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Abstract. A key untapped feature of game-based learning environments is 
their capacity to generate a rich stream of fine-grained learning interaction data. 
The learning behaviors captured in these data provide a wealth of information 
on student learning, which stealth assessment can utilize to unobtrusively draw 
inferences about student knowledge to provide tailored problem-solving support. 
In this paper, we present a long short-term memory network (LSTM)-based 
stealth assessment framework that takes as input an observed sequence of raw 
game-based learning environment interaction data along with external pre-
learning measures to infer students’ post-competencies. The framework is 
evaluated using data collected from 191 middle school students interacting with 
a game-based learning environment for middle grade computational thinking. 
Results indicate that LSTM-based stealth assessors induced from student game-
based learning interaction data outperform comparable models that required 
labor-intensive hand-engineering of input features. The findings suggest that the 
LSTM-based approach holds significant promise for evidence modeling in 
stealth assessment. 

Keywords: Game-Based Learning Environments, Stealth Assessment, Deep 
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1   Introduction 

Recent years have seen a growing interest in intelligent game-based learning 
environments because of their potential to effectively promote learning and 
engagement [1]. These environments simultaneously integrate the adaptive 
pedagogical functionalities of intelligent tutoring systems with the engaging 
interactions provided by digital games [2–3]. Research has begun to explore student 
modeling for game-based learning environments including modeling student 
knowledge [4] and students’ progression towards learning goals [5] following work 
on student-adaptive learning featuring tailored narratives, feedback, and problem-
solving support [6]. 



Stealth assessment [4] is a game-based assessment framework based on evidence-
centered design (ECD) [7]. ECD features task, evidence and competency models for 
diagnostic measurement of multiple aspects of students’ proficiency and performance. 
Built on the three models presented in ECD, stealth assessments utilize a rich stream 
of student interactions (i.e., an evidence model) with various problem-solving tasks 
(i.e., a task model) in game-based learning environments, to draw inferences about 
student knowledge and skills (i.e., a competency model). The evidence model 
provides the connections between the competency model and the stream of low-level 
observations, enabling the competency model to update the appropriate competencies 
related to the task being performed. In contrast to typical formative assessments, 
stealth assessment has the potential to not only create a valid, reliable evidence model 
utilizing observed sequences of detailed learning behaviors, but also to perform 
assessments of a wide range of constructs in an unobtrusive, invisible way, with the 
aim of providing useful feedback to students and teachers to enhance learning and 
inform instruction [4, 8]. 

A key challenge posed by stealth assessment is how to effectively handle both 
cyclical causalities between actions and events in the gameworld and temporal 
relationships characterized within learning behaviors. Students are likely to 
deliberately choose their next action by referring to the current task, their previous 
actions, and any feedback they received on their previous actions in the gameworld. 
Despite the popularity of utilizing evidence rules, which define a set of salient 
features that are indicative of specific student competencies in the evidence model, 
previous work based on evidence rules often ignores these complex relationships 
found within student learning behaviors [4, 9–10]. Furthermore, these features are 
often hand-engineered, so they are domain expert-dependent, labor-intensive, and 
domain-specific.  

As an alternative to manually devising an evidence model, an approach that 
automatically extracts patterns and learns predictive features from sequences of raw 
player actions would be more scalable, less labor-intensive, and would enable the 
induction of evidence models that directly represent student learning processes 
without sacrificing causal, temporal relationships. In this work, we investigate long 
short-term memory networks (LSTMs) [11], a type of gated recurrent neural network, 
for automating the creation of the evidence model without requiring hand-authored 
evidence rules and statistical models. LSTMs automatically extract salient features 
from temporal data and effectively preserve a longer-term memory by operating three 
gates featured in the network. Results of an evaluation suggest that LSTM-based 
stealth assessors directly induced from students’ interactions with a game-based 
learning environment show significant promise for stealth assessment.  

2   Related Work 

Intelligent game-based learning environments are situated at the intersection of 1) 
digital games that increase students’ motivation through rich settings (e.g., compelling 
plots, engaging characters) in virtual environments, and 2) intelligent tutoring systems 
that foster students’ learning through tailored scaffolding and context-sensitive 



feedback. Recent work in game-based learning environments explores a broad 
spectrum of subject matters ranging from high school mathematics [12], to middle 
school computer science [13], anti-bullying [14], language and culture learning [3], 
and science inquiry [15], among others.  

 Stealth assessment can play an important role in game-based learning 
environments. Previous work on stealth assessment based on evidence-centered 
design uses sequences of students’ interactions with the learning environment to 
dynamically assess students’ knowledge. For stealth assessment, various families of 
machine learning techniques have been investigated. Kim and colleagues [9] 
investigated Bayesian network-based evidence modeling, which requires two primary 
steps: (1) defining targeted competency and observable variables and building a 
directed graphical model, and (2) specifying the conditional probabilities between 
parent nodes and corresponding child nodes. Falakmasir et al. presented the SPRING 
data analysis pipeline that does not require costly domain knowledge engineering 
[16]. Specifically, SPRING trains two hidden Markov models (HMMs), one for high-
performing and the other for low-performing students per game level. Two log-
likelihoods of an observed sequence of student events are computed based on the two 
HMMs, and finally the difference between the two log-likelihoods for each game 
level is used as an independent variable for a linear regression model that predicts 
post-test scores. In our previous work, we presented DeepStealth [13], a framework 
based on deep neural networks [17] for stealth assessment. DeepStealth uses a deep 
feedforward neural network (FFNN)-based evidence modeling approach, in which the 
multi-level, hierarchical representations of the input data are learned through the 
training process of deep networks. While the last two approaches have an advantage 
over the Bayesian network-based approach by requiring less domain expert 
knowledge for evidence modeling, the competency model (e.g., competency model 
variables, dependencies between variables) is not designed at the same level of 
granularity as the Bayesian network and thus provide less fine-grained insight into 
concept mastery. While DeepStealth uses manually engineered features (e.g., features 
produced by expert-authored evidence rules), the LSTM-based approach introduced 
here fully automates the process of evidence modeling by directly utilizing raw game 
interaction data (i.e., a sequence of low-level actions).  

3   ENGAGE Game-Based Learning Environment 

ENGAGE (Figure 1) is a game-based learning environment designed to introduce 
computational thinking to middle school students. It features a rich immersive 3D 
storyworld built with the Unity multi-platform game engine. The ENGAGE curriculum 
was developed by adapting the AP® Computer Science Principles course learning 
objectives [18] for U.S. middle school students (ages 11–13). A central aim of the 
curriculum and game-based learning environment is to promote computational 
thinking and problem-solving processes that involve abstraction and algorithmic 
thinking, and allow students to effectively use computational tools for data analysis, 
modeling, and simulations [19]. In addition to providing a foundation for advanced 
computer science work in high school, the problem-solving activities and 



computational challenges within the game are designed to increase middle school 
student’s interest in computer science. 

In the game, students play the protagonist who is sent to rescue an underwater 
research facility. As students progress through the game, they discover that all of the 
computing devices within the facility have been commandeered by a nefarious 
researcher. Students navigate through a series of interconnected rooms, each of which 
presents students with a set of computational challenges they must solve by either 
programming devices or operating devices in reference to the programs already 
written for the devices. Programmable devices are programmed using a visual 
programming language, in which visual blocks are linked together [13]. Finally, 
support is provided throughout the game by a cast of non-player characters who help 
progress the narrative and offer clues to assist students in solving the computational 
challenges.  

One of the levels in the game, the Digital World, allows students to explore how 
binary sequences are used to represent digital data. The work presented in this paper 

Figure 2. (Left) A binary lock device that students must unlock. The white tiles indicate the 
bits are 1, whereas black tiles denote 0. The current binary number is 01110 and the 
corresponding base-ten number, 14, is displayed on the device as immediate feedback. 
(Right) The visual programming interface displaying the binary lock’s program. 

Figure 1. ENGAGE game-based learning environment. 



focuses on students’ problem-solving activities within this level. To complete a set of 
binary learning tasks, students must find the binary representation of the base-ten 
number stored in the binary lock device (Figure 2, Left). Specifically, students must 
review an existing program (Figure 2, Right) associated with the binary lock device, 
flip binary tiles on the binary lock device to change the binary sequence (Figure 2, 
Left), and execute its program. If the binary sequence matches the base-ten number 
stored in the program, the current binary lock device opens upon execution and the 
player can move on to a previously inaccessible area in the room. Through these tasks, 
students learn about the concept of bits in binary numbers and the weight assigned to 
each bit.  

In this work, we analyze 191 students’ interaction data (101 males, 88 females, 2 
unreported) from a teacher-led deployment of ENGAGE in four public middle school 
classrooms. Prior to beginning the Digital World unit, and immediately following the 
unit, students completed online pre- and post-test assessments measuring computer 
science attitudes [20], self-efficacy [21], and content knowledge (e.g., binary 
representation). Students achieved improvements in content knowledge covered in the 
Digital World unit, and a paired t-test comparing pre-test (M=0.43, SD=0.21) to post-
test (M=0.59, SD=0.24) indicated that students’ learning gains were statistically 
significant with a sizable effect size, t(185) = 12.25, p < .001, d = .70, where 186 out 
of 191 students took both the pre- and post-knowledge tests. These external learning 
measures are used as predictive features for our evidence models, along with the 
game interaction data. 

4   LSTM-Based Stealth Assessment Framework 

For a stealth assessment framework to be scalable to a broad range of learning 
environments, it must be able to easily accommodate a wide range of domain-specific 
features. Focusing on this aspect, we first describe how our work is framed in 
evidence-centered design (ECD) [7] and then turn to our LSTM-based stealth 
assessment framework. From an ECD perspective, the three models are summarized 
as follows:  

• Task Model: We use 11 binary-lock solving tasks from the Digital World unit, 
the objective of which is finding the binary representation that matches the base-
ten number specified in the program. 

• Evidence Model: Observed sequences of actions in the game reveal students’ 
competencies. A generic feature set is used to represent actions. For ENGAGE, 
there are 19 possible actions, and thus 19 distinct features are used to represent 
each action using one-hot encoding. In addition to the game interaction evidence, 
students’ five pre-test scores on the knowledge assessment, self-efficacy, and 
three measures of computer science attitudes are utilized as evidence. An LSTM-
based evidence model informs the competency model in order to update students’ 
competency levels.  

• Competency Model: Following our previous work [13], we examine one 
competency model variable with respect to students’ overall knowledge about 



binary representation, where the actual labels for their competency levels are 
acquired from students’ post-test performance.  

For domain independence, scalability, and robust performance, the evidence model 
supports a generic feature set as well as missing data. The low-level generic feature 
set in the evidence model can represent any types of action without being bound to a 
specific domain, thereby yielding enhanced scalability for the stealth assessment 
framework. We use a single generic feature set to represent actions in this work, but 
the framework can support multiple feature sets depending on the design of actions in 
the learning environment (e.g., “clicking the first binary tile” can be represented using 
two distinct feature sets: the action-type feature set that contains click, and the action-
argument feature set that contains first binary tile). 

In this work, the binary learning tasks allow 19 possible actions, including 11 
pairing actions1 associated with 11 devices described in the task model (e.g., binary 
lock device in Figure 2, Left), 5 bit-click actions (e.g., clicking a binary tile in Figure 
2, Left), two actions for operating the programming interface (open and close in 
Figure 2, Right), and a program execution action to run the device’s program.  

The evidence model is designed to consider students whose data (either external 
pre-test scores or task activities) is partially missing. For example, it is possible that a 
student missed a class and has only partial gameplay data or did not complete some 
pre-tests prior to playing the game. To formulate the external learning measure 
evidence from missing pre-test data, we perform mean imputation using a mean score 
of other students’ scores for the specific pre-test. On the other hand, in cases where 
students did not solve a specific task in the game, the game evidence is generated by 
linking any observed learning activities, skipping the unsolved tasks. For example, if 
a student completed only two tasks (T1 and T3) and missed one task (T2) in-between, 
the activities for T1 and T3 are linked to generate a data instance, ignoring T2. Since it 
is not uncommon for a student to be absent from class within a multi-week 
intervention, this specific design for the evidence model is necessary to broaden 
tailored learning support to all students who participated in the learning activities.  

For the competency model, students’ competencies are represented by their post-
test performance on the knowledge assessment items for binary representations. The 
competencies are defined based on a tertile split (‘high’, ‘medium’, or ‘low’) with 
respect to post-test scores on the assessment, and thus this stealth assessment task is 
cast as a three-class classification problem that predicts one’s competency level using 
an LSTM-based stealth assessor. 

 
4.1   Long Short-Term Memory Networks 
 
Long short-term memory networks (LSTMs) (Figure 3A) are a variant of recurrent 
neural networks (RNNs) that are specifically designed for sequence labeling of 
temporal data. Traditional RNNs have faced significant challenges with respect to 
vanishing or exploding gradients during training deep networks unfolded in time [22]. 

                                                
1 Within the game, students must pair their virtual in-game computer with devices before they 
can manipulate or view a device’s programs. 



The three gating units (input gate, output gate, and forget gate) featured in LSTMs 
enable modeling long-term dependencies within temporal sequences by allowing 
gradient information to flow over many time steps. LSTMs have achieved state-of-
the-art performance in a diverse set of computational sequence-labeling tasks, 
including speech recognition and machine translation [23]. 

In an implementation of LSTMs, the input gate (it), forget gate (ft), candidate value 
of the memory cell (𝑐"), and output gate (ot) at time t are computed by Equations 1–4, 
respectively, in which W and U are weight matrices for transforming the input (xt) at 
time t and the cell output (ht-1) at time t-1, b is the bias vector of each unit, and σ and 
tanh are the logistic sigmoid and hyperbolic tangent function, respectively: 

𝑖" = 𝜎(𝑊(𝑥" + 𝑈(ℎ"-. + 𝑏()                (1) 
𝑓" = 𝜎(𝑊2𝑥" + 𝑈2ℎ"-. + 𝑏2)             (2) 

𝑐" = 𝑡𝑎𝑛ℎ(𝑊6𝑥" + 𝑈6ℎ"-. + 𝑏6)               (3) 
𝑜" = 𝜎(𝑊8𝑥" + 𝑈8ℎ"-. + 𝑏8)            (4) 

As described in Equation 5, the current memory cell’s state (ct) is calculated by 
modulating the current memory candidate value (𝑐") via the input gate (it) and the 
previous memory cell state (ct-1) via the forget gate (ft). Through this process, a 
memory cell decides whether to keep or forget the previous memory state and 
regulates the candidate of the current memory state via the input gate. Once again, the 
current memory cell state (ct) is controlled by the output gate (ot) to compute the cell 
activation (ht) of the LSTM block at time t. This step is described in Equation 6: 

𝑐" = 𝑖"𝑐" + 𝑓"𝑐"-.                  (5) 
ℎ" = 𝑜"	𝑡𝑎𝑛ℎ(𝑐")     (6) 

Lastly, we use the final memory cell output vector (ht) to predict the class label for 
stealth assessment, which is the competency level of the student. This step is executed 
in a softmax layer (top-right in Figure 3A), which is interpreted as a calculation of 
posterior probabilities of the possible class labels. The LSTM is end-to-end trainable, 
where all the parameters such as W, U, and b are machine-learned using 
backpropagation through time.  
 
4.2   Configuring LSTMs for Evidence Modeling 
 
The LSTM’s input, xt, represents the evidence that a student reveals at time t. As 
noted above, the evidence model considers students’ pre-learning measures in 
addition to actions in the game. These two types of variables feature different 
dynamics: actions are sequential and discrete, whereas the external learning measures 
are static and numeric, since they are measured prior to starting the game. Figure 3B 
describes how we encode these two different types of variables into a trainable input 
(xt) at time t. First, we concatenate the integer index of the action at time t (at) with 
the five static external learning measures (e1–e5) to generate the original input (inputt). 
While scores for external learning measures (e.g., e1) can be directly utilized by the 
LSTMs because their relative, numeric values are meaningful, the action index, at, 
should be reformulated since its discrete value does not represent a magnitude. 

To address this issue, we use one-hot encoding to represent actions. One-hot 
encoding creates a bit vector whose length is the number of the actions, where only 
the associated action bit is on (i.e., 1), while all other bits are off (i.e., 0). Since we 



consider 19 distinct actions in ENGAGE, an action (e.g., at) is represented with a 19-
dimensional vector. The final input (xt) is generated by concatenating the one-hot 
encoded action representations with the five external learning measures, and thus the 
input is a 24-dimensional vector. Like actions in the input, the output of LSTMs 
should also be represented using one-hot encoding, due to its discrete nature. Since 
the number of possible competency levels is three in our work, the output is 
represented using a three-dimensional one-hot vector.  

Given this encoding of actions, the next step is to devise an encoding for action 
sequences. Suppose that a student performed three actions and achieved the 
competency level, ‘high’. We generate x1, x2, and x3 based on our input encoding 
approach. A naïve method to generate a sequence is creating one from the list of 
actions, [x1, x2, x3], along with the target label ‘high’. Another approach to generate 
sequences is using sequence subsampling. The sequence subsampling method can 
generate more sequences for the same case. For the same example, a subsampling 
method can produce three sequences, [x1], [x1, x2], and [x1, x2, x3], all with the same 
target label of ‘high’, by accumulating actions sequentially. While the naïve approach 
creates only one training example (i.e., one sequence), this subsampling approach can 
create as many training examples as the number of actions per student (three 
sequences in this example). Since actions in a sequence represent a student’s dynamic 
learning progress to achieve the final competency, we adopt the subsampling method 
that induces fine-grained training examples. 

Figure 3. (A) An illustration of an LSTM memory block that features three gating units and a 
memory cell [22]. (B) An illustration of how an original input (inputt) is transformed to a 
trainable format (xt). The discrete action variable, at, is one-hot encoded into a 19-dimensional 
vector using bit 1 to 19, and then the induced vector is concatenated with numeric external 
learning measure variables (e1 to e5) to create the final input, xt. 



Finally, as with many other machine learning techniques, an effective 
configuration of network hyperparameters for LSTMs often must be empirically 
determined. There are several categories of hyperparameters to consider, including 
optimization (e.g., optimizer, learning rate), model structure (e.g., the number of 
hidden units, initialized weights), and training criterion (e.g., regularization terms, 
loss function) [24]. In this work, we adopt a grid-search on a model structure-based 
hyperparameter, the number of hidden units, which has the most significant influence 
on predictive performances of LSTMs among others in student goal recognition work 
[5]. We explore five values for the hyperparameter: 80, 100, 120, 140 and 160. Other 
than this, we investigate a single-layer LSTM with a softmax layer for classifying 
given sequences of actions, adopt a mini-batch gradient descent with the mini-batch 
size of 128, set the dropout rate [25], a regularization parameter, to 0.75, and utilize 
categorical cross entropy for the loss function and the Adam stochastic optimizer [26]. 
Finally, the training process stops early if the validation score has not improved 
within the last seven epochs. In this work, 10% of the training data is used to 
determine early stopping, while 90% is utilized for supervised training, leaving the 
test set purely unseen. The maximum number of epochs is set to 100. For devising 
LSTM-based evidence models, we use Keras [27], a python-based modular neural 
networks library. 

5   Evaluation 

We evaluate evidence models’ predictive accuracy with 10-fold student-level cross-
validation. The same data split is used for a fair comparison with the competitive 
baseline approaches. In this empirical evaluation, 191 students’ gameplay data along 
with their external pre-learning measures are investigated, where 35,571 data 
instances are generated for training LSTM-based evidence models, following the 
sequence subsampling technique. We compare the LSTM model to the previous state-
of-the-art deep feedforward neural network pre-trained with stacked denoising 
autoencoders (FFNN) [13], support vector machine (SVM), and naïve Bayes model 
(NB). As discussed, unlike our LSTM models, the three competitive baseline models 
utilize four salient game features engineered by domain experts, including the number 
of binary tile flips, the number of binary tile double flips (a binary tile flipped and 
then immediately flipped again), the number of times the device programs are 
executed, and the amount of time students spent in the programming interface [13]. 
Also, for these three baseline models, in case that the gameplay data is partially 
missing, mean imputation is performed per game feature as done for missing pre-
learning measures, since these models take fixed-size inputs. All four evidence 
modeling approaches utilize the same set of external learning measures as additional 
evidence. 

For each computational approach, the best model configurations are identified in 
the process of 10-fold cross-validation. Similar to the grid search method applied for 
the LSTMs, we grid-search a set of hyperparameters for FFNNs, SVMs and NBs. For 
FFNNs, we explore two hyperparameters, the number of hidden layers (from one to 
five) and corruption rate (four randomly chosen values), while freezing some other 



hyperparameters (e.g., 40 hidden units per layer, softmax for the output activation 
function). We examine two hyperparameters that are popularly explored for 
optimization: the penalty parameter (C) and gamma (𝛾) for SVMs with a radial basis 
function [28]. C is chosen from {1, 10, 50, 100}, and 𝛾  is chosen from {0.0005, 
0.001, 0.005, 0.01, 0.05}. Finally, for NBs, we investigate two distributions (normal 
distribution and kernel smoothing density estimate) to fit models for the data.  

Table 1. Average accuracy rates of the LSTMs, FFNNs, SVMs, and NBs.  
{columns : rows} for the four machine learning techniques indicate {number of hidden units}, 
{number of hidden layers : corruption rate}, {gamma : penalty parameter}, and {distribution}, 

respectively. The highest accuracy rate is marked in bold for each technique. 

LSTMs 80 100 120 140 160 
 58.1% 56.1% 58.6% 63.9% 60.7% 

FFNNs 1 2 3 4 5 
0.20 61.9% 59.1% 56.6% 57.6% 59.7% 
0.39 56.6% 61.3% 60.7% 56.5% 55.5% 
0.69 59.1% 54.0% 62.9% 52.3% 54.5% 
0.82 58.1% 59.7% 57.1% 55.0% 49.8% 

SVMs 0.0005 0.001 0.005 0.01 0.05 
1 50.8% 55.5% 59.1% 58.1% 56.0% 

10 58.6% 59.2% 58.6% 59.2% 58.6% 
50 59.2% 59.7% 56.6% 57.1% 58.1% 

100 59.2% 56.6% 58.7% 58.7% 58.1% 
NBs Normal Kernel    

 48.1% 41.6%    

Table 1 reports the average accuracy rates across different hyperparameter 
configurations for each machine learning technique from cross-validations. Overall, 
the highest performing LSTMs (the number of hidden units: 140) achieve 63.9% 
accuracy rate, which outperforms the highest performing models from FFNNs 
(62.9%), SVMs (59.7%) and NBs (48.1%) as well as the majority class baseline 
(41.9%).  

In addition to the predictive performance improvement, the LSTM-based stealth 
assessment has two notable benefits over the baseline approaches. First, the capacity 
to handle various lengths of action sequences, effectively learning sequential patterns, 
and performing sequence labeling per action points towards LSTMs as being a viable 
solution for stealth assessment. For instance, as opposed to the FFNN-based approach 
that takes as input a fixed size of input features generated using the entire sequence of 
actions, LSTMs can sequentially make a prediction per action, and thus enable 
dynamic, run-time formative assessments on student competencies. Second, LSTMs 
directly utilize raw game interaction data dispensing with the need for manually 
engineering features to induce stealth assessors. This characteristic constitutes 
considerable benefits over the other models, since the feature engineering process is 
not only labor and time-intensive, but also impedes scalability of the stealth 
assessment framework to other learning environments due to the domain-specificity 
of the engineering process. It is noteworthy that the LSTMs directly utilizing low-
level inputs achieve the highest accuracy without leveraging expert knowledge.  



6   Conclusions and Future Work 

This paper has introduced a novel LSTM-based stealth assessment framework that 
shows promise for accurately assessing learners’ competency levels. Using data 
collected from multi-week classroom deployments of a game-based learning 
environment for middle grade computational thinking, we conducted an evaluation of 
four stealth assessment induction approaches that predict student post-competencies. 
The results suggest that LSTM-based stealth assessors outperform the previous state-
of-the-art approach, deep feedforward neural networks pre-trained with stacked 
denoising autoencoders, as well as support vector machines and naïve Bayes models, 
with respect to predictive accuracy of students’ post-competencies. This result is 
notable in that the LSTM-based evidence models were induced directly using raw 
game interaction data, whereas the other models were devised using domain-expert 
engineered features. Together with the sequence modeling capability, the LSTM-
based stealth assessment framework offers the potential to serve as the foundation for 
formative assessment that operates dynamically, unobtrusively, and is readily 
applicable to various learning environments. In the future, it will be important to 
investigate stealth assessor model optimizations and regularizations for further 
improving performance and informing decision making for adaptive scaffolding. It 
will be also important to measure the stealth assessors’ early prediction performance 
to evaluate their capacity for formative assessment. It will also be important to design 
a granular set of competencies for stealth assessors to be more diagnostic and provide 
fine-grained pedagogical support to further enhance student learning. 
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