

Gainesville, FL 32601
keboyer@ufl.edu

Abstract. A key untapped feature of game-based learning environments is
their capacity to generate a rich stream of fine-grained learning interaction data.
The learning behaviors captured in these data provide a wealth of information
on student learning, which stealth assessment can utilize to unobtrusively draw
inferences about student knowledge to provide tailored problem-solving support.
In this paper, we present a long short-term memory network (LSTM)-based
stealth assessment framework that takes as input an observed sequence of raw
game-based learning environment interaction data along with external pre-
learning measures to infer students’ post-competencies. The framework is
evaluated using data collected from 191 middle school students interacting with
a game-based learning environment for middle grade computational thinking.
Results indicate that LSTM-based stealth assessors induced from student game-
based learning interaction data outperform comparable models that required
labor-intensive hand-engineering of input features. The findings suggest that the
LSTM-based approach holds significant promise for evidence modeling in
stealth assessment.

Keywords: Game-Based Learning Environments, Stealth Assessment, Deep
Learning, Computational Thinking, Educational Games.

1 Introduction

Recent years have seen a growing interest in intelligent game-based learning
environments because of their potential to effectively promote learning and
engagement [1]. These environments simultaneously integrate the adaptive
pedagogical functionalities of intelligent tutoring systems with the engaging
interactions provided by digital games [2–3]. Research has begun to explore student
modeling for game-based learning environments including modeling student
knowledge [4] and students’ progression towards learning goals [5] following work
on student-adaptive learning featuring tailored narratives, feedback, and problem-
solving support [6].

Stealth assessment [4] is a game-based assessment framework based on evidence-
centered design (ECD) [7]. ECD features task, evidence and competency models for
diagnostic measurement of multiple aspects of students’ proficiency and performance.
Built on the three models presented in ECD, stealth assessments utilize a rich stream
of student interactions (i.e., an evidence model) with various problem-solving tasks
(i.e., a task model) in game-based learning environments, to draw inferences about
student knowledge and skills (i.e., a competency model). The evidence model
provides the connections between the competency model and the stream of low-level
observations, enabling the competency model to update the appropriate competencies
related to the task being performed. In contrast to typical formative assessments,
stealth assessment has the potential to not only create a valid, reliable evidence model
utilizing observed sequences of detailed learning behaviors, but also to perform
assessments of a wide range of constructs in an unobtrusive, invisible way, with the
aim of providing useful feedback to students and teachers to enhance learning and
inform instruction [4, 8].

A key challenge posed by stealth assessment is how to effectively handle both
cyclical causalities between actions and events in the gameworld and temporal
relationships characterized within learning behaviors. Students are likely to
deliberately choose their next action by referring to the current task, their previous
actions, and any feedback they received on their previous actions in the gameworld.
Despite the popularity of utilizing evidence rules, which define a set of salient
features that are indicative of specific student competencies in the evidence model,
previous work based on evidence rules often ignores these complex relationships
found within student learning behaviors [4, 9–10]. Furthermore, these features are
often hand-engineered, so they are domain expert-dependent, labor-intensive, and
domain-specific.

As an alternative to manually devising an evidence model, an approach that
automatically extracts patterns and learns predictive features from sequences of raw
player actions would be more scalable, less labor-intensive, and would enable the
induction of evidence models that directly represent student learning processes
without sacrificing causal, temporal relationships. In this work, we investigate long
short-term memory networks (LSTMs) [11], a type of gated recurrent neural network,
for automating the creation of the evidence model without requiring hand-authored
evidence rules and statistical models. LSTMs automatically extract salient features
from temporal data and effectively preserve a longer-term memory by operating three
gates featured in the network. Results of an evaluation suggest that LSTM-based
stealth assessors directly induced from students’ interactions with a game-based
learning environment show significant promise for stealth assessment.

2 Related Work

Intelligent game-based learning environments are situated at the intersection of 1)
digital games that increase students’ motivation through rich settings (e.g., compelling
plots, engaging characters) in virtual environments, and 2) intelligent tutoring systems
that foster students’ learning through tailored scaffolding and context-sensitive

feedback. Recent work in game-based learning environments explores a broad
spectrum of subject matters ranging from high school mathematics [12], to middle
school computer science [13], anti-bullying [14], language and culture learning [3],
and science inquiry [15], among others.

 Stealth assessment can play an important role in game-based learning
environments. Previous work on stealth assessment based on evidence-centered
design uses sequences of students’ interactions with the learning environment to
dynamically assess students’ knowledge. For stealth assessment, various families of
machine learning techniques have been investigated. Kim and colleagues [9]
investigated Bayesian network-based evidence modeling, which requires two primary
steps: (1) defining targeted competency and observable variables and building a
directed graphical model, and (2) specifying the conditional probabilities between
parent nodes and corresponding child nodes. Falakmasir et al. presented the SPRING
data analysis pipeline that does not require costly domain knowledge engineering
[16]. Specifically, SPRING trains two hidden Markov models (HMMs), one for high-
performing and the other for low-performing students per game level. Two log-
likelihoods of an observed sequence of student events are computed based on the two
HMMs, and finally the difference between the two log-likelihoods for each game
level is used as an independent variable for a linear regression model that predicts
post-test scores. In our previous work, we presented DeepStealth [13], a framework
based on deep neural networks [17] for stealth assessment. DeepStealth uses a deep
feedforward neural network (FFNN)-based evidence modeling approach, in which the
multi-level, hierarchical representations of the input data are learned through the
training process of deep networks. While the last two approaches have an advantage
over the Bayesian network-based approach by requiring less domain expert
knowledge for evidence modeling, the competency model (e.g., competency model
variables, dependencies between variables) is not designed at the same level of
granularity as the Bayesian network and thus provide less fine-grained insight into
concept mastery. While DeepStealth uses manually engineered features (e.g., features
produced by expert-authored evidence rules), the LSTM-based approach introduced
here fully automates the process of evidence modeling by directly utilizing raw game
interaction data (i.e., a sequence of low-level actions).

3 ENGAGE Game-Based Learning Environment

ENGAGE (Figure 1) is a game-based learning environment designed to introduce
computational thinking to middle school students. It features a rich immersive 3D
storyworld built with the Unity multi-platform game engine. The ENGAGE curriculum
was developed by adapting the AP® Computer Science Principles course learning
objectives [18] for U.S. middle school students (ages 11–13). A central aim of the
curriculum and game-based learning environment is to promote computational
thinking and problem-solving processes that involve abstraction and algorithmic
thinking, and allow students to effectively use computational tools for data analysis,
modeling, and simulations [19]. In addition to providing a foundation for advanced
computer science work in high school, the problem-solving activities and

computational challenges within the game are designed to increase middle school
student’s interest in computer science.

In the game, students play the protagonist who is sent to rescue an underwater
research facility. As students progress through the game, they discover that all of the
computing devices within the facility have been commandeered by a nefarious
researcher. Students navigate through a series of interconnected rooms, each of which
presents students with a set of computational challenges they must solve by either
programming devices or operating devices in reference to the programs already
written for the devices. Programmable devices are programmed using a visual
programming language, in which visual blocks are linked together [13]. Finally,
support is provided throughout the game by a cast of non-player characters who help
progress the narrative and offer clues to assist students in solving the computational
challenges.

One of the levels in the game, the Digital World, allows students to explore how
binary sequences are used to represent digital data. The work presented in this paper

Figure 2. (Left) A binary lock device that students must unlock. The white tiles indicate the
bits are 1, whereas black tiles denote 0. The current binary number is 01110 and the
corresponding base-ten number, 14, is displayed on the device as immediate feedback.
(Right) The visual programming interface displaying the binary lock’s program.

Figure 1. ENGAGE game-based learning environment.

focuses on students’ problem-solving activities within this level. To complete a set of
binary learning tasks, students must find the binary representation of the base-ten
number stored in the binary lock device (Figure 2, Left). Specifically, students must
review an existing program (Figure 2, Right) associated with the binary lock device,
flip binary tiles on the binary lock device to change the binary sequence (Figure 2,
Left), and execute its program. If the binary sequence matches the base-ten number
stored in the program, the current binary lock device opens upon execution and the
player can move on to a previously inaccessible area in the room. Through these tasks,
students learn about the concept of bits in binary numbers and the weight assigned to
each bit.

In this work, we analyze 191 students’ interaction data (101 males, 88 females, 2
unreported) from a teacher-led deployment of ENGAGE in four public middle school
classrooms. Prior to beginning the Digital World unit, and immediately following the
unit, students completed online pre- and post-test assessments measuring computer
science attitudes [20], self-efficacy [21], and content knowledge (e.g., binary
representation). Students achieved improvements in content knowledge covered in the
Digital World unit, and a paired t-test comparing pre-test (M=0.43, SD=0.21) to post-
test (M=0.59, SD=0.24) indicated that students’ learning gains were statistically
significant with a sizable effect size, t(185) = 12.25, p < .001, d = .70, where 186 out
of 191 students took both the pre- and post-knowledge tests. These external learning
measures are used as predictive features for our evidence models, along with the
game interaction data.

4 LSTM-Based Stealth Assessment Framework

For a stealth assessment framework to be scalable to a broad range of learning
environments, it must be able to easily accommodate a wide range of domain-specific
features. Focusing on this aspect, we first describe how our work is framed in
evidence-centered design (ECD) [7] and then turn to our LSTM-based stealth
assessment framework. From an ECD perspective, the three models are summarized
as follows:

• Task Model: We use 11 binary-lock solving tasks from the Digital World unit,
the objective of which is finding the binary representation that matches the base-
ten number specified in the program.

• Evidence Model: Observed sequences of actions in the game reveal students’
competencies. A generic feature set is used to represent actions. For ENGAGE,
there are 19 possible actions, and thus 19 distinct features are used to represent
each action using one-hot encoding. In addition to the game interaction evidence,
students’ five pre-test scores on the knowledge assessment, self-efficacy, and
three measures of computer science attitudes are utilized as evidence. An LSTM-
based evidence model informs the competency model in order to update students’
competency levels.

• Competency Model: Following our previous work [13], we examine one
competency model variable with respect to students’ overall knowledge about

binary representation, where the actual labels for their competency levels are
acquired from students’ post-test performance.

For domain independence, scalability, and robust performance, the evidence model
supports a generic feature set as well as missing data. The low-level generic feature
set in the evidence model can represent any types of action without being bound to a
specific domain, thereby yielding enhanced scalability for the stealth assessment
framework. We use a single generic feature set to represent actions in this work, but
the framework can support multiple feature sets depending on the design of actions in
the learning environment (e.g., “clicking the first binary tile” can be represented using
two distinct feature sets: the action-type feature set that contains click, and the action-
argument feature set that contains first binary tile).

In this work, the binary learning tasks allow 19 possible actions, including 11
pairing actions1 associated with 11 devices described in the task model (e.g., binary
lock device in Figure 2, Left), 5 bit-click actions (e.g., clicking a binary tile in Figure
2, Left), two actions for operating the programming interface (open and close in
Figure 2, Right), and a program execution action to run the device’s program.

The evidence model is designed to consider students whose data (either external
pre-test scores or task activities) is partially missing. For example, it is possible that a
student missed a class and has only partial gameplay data or did not complete some
pre-tests prior to playing the game. To formulate the external learning measure
evidence from missing pre-test data, we perform mean imputation using a mean score
of other students’ scores for the specific pre-test. On the other hand, in cases where
students did not solve a specific task in the game, the game evidence is generated by
linking any observed learning activities, skipping the unsolved tasks. For example, if
a student completed only two tasks (T1 and T3) and missed one task (T2) in-between,
the activities for T1 and T3 are linked to generate a data instance, ignoring T2. Since it
is not uncommon for a student to be absent from class within a multi-week
intervention, this specific design for the evidence model is necessary to broaden
tailored learning support to all students who participated in the learning activities.

For the competency model, students’ competencies are represented by their post-
test performance on the knowledge assessment items for binary representations. The
competencies are defined based on a tertile split (‘high’, ‘medium’, or ‘low’) with
respect to post-test scores on the assessment, and thus this stealth assessment task is
cast as a three-class classification problem that predicts one’s competency level using
an LSTM-based stealth assessor.

4.1 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) (Figure 3A) are a variant of recurrent
neural networks (RNNs) that are specifically designed for sequence labeling of
temporal data. Traditional RNNs have faced significant challenges with respect to
vanishing or exploding gradients during training deep networks unfolded in time [22].

1 Within the game, students must pair their virtual in-game computer with devices before they
can manipulate or view a device’s programs.

The three gating units (input gate, output gate, and forget gate) featured in LSTMs
enable modeling long-term dependencies within temporal sequences by allowing
gradient information to flow over many time steps. LSTMs have achieved state-of-
the-art performance in a diverse set of computational sequence-labeling tasks,
including speech recognition and machine translation [23].

In an implementation of LSTMs, the input gate (it), forget gate (ft), candidate value
of the memory cell (𝑐"), and output gate (ot) at time t are computed by Equations 1–4,
respectively, in which W and U are weight matrices for transforming the input (xt) at
time t and the cell output (ht-1) at time t-1, b is the bias vector of each unit, and σ and
tanh are the logistic sigmoid and hyperbolic tangent function, respectively:

𝑖" = 𝜎(𝑊(𝑥" + 𝑈(ℎ"-. + 𝑏() (1)
𝑓" = 𝜎(𝑊2𝑥" + 𝑈2ℎ"-. + 𝑏2) (2)

𝑐" = 𝑡𝑎𝑛ℎ(𝑊6𝑥" + 𝑈6ℎ"-. + 𝑏6) (3)
𝑜" = 𝜎(𝑊8𝑥" + 𝑈8ℎ"-. + 𝑏8) (4)

As described in Equation 5, the current memory cell’s state (ct) is calculated by
modulating the current memory candidate value (𝑐") via the input gate (it) and the
previous memory cell state (ct-1) via the forget gate (ft). Through this process, a
memory cell decides whether to keep or forget the previous memory state and
regulates the candidate of the current memory state via the input gate. Once again, the
current memory cell state (ct) is controlled by the output gate (ot) to compute the cell
activation (ht) of the LSTM block at time t. This step is described in Equation 6:

𝑐" = 𝑖"𝑐" + 𝑓"𝑐"-. (5)
ℎ" = 𝑜"	𝑡𝑎𝑛ℎ(𝑐") (6)

Lastly, we use the final memory cell output vector (ht) to predict the class label for
stealth assessment, which is the competency level of the student. This step is executed
in a softmax layer (top-right in Figure 3A), which is interpreted as a calculation of
posterior probabilities of the possible class labels. The LSTM is end-to-end trainable,
where all the parameters such as W, U, and b are machine-learned using
backpropagation through time.

4.2 Configuring LSTMs for Evidence Modeling

The LSTM’s input, xt, represents the evidence that a student reveals at time t. As
noted above, the evidence model considers students’ pre-learning measures in
addition to actions in the game. These two types of variables feature different
dynamics: actions are sequential and discrete, whereas the external learning measures
are static and numeric, since they are measured prior to starting the game. Figure 3B
describes how we encode these two different types of variables into a trainable input
(xt) at time t. First, we concatenate the integer index of the action at time t (at) with
the five static external learning measures (e1–e5) to generate the original input (inputt).
While scores for external learning measures (e.g., e1) can be directly utilized by the
LSTMs because their relative, numeric values are meaningful, the action index, at,
should be reformulated since its discrete value does not represent a magnitude.

To address this issue, we use one-hot encoding to represent actions. One-hot
encoding creates a bit vector whose length is the number of the actions, where only
the associated action bit is on (i.e., 1), while all other bits are off (i.e., 0). Since we

consider 19 distinct actions in ENGAGE, an action (e.g., at) is represented with a 19-
dimensional vector. The final input (xt) is generated by concatenating the one-hot
encoded action representations with the five external learning measures, and thus the
input is a 24-dimensional vector. Like actions in the input, the output of LSTMs
should also be represented using one-hot encoding, due to its discrete nature. Since
the number of possible competency levels is three in our work, the output is
represented using a three-dimensional one-hot vector.

Given this encoding of actions, the next step is to devise an encoding for action
sequences. Suppose that a student performed three actions and achieved the
competency level, ‘high’. We generate x1, x2, and x3 based on our input encoding
approach. A naïve method to generate a sequence is creating one from the list of
actions, [x1, x2, x3], along with the target label ‘high’. Another approach to generate
sequences is using sequence subsampling. The sequence subsampling method can
generate more sequences for the same case. For the same example, a subsampling
method can produce three sequences, [x1], [x1, x2], and [x1, x2, x3], all with the same
target label of ‘high’, by accumulating actions sequentially. While the naïve approach
creates only one training example (i.e., one sequence), this subsampling approach can
create as many training examples as the number of actions per student (three
sequences in this example). Since actions in a sequence represent a student’s dynamic
learning progress to achieve the final competency, we adopt the subsampling method
that induces fine-grained training examples.

Figure 3. (A) An illustration of an LSTM memory block that features three gating units and a
memory cell [22]. (B) An illustration of how an original input (inputt) is transformed to a
trainable format (xt). The discrete action variable, at, is one-hot encoded into a 19-dimensional
vector using bit 1 to 19, and then the induced vector is concatenated with numeric external
learning measure variables (e1 to e5) to create the final input, xt.

Finally, as with many other machine learning techniques, an effective
configuration of network hyperparameters for LSTMs often must be empirically
determined. There are several categories of hyperparameters to consider, including
optimization (e.g., optimizer, learning rate), model structure (e.g., the number of
hidden units, initialized weights), and training criterion (e.g., regularization terms,
loss function) [24]. In this work, we adopt a grid-search on a model structure-based
hyperparameter, the number of hidden units, which has the most significant influence
on predictive performances of LSTMs among others in student goal recognition work
[5]. We explore five values for the hyperparameter: 80, 100, 120, 140 and 160. Other
than this, we investigate a single-layer LSTM with a softmax layer for classifying
given sequences of actions, adopt a mini-batch gradient descent with the mini-batch
size of 128, set the dropout rate [25], a regularization parameter, to 0.75, and utilize
categorical cross entropy for the loss function and the Adam stochastic optimizer [26].
Finally, the training process stops early if the validation score has not improved
within the last seven epochs. In this work, 10% of the training data is used to
determine early stopping, while 90% is utilized for supervised training, leaving the
test set purely unseen. The maximum number of epochs is set to 100. For devising
LSTM-based evidence models, we use Keras [27], a python-based modular neural
networks library.

5 Evaluation

We evaluate evidence models’ predictive accuracy with 10-fold student-level cross-
validation. The same data split is used for a fair comparison with the competitive
baseline approaches. In this empirical evaluation, 191 students’ gameplay data along
with their external pre-learning measures are investigated, where 35,571 data
instances are generated for training LSTM-based evidence models, following the
sequence subsampling technique. We compare the LSTM model to the previous state-
of-the-art deep feedforward neural network pre-trained with stacked denoising
autoencoders (FFNN) [13], support vector machine (SVM), and naïve Bayes model
(NB). As discussed, unlike our LSTM models, the three competitive baseline models
utilize four salient game features engineered by domain experts, including the number
of binary tile flips, the number of binary tile double flips (a binary tile flipped and
then immediately flipped again), the number of times the device programs are
executed, and the amount of time students spent in the programming interface [13].
Also, for these three baseline models, in case that the gameplay data is partially
missing, mean imputation is performed per game feature as done for missing pre-
learning measures, since these models take fixed-size inputs. All four evidence
modeling approaches utilize the same set of external learning measures as additional
evidence.

For each computational approach, the best model configurations are identified in
the process of 10-fold cross-validation. Similar to the grid search method applied for
the LSTMs, we grid-search a set of hyperparameters for FFNNs, SVMs and NBs. For
FFNNs, we explore two hyperparameters, the number of hidden layers (from one to
five) and corruption rate (four randomly chosen values), while freezing some other

hyperparameters (e.g., 40 hidden units per layer, softmax for the output activation
function). We examine two hyperparameters that are popularly explored for
optimization: the penalty parameter (C) and gamma (𝛾) for SVMs with a radial basis
function [28]. C is chosen from {1, 10, 50, 100}, and 𝛾 is chosen from {0.0005,
0.001, 0.005, 0.01, 0.05}. Finally, for NBs, we investigate two distributions (normal
distribution and kernel smoothing density estimate) to fit models for the data.

Table 1. Average accuracy rates of the LSTMs, FFNNs, SVMs, and NBs.
{columns : rows} for the four machine learning techniques indicate {number of hidden units},
{number of hidden layers : corruption rate}, {gamma : penalty parameter}, and {distribution},

respectively. The highest accuracy rate is marked in bold for each technique.

LSTMs 80 100 120 140 160
 58.1% 56.1% 58.6% 63.9% 60.7%

FFNNs 1 2 3 4 5
0.20 61.9% 59.1% 56.6% 57.6% 59.7%
0.39 56.6% 61.3% 60.7% 56.5% 55.5%
0.69 59.1% 54.0% 62.9% 52.3% 54.5%
0.82 58.1% 59.7% 57.1% 55.0% 49.8%

SVMs 0.0005 0.001 0.005 0.01 0.05
1 50.8% 55.5% 59.1% 58.1% 56.0%

10 58.6% 59.2% 58.6% 59.2% 58.6%
50 59.2% 59.7% 56.6% 57.1% 58.1%

100 59.2% 56.6% 58.7% 58.7% 58.1%
NBs Normal Kernel

 48.1% 41.6%

Table 1 reports the average accuracy rates across different hyperparameter
configurations for each machine learning technique from cross-validations. Overall,
the highest performing LSTMs (the number of hidden units: 140) achieve 63.9%
accuracy rate, which outperforms the highest performing models from FFNNs
(62.9%), SVMs (59.7%) and NBs (48.1%) as well as the majority class baseline
(41.9%).

In addition to the predictive performance improvement, the LSTM-based stealth
assessment has two notable benefits over the baseline approaches. First, the capacity
to handle various lengths of action sequences, effectively learning sequential patterns,
and performing sequence labeling per action points towards LSTMs as being a viable
solution for stealth assessment. For instance, as opposed to the FFNN-based approach
that takes as input a fixed size of input features generated using the entire sequence of
actions, LSTMs can sequentially make a prediction per action, and thus enable
dynamic, run-time formative assessments on student competencies. Second, LSTMs
directly utilize raw game interaction data dispensing with the need for manually
engineering features to induce stealth assessors. This characteristic constitutes
considerable benefits over the other models, since the feature engineering process is
not only labor and time-intensive, but also impedes scalability of the stealth
assessment framework to other learning environments due to the domain-specificity
of the engineering process. It is noteworthy that the LSTMs directly utilizing low-
level inputs achieve the highest accuracy without leveraging expert knowledge.

6 Conclusions and Future Work

This paper has introduced a novel LSTM-based stealth assessment framework that
shows promise for accurately assessing learners’ competency levels. Using data
collected from multi-week classroom deployments of a game-based learning
environment for middle grade computational thinking, we conducted an evaluation of
four stealth assessment induction approaches that predict student post-competencies.
The results suggest that LSTM-based stealth assessors outperform the previous state-
of-the-art approach, deep feedforward neural networks pre-trained with stacked
denoising autoencoders, as well as support vector machines and naïve Bayes models,
with respect to predictive accuracy of students’ post-competencies. This result is
notable in that the LSTM-based evidence models were induced directly using raw
game interaction data, whereas the other models were devised using domain-expert
engineered features. Together with the sequence modeling capability, the LSTM-
based stealth assessment framework offers the potential to serve as the foundation for
formative assessment that operates dynamically, unobtrusively, and is readily
applicable to various learning environments. In the future, it will be important to
investigate stealth assessor model optimizations and regularizations for further
improving performance and informing decision making for adaptive scaffolding. It
will be also important to measure the stealth assessors’ early prediction performance
to evaluate their capacity for formative assessment. It will also be important to design
a granular set of competencies for stealth assessors to be more diagnostic and provide
fine-grained pedagogical support to further enhance student learning.

Acknowledgments. This research was supported by the National Science Foundation
under Grant CNS-1138497 and Grant DRL-1640141. Any opinions, findings, and
conclusions expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

1. Lester, J., Ha, E., Lee, S., Mott, B., Rowe, J., Sabourin, J.: Serious games get smart:
Intelligent game-based learning environments. AI Magazine 34(4), 31–45 (2013)

2. Jackson, T., McNamara, D.: Motivation and Performance in a Game-based Intelligent
Tutoring System. Journal of Educational Psychology 105(4), 1036–1049 (2013)

3. Johnson, L.: Serious use of a serious game for language learning. International Journal
of Artificial Intelligence in Education 20(2) 175–195 (2010)

4. Shute, V. J., Ventura, M.: Measuring and supporting learning in games: Stealth
assessment. Computer Games, Simulations & Education. Cambridge, MA: The MIT
Press (2013)

5. Min, W., Mott, B., Rowe, J., Liu, B., Lester, J.: Player Goal Recognition in Open-World
Digital Games with Long Short-Term Memory Networks. In: International Joint
Conference on Artificial Intelligence, pp. 2590–2596 (2016)

6. Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive
educational systems. The Adaptive Web, 3–53 (2007)

7. Mislevy, R., Steinberg, L., Almond, R.: On the structure of educational assessment.
Measurement: Interdisciplinary research and perspective 1(1), 3–62 (2003)

8. Rosenheck, L., Lin, C. Y., Klopfer, E., and Cheng, M. T.: Analyzing gameplay data to
inform feedback loops in The Radix Endeavor. Computers & Education 111, 60–73
(2017)

9. Kim, Y. J., Almond, R. G., Shute, V. J.: Applying Evidence-Centered Design for the
Development of Game-Based Assessments in Physics Playground. International Journal
of Testing 16(2), 142–163 (2016)

10. Smith, A., Aksit, O., Min, W., Wiebe, E., Mott, B. W., and Lester, J. C.: Integrating
Real-Time Drawing and Writing Diagnostic Models: An Evidence-Centered Design
Framework for Multimodal Science Assessment. In: International Conference on
Intelligent Tutoring Systems, pp. 165-175 (2016)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1–
32 (1997)

12. M. Kebritchi, A. Hirumi, and H. Bai, The effects of modern mathematics computer
games on mathematics achievement and class motivation, Computers & Education 55(2),
427–443 (2010)

13. Min, W., Frankosky, M., Mott, B., Rowe, J., Wiebe, E., Boyer, K., and Lester, J.
DeepStealth: Leveraging Deep Learning Models for Stealth Assessment in Game-Based
Learning Environments. In: International Conference on Artificial Intelligence in
Education, pp. 277–286 (2015)

14. Vannini, N., Enz, S., Sapouna, M., Wolke, D., Watson, S., Woods, S., Dautenhahn, K.,
Hall, L., Paiva, A., André, E., Aylett, R.: “FearNot!”: a computer-based anti-bullying-
programme designed to foster peer intervention. European journal of psychology of
education 26(1), 21–44 (2011)

15. Nelson, B. C., Kim, Y., Foshee, C., & Slack, K.: Visual signaling in virtual world-based
assessments: The SAVE Science project. Information Sciences 264, 32–40 (2014)

16. Falakmasir, M. H., Gonzalez-Brenes, J. P., Gordon, G. J., DiCerbo, K. E.: A Data-Driven
Approach for Inferring Student Proficiency from Game Activity Logs. In: ACM
Conference on Learning at Scale, pp. 341–349 (2016)

17. LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature 521(7553), 436–444 (2015)
18. AP® Computer Science Principles Draft Curriculum Framework.

http://www.csprinciples.org/. Accessed: 2017-02-05
19. K–12 Computer Science Framework. http://www.k12cs.org/. Accessed: 2017-02-05
20. Wiebe, E., Williams, L., Yang, K., Miller, C.: Computer science attitude survey.

computer science 14(25), 1–86 (2003)
21. Chen, G., Gully, S. M., Eden, D.: Validation of a new general self-efficacy scale.

Organizational Research Methods 4(1), 62–83 (2001)
22. Graves, A.: Supervised sequence labelling with recurrent neural networks. Studies in

Computational Intelligence 385, Springer (2012)
23. Schmidhuber, J.: Deep Learning in Neural Networks: An Overview. Neural Networks 61,

85–117 (2014)
24. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures.

Neural Networks: Tricks of the Trade, 437–478 (2012)
25. Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout :

A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research 15, 1929–1958 (2014)

26. Kingma, D. P., Ba, J. L.: Adam: a Method for Stochastic Optimization. In: International
Conference on Learning Representations (2015)

27. Chollet, F.: Keras. https://github.com/fchollet/keras. GitHub Repository. Accessed: 2017-
02-05

28. Keerthi, S. S., Lin, C.-J.: Asymptotic behaviors of support vector machines with
Gaussian kernel. Neural Computation 15(7), 1667–1689 (2003)

