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Abstract. A distinctive feature of intelligent game-based learning 
environments is their capacity for enabling stealth assessment. Stealth 
assessments gather information about student competencies in a manner that is 
invisible, and enable drawing valid inferences about student knowledge. We 
present a framework for stealth assessment that leverages deep learning, a 
family of machine learning methods that utilize deep artificial neural networks, 
to infer student competencies in a game-based learning environment for middle 
grade computational thinking, ENGAGE. Students’ interaction data, collected 
during a classroom study with ENGAGE, as well as prior knowledge scores, are 
utilized to train deep networks for predicting students’ post-test performance. 
Results indicate deep networks that are pre-trained using stacked denoising 
autoencoders achieve high predictive accuracy, significantly outperforming 
standard classification techniques such as support vector machines and naïve 
Bayes. The findings suggest that deep learning shows considerable promise for 
automatically inducing stealth assessment models for intelligent game-based 
learning environments. 

Keywords: Game-Based Learning Environments, Stealth Assessment, Deep 
Learning, Computational Thinking, Educational Games. 

1   Introduction 

Recent years have witnessed growing interest in intelligent game-based learning 
environments, which simultaneously provide adaptive pedagogical functionalities 
delivered through intelligent tutoring systems and engaging learning experiences 
afforded by digital games [1–3]. A key benefit of game-based learning environments 
is their ability to embed problem-solving challenges within interactive virtual 
environments, which can enhance students’ motivation [4] and facilitate learning 
through customized narratives and feedback [5, 6]. 

Stealth assessment is a pedagogical process, enabled by digital games, that 
involves real-time, invisible measurement of students’ learning processes and 
outcomes. In game-based learning environments, stealth assessments have the 
potential to draw valid inferences about student competencies in an invisible and non-
disruptive manner [6]. Stealth assessment is methodologically grounded in evidence-



centered design, and models typically consist of three components: a competency 
model, an evidence model, and a task model [6, 7]. A competency model represents 
students’ knowledge and skills, which are modeled probabilistically. An evidence 
model identifies how observations of students’ learning behaviors reveal student 
competencies on different skills and knowledge. A task model characterizes the 
challenges with which students interact, thereby producing evidence to infer the 
student’s competency levels. Stealth assessments offer the potential to dynamically 
identify gaps in student knowledge, enabling personalized learning while 
simultaneously preventing students from “gaming the system” [5, 8]. With stealth 
assessments in place, it is possible for game-based learning environments to 
effectively diagnose student competencies and thus adaptively scaffold skill 
development, remediate misconceptions, and discourage behaviors that are not 
conducive to learning. 

A key challenge posed by current stealth assessment techniques is manually 
devising models that enable valid inferences about student knowledge and skills. To 
address this challenge, we propose DeepStealth, a stealth assessment framework that 
leverages deep learning to automatically induce predictive models of student 
competency based on student interaction data. Deep learning is a family of machine 
learning methods that utilize deep artificial neural networks to model hierarchical 
representations of data for prediction tasks [9]. An empirical evaluation conducted 
with the ENGAGE game-based learning environment for middle grade computational 
thinking demonstrates that DeepStealth significantly outperforms support vector 
machines and naïve Bayes models at predicting students’ competency levels (post-test 
performance on knowledge) under 10-fold cross validation. The results suggest that 
the DeepStealth approach holds significant promise for competency modeling in 
stealth assessment. 

2   Related Work 

Intelligent game-based learning environments seek to increase learners’ motivation 
through rich settings, engaging characters, and compelling plots, and they foster 
learning through tailored scaffolding and context-sensitive feedback. Narrative-
centered learning environments have been found to deliver experiences in which 
learning and engagement are synergistic [5]. Recent work in game-based learning has 
been undertaken for a broad range of subject matters ranging from high school 
mathematics [10] to language learning [3].   

Intelligent game-based learning environments can support many forms of 
knowledge assessment. Shute proposed Bayesian network-based competency models, 
utilizing them in the context of stealth assessment [6]. Quellmalz and colleagues 
proposed an approach using simulation-based assessment, which was found to 
effectively assess science learning and inquiry practices [11]. Factor analysis 
techniques, such as performance factor analysis and matrix/tensor factorization, have 
been investigated for student performance prediction for knowledge assessment and 
problem-solving assessment [12, 13]. Bayesian knowledge tracing has been widely 
explored to assess latent knowledge and skills in the context of cognitive modeling 



[14]. The approach presented here is the first to utilize deep learning techniques [9] to 
assess students’ competency and performance levels within a technology-rich learning 
environment.  

3   ENGAGE Game-Based Learning Environment 

ENGAGE is an immersive game-based learning environment for middle school 
computer science education, built with the Unity game engine and FLARE user 
interface toolkit [15]. The curriculum underlying ENGAGE is based on the AP 
Computer Science Principles course [16] with learning objectives that are 
developmentally appropriate for U.S. middle school students (ages 11-13). The 
ENGAGE learning environment was designed to expose students to problems that 
encourage the development of computational thinking. Computational thinking is a 
problem-solving process that involves abstraction and algorithmic thinking, and 
leverages computational tools for data analysis, modeling, or simulations [17]. 
Additionally, the problem-solving activities within ENGAGE are designed to increase 
interest in computer science and provide a foundation for more advanced computer 
science work in high school.  

In ENGAGE, students play the role of the protagonist who has been sent to a 
research facility to determine why all communication with the station has been lost. 
As students explore the research facility, they progress through each level, which 
consists of a series of interconnected rooms. Each room presents students with a set of 
computational challenges they solve by programming devices located in the room. 
Devices are programmed using a visual programming interface in which “blocks” that 
represent program elements are dragged and stacked together to create programs. 
Students interact with a cast of non-player characters who offer clues and relevant 
details via dialogue. The narrative is advanced through cinematics and learning is 
scaffolded by dialogue hints and animated vignettes.  

The work presented in this paper focuses on students’ problem-solving activities 
within ENGAGE’s Digital World unit, which focuses on investigating how binary 
sequences are used to represent digital data. In one set of problem-solving activities, 
students must find the binary representation of a base-ten number to activate a lift 
device (Figure 1, left), which requires students to review an existing program for the 
lift device (Figure 1, right) to determine what base-ten number activates the lift, as 

Figure 1. (Left) A lift device with an existing program, and (Right) the programming 
interface displaying the lift’s program. 



well as to understand the concept of bits in binary numbers and the weight assigned to 
each bit. Students read the program using the visual programming interface, flip 
binary tiles on the lift device (the white squares at the top of the lift device in Figure 1, 
left) to change the binary sequence until it matches the base-ten number specified in 
the program (Figure 1, right), and then stand on the lift device and execute its 
program, which allows them to jump to a previously inaccessible area of the room. 
Students are provided immediate feedback on the base-ten number interpretation of 
the binary sequence as they flip tiles on the lift device through a display above the 
binary sequence (e.g., 31 in Figure 1, left). In later parts of the level, the function that 
converts the binary sequence to a base-ten number is corrupted and students must 
correct the weights associated with each bit before executing the program.  

During gameplay, students complete 16 problem-solving activities. Eleven 
activities involve matching binary sequences with base-ten numbers, and five 
activities involve correcting weights of bits. Four key features are logged from these 
problem-solving interactions. The features include the number of binary tile flips, the 
number of binary tile double flips (a binary tile flipped and then immediately flipped 
again), the number of times the device programs are executed, and the amount of time 
students spent in the programming interface. Since the tasks can be solved in a brute-
force manner without understanding the binary representation of numbers or the 
programs that control the devices, it is important to be able to dynamically assess 
students’ competency levels on binary representation.  

In this work, we analyze the interaction data from 49 students (28 male, 21 female) 
from a teacher-led deployment of ENGAGE in two public middle school classrooms. 
Students interacted with ENGAGE over several weeks in their science class. Prior to 
beginning the unit, and immediately following the unit, students completed online 
pre- and post-test assessments measuring cognitive skills, computer science attitudes, 
and subject knowledge (e.g., binary representation). We investigated whether students 
achieved improvements in content knowledge from the Digital World, and a paired t-
test comparing pre-test (M=0.42, SD=0.23) to post-test (M=0.63, SD=0.25) indicated 
that students’ learning gains were statistically significant with a large effect size, t(48) 
= 6.22, p < .001, d = .89. 

4   Feature Engineering: Problem-Solving Strategy Identification 

In this section, we present a clustering analysis, which was conducted as a precursor 
to training deep learning models for stealth assessment. We anticipate that clustering 
on students’ interaction data has the potential to identify distinct problem-solving 
strategies that students employed during ENGAGE’s binary number learning activities. 
We hypothesize that clustering can serve as a form of automated feature engineering, 
producing strategy cluster features that enhance the predictive performance of the 
deep learning-based competency model. To perform the clustering analysis, we 
utilized expectation maximization (EM) [18] on the four features from the game 
interaction logs described in Section 3.  

EM clustering was conducted on 49 students’ interaction data with standardized 
features, where the number of clusters was automatically chosen to maximize the log-



likelihood of the data based on 10-fold cross validation. We found three student 
clusters that reflected distinct differences in students’ problem-solving strategies. We 
also conducted an after-clustering analysis to examine normalized learning gains of 
each individual cluster [19]. All significance tests were performed using the Wilcoxon 
signed-rank test. 

Cluster 1 containing 31 students (63%) included the most efficient problem solvers. 
These students comprised the highest performing group, with averaged normalized 
learning gains of 0.40. This group had significantly lower number of flips and double 
flips, and low program reading time compared to the other two clusters (all with 
p<.01). These results indicate that this group easily acquired concept knowledge, 
understood program meaning, and as a result were able to solve the binary challenges 
in the most principled way among the three groups. 

Students in Cluster 2, 12% (6 students), and Cluster 3, 24% (12 students), differed 
along one principal dimension. Cluster 2 had a significantly higher number of double 
flips than Cluster 3 (p=0.01) while conducting a similar number of single flips 
(p=0.84). This difference could indicate that Cluster 2 may have reevaluated the 
problem by leveraging a guess-and-check strategy. Cluster 3 did not use a double flip 
strategy indicating that they may have been randomly flipping tiles to solve the 
problem. Overall, the number of program executions did not differ between clusters, 
indicating that each group only differed in the way that they prepared a solution to the 
problem, and not in the number of times they submitted an answer to the problem. 
With respect to averaged normalized learning gains, students in Cluster 2 and Cluster 
3 achieved 0.26 and 0.20, respectively. 

This clustering analysis suggests that each group exhibited distinctive patterns of 
interaction while solving the computational challenges. Because problem-solving 
strategies are related to students’ learning processes, as evidenced by observed 
differences in normalized learning gains across groups, it appears that it may be 
possible to utilize students’ problem-solving strategy clusters as inputs to deep 
learning-based competency models to improve their predictive performance. Next, we 
describe an automated stealth assessment framework that uses the clustering results as 
input, and we evaluate their benefit. 

5   Stealth Assessment Leveraging Deep Learning 

In this section, we first describe how our work is framed in evidence-centered design 
to support stealth assessment from the three model perspectives.  

• Competency Model: We assess students’ competency levels on knowledge about 
binary representation. We run cross validation tests to evaluate the model’s 
performance based on actual labels from students’ post-test performance.  

• Evidence Model: Students’ knowledge about binary representation can be 
revealed through their interactions during gameplay. These interactions are 
characterized by the four features described in Section 3. Also, the three problem-
solving strategies discussed in Section 4 as well as the students’ pre-test scores 
on the knowledge assessment, cognitive skill, and computer science attitude are 
considered as evidence. 



• Task Model: We use 16 problem-solving tasks that have an objective of either 
“finding binary representations” or “correcting weights” in ENGAGE. Students’ 
interactions on these tasks produce evidence that informs competency models to 
assess students’ knowledge about binary representation.  

Prior to training a predictive model for inferring students’ competency, each 
student’s data is labeled with their post-test performance, based on a tertile split (‘A’, 
‘B’, or ‘C’) with respect to post-test scores in knowledge assessments, and thus the 
prediction is cast as a three-class classification that predicts one’s performance.  

Three input feature sets are considered to evaluate the impact of the engineered 
feature, strategy, as evidence: 1) the raw feature set (RF) based on the four features 
logged from interactions in the game, 2) the strategy feature set (SF) based on the 
strategy captured from the clustering, and 3) the combined feature set (CF) leveraging 
both RF and SF, and are independently analyzed to measure impacts of the features. 
These feature sets also include external learning measures, such as pre-test scores on 
knowledge, cognitive skills, and computer science attitudes, which are accessible and 
promising as predictors when reasoning competencies during the game-based learning 
activities.  

The current work on competency modeling employs deep learning (DL), which 
learns hierarchical representations through multi-layer abstraction of data, often in the 
context of artificial neural networks [9]. One specific type of DL leverages pre-
training that initializes weights in deep neural architectures [9, 20] with the objective 
of minimizing the reconstruction error of the original input. The pre-training process 
has been shown to help find a region of parameter space that can reach a better local 
optimum in a non-convex optimization graph, without which training deep neural 
networks often becomes hard to optimize due to underfitting and vanishing/exploding 
gradient problems [9]. After pre-training, models can be fine-tuned with standard 
optimization methods such as stochastic gradient descents to perform classification or 
regression tasks. DL based techniques have proven very successful in achieving state-
of-the-art performance on a wide range of machine learning tasks [9].  

We utilize DL with a pre-training technique, stacked denoising autoencoders 
(SDAEs) [20], for competency modeling. We describe the SDAE technique, as well 
as autoencoders (AEs), a basic form of SDAEs. An autoencoder (AE) is a pre-training 
technique that features (1) encoding (f) that deterministically maps (W1) an input 
vector (x) into a hidden representation f(x) using a non-linear transformation 
characterized by an activation function, s (Equation 1) and (2) decoding (g) that maps 
(W2) the hidden representation f(x) back to g(f(x)), a reconstructed vector of the input 
vector (x), using s (Equation 2). The objective in AEs is on learning representations 
(W1 and W2) along with two bias terms (b1 and b2) by minimizing the reconstruction 
error between x and g(f(x)) through backpropagation methods (e.g., stochastic 
gradient descent) using an unsupervised criterion.   

f(x) = s(W1x+b1).     (1) 
       g(f(x)) = s(W2 f(x) +b2).     (2) 

Stacked denoising autoencoders (SDAEs) extend AEs from two perspectives. First, 
deep neural networks can be pre-trained by stacking layers of AEs (stacked 
autoencoders). Second, SDAEs hypothesize that effective representations should be 



able to robustly recover corrupted inputs into the uncorrupted original inputs 
(denoising) [20]. The first objective can be achieved using layer-wise pre-training, 
which is a technique to pre-train the entire network using an iterative process, from 
the first to last layer. For example, once the first layer is pre-trained based on the 
reconstruction criterion, the output from the first layer is fed as the input to the next 
layer, and then the second layer can be pre-trained in the same manner. On the other 
hand, to achieve the latter objective, SDAE performs a corruption process by injecting 
noise (we set random neurons to 0) into the original input vector (x), as illustrated in 
Figure 2. In this method, the input vector x is partially corrupted into x’ based on the 
corruption level that defines the probability of corrupting input neurons. Then, x’ is 
deterministically mapped to f(x’) via an encoding process, and f(x’) is recovered to 
g(f(x’)) via a decoding process following standard AEs. A key difference in SDAE is 
that the objective function is to minimize the reconstruction error (L) between the 
uncorrupted input x and the decoded output based on the corrupted input, g(f(x’)), 
interpreted as denoising corrupted inputs. As a result, SDAEs provide benefits over 
AEs by effectively dealing with noisy input data utilizing denoising techniques and 
preventing weights from reaching a trivial solution (identity matrix) that could cause 
overfitting in prediction tasks [20]. As noted above, once pre-training of the entire 
network is completed, all the initialized weights from pre-training can be fine-tuned 
using a supervised criterion.  

As in other machine learning techniques, selecting hyperparameters for DL and a 
corruption level (fraction of corrupted input neurons) for SDAE often must be 
empirically determined. In this work, on the one hand, we explore the model space 
using a grid search of some parameters such as the corruption level (0.02, 0.1, or 0.5), 
the number of hidden layers (3–5), and the input feature set (Raw, Strategy, or 
Combined). On the other hand, we have fixed the following parameters: the number 
of neurons per hidden layer (50), the gradient descent optimization method (stochastic 
gradient descent), the learning rate (0.1), the activation function (sigmoid), the loss 
criterion (mean square error), and the number of epochs for gradient descent learning 
(100). Input to DL is encoded with 70 neurons (64 raw features, 6 pre-test scores), 9 
neurons (3 strategy features, 6 pre-test scores), or 73 neurons (64 raw features, 3 
strategy features, 6 pre-test scores) based on the feature set that the model utilizes, 
RF, SF, and CF, respectively, while every model has 3 output neurons (‘A’, ‘B’, and 
‘C’) for the predicted post-test performance.  

Figure 2. Illustration of stacked denoising autoencoders; red crosses denote corruption [20].  



6   Empirical Evaluation 

We evaluate how accurate our predictive competency models are using 10-fold 
student-level cross validation. Similar to the method applied to SDAEs, we run a grid 
search for choosing support vector machines’ (SVMs) hyperparameters, and the 
model that achieves the highest accuracy rate is selected according to cross validation 
results. This work examines two hyperparameters that are popularly explored for 
optimization: the penalty parameter (C) and gamma (𝛾) for SVMs with a radial basis 
function [21]. C is chosen from {1, 10, 100}, and 𝛾 is chosen from {0.005, 0.01, 0.1, 
0.5, 1.0}. For naïve Bayes (NB) models, we use non-parametric kernel density 
estimation, since our training data does not necessarily follow a normal distribution.  

Table 1. Averaged accuracy rates of the highest performing NB, SVM, and DL.1 

 NB SVM DL 

Raw Feature Set (RF) 53.5% 56.5% 65.5% 
Strategy Feature Set (SF) 51.0% 55.0% 55.0% 

Combined Feature Set (CF) 53.5% 56.5% 71.5% 

Model evaluation is performed along two dimensions. In the first evaluation, we 
train models based on the three machine learning techniques (NB, SVM, DL) along 
with all adjustable parameters and evaluate models’ predictive performance using 10-
fold cross validation. From the results, we choose the model that achieves the highest 
average accuracy rate per pair of machine learning approach and feature set (Table 1). 
In cross validations, all models use the same split of the training and validation set for 
pairwise comparisons. Overall, the highest performing DL model (the number of 
hidden layers: 3, corruption level: .02, combined feature set) achieves 71.5% accuracy 
rate, which significantly outperforms both the highest performing models from NB 
and SVM (C=1, 𝛾=0.005) as well as the majority class baseline (36.7%).  

For additional analyses, we run the Friedman test with a post hoc analysis with 
Wilcoxon signed-rank tests to compare high performing models. The Friedman test 
indicates there is a statistically significant difference in accuracy rates depending on 
the models, χ2 (2)=6.93, p=.03. The Wilcoxon signed-rank post hoc tests indicate the 
DL model elicits statistically significant improvements in accuracy rates over the 
SVM model (Z=-2.06, p=.04) and the NB model (Z=-2.25, p=.02), but SVM vs. NB 
does not constitute a statistically significant difference. 

In the second evaluation, by aggregating fold-based validation accuracies and 
conducting Wilcoxon tests, we measure the impact of each parameter used in DL, 
such as input feature set types, corruption levels, and the number of layers (Table 2). 
DL models that leverage CF utilizing both RF and SF obtain the highest average 
accuracy rate. The Wilcoxon signed-rank test indicates that there is not a statistically 
significant difference between CF-based models and RF-based models (Z=-1.69, 

                                                
1 With respect to DL’s runtime performance, a prediction takes 0.3 milliseconds on average for 

3 hidden layer models on the test machine with a 2.7 GHz Intel Core i7 CPU and 8 GB RAM. 



p=.09). However, CF shows promise as a strong predictor set by achieving both the 
highest performance across models (Table 1) and the highest average performance 
across parameter settings (Table 2). This result demonstrates that the performance of 
DL can be further improved by taking advantage of human-engineered features, while 
SVMs and NBs seem to not easily benefit from the additional information in this 
evaluation.  

Table 2. Parameter-wise SDAE model evaluation (left: feature set as the independent 
variable (IV), middle: corruption level as IV, right: number of layers as IV). 

Feature Set Accuracy 
Rate 

Corruption 
Level 

Accuracy 
Rate 

Num. of 
Layers 

Accuracy 
Rate 

Raw (RF) 60.7% 0.02 57.8% 3 57.9% 
Combined (CF) 62.8% 0.1 58.2% 4 56.4% 

Strategy (SF) 49.5% 0.5 57.2% 5 58.2% 

7   Conclusions and Future Work 

This paper has introduced DeepStealth, a novel stealth assessment framework based 
on deep learning, which shows considerable promise for accurately assessing learners’ 
competency levels. Using data from classroom studies with a game-based learning 
environment for middle grade computational thinking, we conducted an empirical 
evaluation that found that DeepStealth, which uses deep learning models with stacked 
denoising autoencoders, significantly outperforms baseline approaches, including 
naïve Bayes models and support vector machines, as well as the majority class 
baseline. Moreover, results suggest that the performance of deep learning in 
DeepStealth can be further improved when utilizing engineered features through deep 
learning’s pre-training and fine-tuning process. In the future, it will be important to 
investigate how much the external learning measures (i.e., pre-test scores) contribute 
to the competency model’s performance beyond game interaction logs, explore other 
deep learning techniques that can effectively deal with evidence with variant lengths, 
and examine parameter and hyperparameter optimization techniques for improved 
performance. Together, these techniques may be able to further improve deep 
learning-based approaches to stealth assessment.  
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