
Recent years have seen a growing recognition of the
transformative potential of game-based learning envi-
ronments. The burgeoning field of game-based learn-

ing has made significant advances, including theoretical
developments (Gee 2007), as well as the creation of game-
based learning environments for a broad range of K–12 sub-
jects (Habgood and Ainsworth 2011; Ketelhut et al. 2010;
Warren, Dondlinger, and Barab 2008) and training objectives
(Johnson 2010; Kim et al. 2009). Of particular note are the
results of recent empirical studies demonstrating that in addi-
tion to game-based learning environments’ potential for
motivation, they can enable students to achieve learning
gains in controlled laboratory settings (Habgood and
Ainsworth 2011) as well as classroom settings (Ketelhut et al.
2010). 

Motivated by the goal of creating game-based learning
experiences that are personalized to individual students, we
have been investigating intelligent game-based learning
environments that leverage commercial game technologies
and AI techniques from intelligent tutoring systems (D’Mel-
lo and Graesser 2010; Feng, Heffernan, and Koedinger 2009;
VanLehn 2006) and intelligent narrative technologies (Lim
et al. 2012; McCoy et al. 2011; Si, Marsella, and Pynadath
2009; Yu and Riedl 2012). This work ranges from research on
real-time narrative planning and goal recognition to affective
computing models for recognizing student emotional states.
Intelligent game-based learning environments serve as an
excellent laboratory for investigating AI techniques because
they make significant inferential demands and play out in
complex interactive scenarios. 

In this article we introduce intelligent game-based learning
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� Intelligent game-based learning envi-
ronments integrate commercial game
technologies with AI methods from
intelligent tutoring systems and intelli-
gent narrative technologies. This article
introduces the Crystal Island intelligent
game-based learning environment,
which has been under development in
the authors’ laboratory for the past sev-
en years. After presenting Crystal
Island, the principal technical problems
of intelligent game-based learning envi-
ronments are discussed: narrative-cen-
tered tutorial planning, student affect
recognition, student knowledge model-
ing, and student goal recognition. Solu-
tions to these problems are illustrated
with research conducted with the Crys-
tal Island learning environment



environments by presenting Crystal Island, an intel-
ligent game-based learning environment for middle
grade science education (Rowe et al. 2011). Crystal
Island has been under continual development
through a series of learning technology investiga-
tions and laboratory and classroom studies over the
past seven years. We discuss technical problems that
we have investigated in the context of Crystal Island,
including narrative-centered tutorial planning, stu-
dent affect recognition, student modeling, and stu-
dent goal recognition. We conclude with a discussion
of educational impacts of intelligent game-based
learning environments, and future directions for the
field.

The Crystal Island 
Learning Environment

Crystal Island (figure 1) is a narrative-centered learn-
ing environment that was originally built on Valve
Software’s Source engine, the three-dimensional (3-
D) game platform for Half-Life 2, and now runs on
the Unity cross-platform game engine from Unity
Technologies. The curriculum underlying Crystal
Island’s mystery narrative is derived from the North
Carolina state standard course of study for eighth-
grade microbiology. The environment is designed as
a supplement to classroom instruction, and it blends
elements of both inquiry learning and direct instruc-
tion. Crystal Island has served as a platform for inves-

tigating a range of artificial intelligence technologies
for dynamically supporting students’ learning expe-
riences. This includes work on narrative-centered
tutorial planning (Lee, Mott, and Lester 2012; Mott
and Lester 2006), student knowledge modeling
(Rowe and Lester 2010), student goal recognition (Ha
et al. 2011), and affect recognition models (Sabourin,
Mott, and Lester 2011). The environment has also
been the subject of extensive empirical investigations
of student learning and presence (Rowe et al. 2011),
with results informing the design and revision of suc-
cessive iterations of the system.

Crystal Island features a science mystery where stu-
dents attempt to discover the identity and source of
an infectious disease that is plaguing a research team
stationed on a remote island. Students adopt the role
of a medical field agent who has been assigned to
investigate the illness and save the research team
from the outbreak. Students explore the research
camp from a first-person viewpoint and manipulate
virtual objects, converse with characters, and use lab
equipment and other resources to solve the mystery.
The mystery is solved when students complete a
series of partially ordered goals that involve uncover-
ing details about the spreading infection, testing
potential transmission sources of the disease, record-
ing a diagnosis and treatment plan, and presenting
the findings to the camp nurse.

The following scenario illustrates a typical interac-
tion with Crystal Island. The scenario begins with the
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Figure 1. Crystal Island Narrative-Centered Learning Environment.
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player-character disembarking from her boat shortly
after arriving on the island. After completing a brief
tutorial that introduces the game’s controls, the play-
er leaves the dock to approach the research camp.
Near the camp entrance, the student encounters an
infirmary with several sick patients and a camp
nurse. Upon entering the infirmary, the student
approaches the nurse and initiates a conversation
(figure 2). The nurse explains that an unidentified ill-
ness is spreading through the camp and asks for the
player’s help in determining a diagnosis. She advises
the student to use an in-game diagnosis worksheet in
order to record her findings, hypotheses, and final
diagnosis (figure 3). This worksheet is designed to
scaffold the student’s problem-solving process, as
well as provide a space for the student to offload any
findings gathered about the illness. The conversation
with the nurse takes place through a combination of
multimodal character dialogue — spoken language,
gesture, facial expression, and text — and player dia-
logue menu selections.

After speaking with the nurse, the student has sev-
eral options for investigating the illness. The student
can talk to sick patients lying on medical cots in order
to gather information about the team members’ symp-
toms and recent eating habits. Alternatively, the stu-
dent can move to the camp’s dining hall to speak with
the camp cook. The cook describes the types of food
that the team has recently eaten and provides clues
about which items warrant closer investigation. In

addition to learning about the sick team members, the
student can walk to the camp’s living quarters to con-
verse with a pair of virtual scientists who answer ques-
tions about viruses and bacteria. The student can also
learn more about pathogens by viewing posters hang-
ing inside of the camp’s buildings or reading books
located in a small library.

Beyond gathering information about the disease
from virtual scientists and other instructional
resources, the student can test potential transmission
sources using the laboratory’s testing equipment. For
example, the student encounters several food items
that have been lying out in the dining hall, and she
can test the items for infectious agents at any point
during the learning interaction. 

After running several tests, the student discovers
that the sick team members have consumed milk that
is contaminated with a bacterial agent. The student
can use the camp’s books and posters in order to inves-
tigate bacterial diseases that are associated with symp-
toms matching those reported by the sick team mem-
bers. Once she has narrowed down a diagnosis and
recommended treatment, the student returns to the
infirmary in order to inform the camp nurse. If the stu-
dent’s diagnosis is incorrect, the nurse identifies the
error and recommends that the player keep working.
The student can use this feedback to roughly deter-
mine how close she is to solving the mystery. When
the student correctly diagnoses the illness and speci-
fies an appropriate treatment, the mystery is solved.

Figure 2. Camp Nurse and Sick Patient in Virtual Infirmary.



Decision-Theoretic 
Narrative Planning

In order to perform real-time adaptive personaliza-
tion of interactive narratives in game-based learning
environments like Crystal Island, director agents (or
drama managers) plan unfolding narratives by oper-
ating on at least two distinct but interacting levels:
they craft the global story arc, typically by traversing
a plot graph that encodes a partial order of significant
events in the narrative, and they plan virtual charac-
ter behaviors and physical events in the storyworld.
This task, known as narrative-centered tutorial plan-
ning, blends aspects of interactive narrative planning
and tutorial planning in a single problem. Interactive
narrative planning encompasses a number of chal-
lenges, such as balancing character believability and
plot coherence in the presence of unpredictable user
actions (Riedl and Young 2004), or providing rich
character behaviors that are consistent with authori-
al objectives (Mateas and Stern 2005). The task’s tuto-
rial planning component requires that the director
agent guide students’ cognitive, affective, and
metacognitive processes to promote effective learn-
ing outcomes.

To address these requirements for Crystal Island,
we designed and implemented U-Director (Mott and
Lester 2006), a decision-theoretic narrative planning
architecture that uses a dynamic decision network

(DDN) (Dean and Kanazawa 1989) to model narrative
objectives, storyworld state, and user state in order to
inform run-time adaptations of Crystal Island’s sci-
ence mystery. A DDN-based approach to narrative
planning provides a principled decision-making
framework for reasoning about the multiple sources
of evidence that inform narrative-centered tutorial
planning. At each game clock cycle, U-Director sys-
tematically evaluates available evidence, updates its
beliefs, and selects the storyworld action that maxi-
mizes expected narrative-tutorial utility.

Because narrative is fundamentally a time-based
phenomenon, in each decision cycle U-Director con-
siders candidate narrative actions to project forward
in time the effects of the actions being taken and
their consequent effects on the user (Mott and Lester
2006). To do so, it evaluates its narrative objectives in
light of the current storyworld state and user state.
Each decision cycle considers three distinct time
slices (narrative statet, narrative statet+1, and narrative
statet+2), each of which consists of interconnected
subnetworks containing chance nodes in the DDN
(figure 4). The three slices represent (1) the current
narrative state, (2) the narrative state after the direc-
tor agent’s decision, and (3) the narrative state after
the user’s next action. The DDN’s director action is a
decision node, the DDN’s user action is a chance
node, and utilityt+2 is a utility node in the DDN. Each
time slice encodes a probabilistic representation of
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Figure 3. Diagnosis Worksheet Where Students Record their Findings.



the director’s beliefs about the overall state of the nar-
rative, represented with narrative-centered knowl-
edge sources.

U-Director begins its computation by considering
narrative statet, which represents the model’s current
beliefs about the unfolding story’s narrative objec-
tives, storyworld state, and user state (Mott and
Lester 2006). Links from the director action node to
the narrative statet+1 node model candidate director
actions and how they affect the story. Example direc-
tor actions include instructing nonplayer characters
to perform actions in the environment or guiding
students through the story by providing appropriate-
ly leveled hints. U-Director constrains the number of
candidate director actions to evaluate at each time
step using abstract director actions, thereby limiting
the number of concrete actions considered. Next, it
models how the possible worlds encoded in narrative
statet+1 influence the user’s action and how the user’s
action in turn affects the story in narrative statet+2
Finally, using links from narrative statet+2 to the utili-
ty node utilityt+2, U-Director models preferences over
potential narrative states. Preferences provide a rep-
resentation in which authors specify the relative
importance of salient features of the narrative state. 

To gauge the overall effectiveness of U-Director’s
narrative planning capabilities a simulated user
approach was taken (Mott and Lester 2006). Six simu-

lated users (three cooperative users who typically fol-
lowed the agent’s guidance and three uncooperative
users who typically did not follow the agent’s guid-
ance) interacted with the Crystal Island director agent
to create six different narrative experiences. Traces of
the director agent’s decision making were analyzed to
see if the agent took appropriate action to guide users
through the narrative. As was desired, the analysis
revealed that the director agent adopted a hint-cen-
tered approach for cooperative users and a more
heavy-handed approach for uncooperative users. The
simulated user approach offers a promising means for
establishing baseline performance prior to conducting
extensive focus group studies with human users.

In addition to formalisms based on dynamic deci-
sion networks, we have also experimented with
empirically based models of narrative-centered tuto-
rial planning using a Wizard-of-Oz framework,
where human wizards serve as expert narrative-cen-
tered tutorial planners (Lee, Mott, and Lester 2012).
In this approach, trained wizards interact with stu-
dents who are attempting to solve Crystal Island’s
science mystery. The wizards perform tutorial and
narrative planning functionalities by controlling a
virtual character and guiding students through the
game-based learning environment. Detailed trace
data from these wizard-student interactions is col-
lected by the virtual environment — including all
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Figure 4. High-Level Illustration of Dynamic Decision Network for Interactive Narrative Director Agent.



wizard decision-making, navigation, and manipula-
tion activities — in order to generate a training cor-
pus for inducing narrative-centered tutorial planning
models using supervised machine-learning tech-
niques.

To explore the run-time effectiveness of the
machine-learned narrative-centered tutorial plan-
ning models, induced intervention and action mod-
els were integrated into Crystal Island, where the
models determine when is the most appropriate time
to intervene and what is the most appropriate next
narrative-tutorial action. This extended version of
Crystal Island was identical to the Wizard-of-Oz-
based version, except a narrative-centered tutorial
planner rather than a human wizard drove nonplay-
er character interactions. The planning models
actively observe students’ activities and dynamically
guide students by directing characters in the virtual
storyworld.

Three experimental conditions were created to
evaluate the effectiveness of the induced narrative-
centered tutorial planner: minimal guidance, inter-
mediate guidance, and full guidance. Outcomes of
the three conditions were compared to determine the
effectiveness of utilizing our machine-learned mod-
els.

Minimal Guidance: Students experience the story-
world under the guidance of a minimal narrative-
centered tutorial planning model. This model con-
trols events that are required to be performed by the
system (that is, students cannot complete the events
without the system taking action). The model in this
condition is not machine learned. It performs an
action once all preconditions are met for the action
to be taken. This condition served as a baseline for
the investigation.

Intermediate Guidance: Students experience the sto-
ryworld under the guidance of an intermediate nar-
rative-centered tutorial planning model. This is an
ablated model inspired by the notions of interactive
narrative islands (Riedl et al. 2008). Islands are inter-
mediate plan steps through which all valid solution
paths must pass. They have preconditions describing
the intermediate world state, and if the plan does not
satisfy each island’s preconditions, the plan will nev-
er achieve its goal. In our version of Crystal Island,
transitions between narrative arc phases represent
“islands” in the narrative. Each arc phase consists of
a number of potential narrative-centered tutorial
planning decisions. However, the phases are bound-
ed by specific narrative-centered tutorial planning
decisions that define when each phase starts and
ends. We employ these specific tutorial action deci-
sions as our islands.

Full Guidance: Students experience the storyworld
under the guidance of the full narrative-centered
tutorial planning model. The model actively moni-
tors students interacting with the storyworld in order
to determine when it is appropriate to intervene with

the next tutorial action. The model has full control of
the tutorial intervention decisions (that is, determin-
ing when to intervene) and tutorial action decisions
(that is, determining what the intervention should
be). The full guidance tutorial planning model
employs the entire set of narrative-centered tutorial
planning decisions available to it. This list is
described in Lee, Mott, and Lester (2011).

In an experiment comparing the three narrative-
centered tutorial planning models, a total of 150
eighth-grade students used Crystal Island and com-
pleted the pre- and posttest measures (Lee, Mott, and
Lester 2012). The students were drawn from a subur-
ban middle school. While the study was held during
the school day, groups of students were pulled out of
class to play the game in a laboratory setting. The pre-
and posttests consisted of the same multiple-choice
questions about Crystal Island’s microbiology cur-
riculum. Students completed the pretest several days
prior to using Crystal Island, and they completed the
posttest immediately after solving the science mys-
tery. In all three conditions, the tutorial planning
models’ actions focused on introducing narrative
events, or providing problem-solving advice to stu-
dents. The tutorial planner did not perform actions
involving direct instruction of curricular content. 

An investigation of overall learning found that stu-
dents who interacted with Crystal Island achieved
positive learning gains on the curriculum test. A two-
tailed matched pairs t-test between posttest and
pretest scores indicates that the learning gains were
significant, t(149) = 2.03, p < .05. It was also found
that students’ Crystal Island interactions in the full
guidance condition yielded significant learning
gains, as measured by the difference of posttest and
pretest scores. As shown in table 1, a two-tailed
matched pairs t-test showed that students in the full
guidance condition showed statistically significant
learning gains. Students in the intermediate and min-
imal guidance conditions did not achieve significant
learning gains.

In addition, we analyzed learning gain differences
between the conditions and the results showed that
there were significant differences. Performing an
ANCOVA to control for pretest scores, the learning
gains were significantly different for the full and min-
imal guidance conditions, F(2, 99) = 38.64, p < .001,
as were the learning gains for the full and intermedi-
ate guidance conditions, F(2, 100) = 40.22, p < .001.
Thus, students who received full guidance from our
machine-learned models achieved significantly high-
er learning gains than the students who were in the
other two conditions. These results are consistent
with findings from the education literature, which
suggest that students who receive problem-solving
guidance (coaching, hints) during inquiry-based
learning achieve greater learning outcomes than stu-
dents who receive minimal or no guidance (Kirschn-
er, Sweller, and Clark 2006; Mayer 2004).
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Modeling Student Affect
Affect has begun to play an increasingly important
role in game-based learning environments. The intel-
ligent tutoring systems community has seen the
emergence of work on affective student modeling
(Conati and Maclaren 2009), including models for
detecting frustration and stress (McQuiggan, Lee, and
Lester 2007), modeling agents’ emotional states
(Marsella and Gratch 2009), and detecting student
motivation (de Vicente and Pain 2002). All of this
work seeks to increase the fidelity with which affec-
tive and motivational processes are understood and
utilized in intelligent tutoring systems in an effort to
increase the effectiveness of tutorial interactions and,
ultimately, learning.

This focus on examining affect is largely due to the
effects it has been shown to have on learning out-
comes. Emotional experiences during learning have
been shown to affect problem-solving strategies, the
level of engagement exhibited by students, and the
degree to which the student is motivated to contin-
ue with the learning process (Picard et al. 2004).
These factors have the power to dictate how students
learn immediately and their learning behaviors in
the future. Consequently, the ability to understand
and model affective behaviors in learning environ-
ments has been a focus of recent work (Arroyo et al.
2009; Conati and Maclaren 2009; D’Mello and
Graesser 2010).

Correct prediction of students’ affective states is an
important first step in designing affect-sensitive
game-based learning environments. The delivery of
appropriate affective feedback requires first that the
student’s state be accurately identified. However, the
detection and modeling of affective behaviors in
learning environments poses significant challenges.
For example, many successful approaches to affect
detection utilize a variety of physical sensors to
inform model predictions. However, deploying these
types of sensors in schools or home settings often
proves to be difficult, or impractical, due to concerns
about cost, privacy, and invasiveness. Consequently,
reliance on physical sensors when building affect-
sensitive learning environments can limit the poten-
tial scalability of these systems. To combat this issue,
many systems attempt to model emotion without
the use of physiological sensors. Some researchers
taking this approach have focused on incorporating
theoretical models of emotion, such as appraisal the-
ory, which is particularly well suited for computa-
tional environments (Marsella and Gratch 2009).
These models propose that individuals appraise
events and actions in their environment according to
specific criteria (for example, desirability or cause) to
arrive at emotional experiences. While there are a
variety of appraisal-based theories of emotions, few
appraisal models focus specifically on the emotions
that typically occur during learning (Picard et al.
2004). 

The lack of a widely accepted and validated mod-
el of learner emotions poses a challenge for the
development of affect-detection systems using theo-
retical grounding in place of physical sensors. How-
ever, Elliot and Pekrun’s model of learner emotions
describes how students’ affective states relate to their
general goals during learning tasks, such as whether
they are focused on learning or performance, and
how well these goals are being met (Elliot and
Pekrun 2007). The generality of this model allows it
to be adapted to specific learning tasks and makes it
well suited for predictive modeling in open-ended
learning environments.

Elliot and Pekrun’s model of learner emotions was
used as a theoretical foundation for structuring a
sensor-free affect detection model (Sabourin, Mott,
and Lester 2011). This model was empirically learned
from a corpus of student interaction data. During
their interactions with Crystal Island, students were
asked to self-report on their affective state through
an in-game smartphone device. They were prompted
every seven minutes to select one emotion from a set
of seven options, which included anxious, bored,
confused, curious, excited, focused, and frustrated.
This set of cognitive-affective states is based on prior
research identifying states that are relevant to learn-
ing (Craig et al. 2004, Elliot and Pekrun 2007). Each
emotional state was also accompanied by a validated
emoticon to provide clarity to the emotion label.

A static Bayesian network (figure 5) was designed
with the structure hand-crafted to include the rela-
tionships described within Elliot and Pekrun’s mod-
el of learner emotions (Sabourin, Mott, and Lester
2011). Specifically the structure focused on repre-
senting the appraisal of learning and performance
goals and how these goals were being met based on
students’ progress and activities in the game. For
example, some activities such as book reading or
note taking in Crystal Island are related to learning
objectives, while achievement of certain milestones
and external validation are more likely to contribute
to measures of performance goals. Several other com-
ponents of Elliot and Pekrun’s model are also con-
sidered. For example, students with approach orien-
tations are expected to have generally more positive
temperaments and emotional experiences than stu-
dents with avoidance orientations.

Using a training corpus of student interaction
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Conditions Students Gain Avg. SD t p 

Full 55 1.28 2.66 2.03 < 0.05 

Intermediate 48 0.13 2.69 0.19 0.84 

Minimal 47 0.89 3.12 1.23 0.22 

Table 1. Learning Gain Statistics for Comparison of 
Induced Narrative-Centered Tutorial Planning Models.



data to learn and validate the parameters of static
and dynamic Bayesian network models (Sabourin,
Mott, and Lester 2011), it was found that the Elliot
and Pekrun (2007) model of learner emotions can
successfully serve as the basis for computational
models of learner emotions. The model grounded
by a theoretical understanding of learner emotions
outperformed several baseline measures including
most-frequent class as well as a Bayesian network
model operating under naïve variable independence
assumptions (table 2). It was also found that model-
ing the dynamic quality of emotional states across
time through a dynamic Bayesian network offered
significant improvement in performance over the
static Bayesian network. The model performed par-
ticularly well at identifying positive states, includ-
ing the state of focused, which was the most fre-
quent emotion label (tables 3–4). The model had
difficulty distinguishing between the states of con-
fusion and frustration, which is intriguing because
the causes and experiences of these two states are
often very similar. These findings indicate the need
for future work to improve predictions of negative
emotional states so that models for automatic detec-
tion of students’ learning emotions can be used for
affective support in game-based learning environ-
ments.

Student Modeling with 
Dynamic Bayesian Networks

Devising effective models of student knowledge in
game-based learning environments poses significant
computational challenges. First, models of student
knowledge must cope with multiple sources of uncer-
tainty inherent in the modeling task. Second, knowl-
edge models must dynamically model knowledge
states that change over the course of a narrative inter-
action. Third, the models must concisely represent
complex interdependencies among different types of
knowledge, and naturally incorporate multiple
sources of evidence about user knowledge. Fourth, the
models must operate under the real-time performance
constraints of the interactive narratives that play out
in intelligent game-based learning environments.

To address these challenges, we developed a
dynamic Bayesian network (DBN)) approach to mod-
eling user knowledge during interactive narrative
experiences (Rowe and Lester 2010). DBNs offer a
unified formalism for representing temporal stochas-
tic processes such as those associated with knowledge
modeling in interactive narrative environments. The
framework provides a mechanism for dynamically
updating a set of probabilistic beliefs about a stu-
dent’s understanding of narrative, mystery solution,
strategic, and curricular knowledge components that
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are accumulated and demonstrated during interac-
tions with a narrative environment. An initial ver-
sion of the model has been implemented in Crystal
Island.

The DBN for knowledge tracing was implemented
with the SMILE Bayesian modeling and inference
library developed by the University of Pittsburgh’s
Decision Systems Laboratory (Druzdzel 1999). The
model maintains approximately 135 binary nodes,
100 directed links, and more than 750 conditional
probabilities. As the knowledge-tracing model
observes student actions in the environment, the
associated evidence is incorporated into the network,
and a Bayesian update procedure is performed. The
update procedure, in combination with the net-
work’s singly connected structure, yields updates that
complete in less than one second. Initial probability
values were fixed across all students; probabilities
were chosen to represent the assumption that stu-
dents at the onset had no understanding of scenario-
specific knowledge components and were unlikely to
have mastery of curriculum knowledge components.

A human participant study was conducted with
116 eighth-grade students from a middle school
interacting with the Crystal Island environment
(Rowe and Lester 2010). During the study, students
interacted with Crystal Island for approximately 50
minutes. Logs of students’ in-game actions were
recorded, and were subsequently used to conduct an
evaluation of the DBN knowledge-tracing model. The
evaluation aimed to assess the model’s ability to
accurately predict students’ performance on a con-
tent knowledge postexperiment test. While the eval-
uation does not inspect the student knowledge mod-
el’s intermediate states during the narrative
interaction, nor students’ narrative-specific knowl-
edge, an evaluation of the model’s final knowledge
assessment accuracy provided a useful starting point
for refining the model and evaluating its accuracy.

The DBN knowledge-tracing model used the stu-
dents’ recorded trace data as evidence to approximate
students’ knowledge at the end of the learning inter-
action. This yielded a set of probability values for
each student, corresponding to each of the knowl-
edge-tracing model’s knowledge components. The
resultant data was used in the analysis of the model’s
ability to accurately predict student responses on
postexperiment content test questions. The mapping
between the model’s knowledge components and
individual posttest questions was generated by a
researcher, and used the following heuristic: if a
posttest question or correct response shared impor-
tant content terms with the description of a particu-
lar knowledge component, that knowledge compo-
nent was designated as necessary for providing an
informed, correct response to the question. Accord-
ing to this heuristic, several questions required the
simultaneous application of multiple knowledge
components, and a number of knowledge compo-

nents bore on multiple questions. This yielded a
many-to-many mapping between knowledge com-
ponents and posttest questions.

The evaluation procedure required the definition
of a threshold value to discriminate between mas-
tered and unmastered knowledge components:
knowledge components whose model values exceed-
ed the threshold were considered mastered, and
knowledge components whose model values fell
below the threshold were considered unmastered.
The model predicted a correct response on a posttest
question if all of the question’s associated knowledge
components were considered mastered. The model
predicted an incorrect response on a posttest ques-
tion if one or more associated knowledge compo-
nents were considered unmastered. The use of a
threshold to discriminate between mastered and
unmastered knowledge components mirrors how
the knowledge model might be used in a run-time
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 Emotion Accuracy Valence Accuracy 

Baseline 22.4% 54.5% 

Naïve Bayes 18.1% 51.2% 

Bayes Net 25.5% 66.8% 

Dynamic BN 32.6% 72.6% 

Table 2. Prediction Accuracies.

Actual Emotion Correct Emotion Prediction Correct Valence
Prediction

anxious 2% 60% 

bored 18% 75% 

confused 32% 59% 

curious 38% 85% 

excited 19% 79% 

focused 52% 81% 

frustrated 28% 56% 

Table 3. Prediction Accuracy by Emotion.

  Predicted Valence 

   Positive Negative

Actual Positive 823 184 

Valence Negative 326 512 

Table 4. Valence Confusion Matrix.



environment to inform interactive narrative decision
making.

Rather than choose a single threshold, a series of
values ranging between 0.0 and 1.0 were selected. For
each threshold, the DBN knowledge model was com-
pared to a random model, which assigned uniformly
distributed, random probabilities for each knowledge
component. New random probabilities were generat-
ed for each knowledge component, student, and
threshold. Both the DBN model and random model
were used to predict student posttest responses, and
accuracies for each threshold were determined across
the entire test. Accuracy was measured as the sum of
successfully predicted correct responses plus the
number of successfully predicted incorrect respons-
es, divided by the total number of questions. 

The DBN model outperformed a random baseline
model across a range of threshold values. The DBN
model most accurately predicted students’ posttest
responses at a threshold level of 0.32 (M = .594, SD =
.152). A Wilcoxon-Mann-Whitney U test verified
that the DBN knowledge-tracing model was signifi-
cantly more accurate than the random model at the
0.32 threshold level, z = 4.79, p < .0001. Additional
Mann-Whitney tests revealed that the DBN model’s
predictive accuracy was significantly greater than
that of the random model, at the � = .05 level, for the
entire range of thresholds between .08 and .56.

Student Goal Recognition
Goal recognition, as well as its sibling tasks, plan
recognition and activity recognition, are long-stand-
ing AI problems (Charniak and Goldman 1993; Kautz
and Allen 1986; Singla and Mooney 2011) that are
central to game-based learning. The problems are cas-
es of abduction: given domain knowledge and a
sequence of actions performed by an agent, the task
is to infer which plan or goal the agent is pursuing.
Recent work has yielded notable advances in recog-
nizing agents’ goals and plans, including methods for
recognizing multiple concurrent and interleaved
goals (Hu and Yang 2008), methods for recognizing
activities in multiagent settings (Sadilek and Kautz
2010), and methods for augmenting statistical rela-
tional learning techniques to better support abduc-
tion (Singla and Mooney 2011).

Digital games pose significant computational chal-
lenges for goal-recognition models. For example, in
many games players’ abilities change over time, both
by unlocking new powers and improving motor skills
over the course of game play. In effect, a player’s
action model may change, in turn modifying the
relationships between actions and goals. Action fail-
ure is also a critical and deliberate design choice in
games; in platform games, a poorly timed jump often
leads to a player’s demise. In multiplayer games, mul-
tiagent goals arise that may involve players compet-
ing or collaborating to accomplish game objectives.

Individual players may also pursue ill-defined goals,
such as “explore” or “try to break the game.” In these
cases goals and actions may be cyclically related;
players take actions in pursuit of goals, but they may
also choose goals after they are revealed by particular
actions. For these reasons, game-based learning envi-
ronments offer promising test beds for investigating
different formulations of goal-recognition tasks.

To investigate these issues, we have been devising
goal-recognition models for Crystal Island (Ha et al.
2011). Given its relationship to abduction, goal
recognition appears well suited for logical represen-
tation and inference. However, goal recognition in
digital games also involves inherent uncertainty. For
example, a single sequence of actions is often
explainable by multiple possible goals. Markov logic
networks (MLNs) provide a formalism that unifies
logical and probabilistic representations into a single
framework (Richardson and Domingos 2006). To
address the problem of goal recognition with
exploratory goals in game environments, a Markov
logic goal-recognition framework was devised.

The MLN goal-recognition model was trained on a
corpus collected from player interactions with Crys-
tal Island (Ha et al. 2011). In this setting, goal recog-
nition involves predicting the next narrative subgoal
that the student will complete as part of investigating
the mystery. 

An MLN consists of a set of weighted first-order
logic formulae. A weight reflects the importance of
the constraint represented by its associated logic for-
mula in a given model. Figure 6 shows 13 MLN for-
mulae that are included in the goal-recognition mod-
el. Formula 1 represents a hard constraint that needs
to be satisfied at all times. This formula requires that,
for each action a at each time step t, there exists a sin-
gle goal g. The formulae 2–13 are soft constraints that
are allowed to be violated. Formula 2 reflects the pri-
or distribution of goals in the corpus. Formulae 3–13
predict the player’s goal g at time t based on the val-
ues of the three action properties, action type a, loca-
tion l, and narrative state s, as well as the previous
goal. The weights for the soft formulae were learned
with theBeast, an off-the-shelf tool for MLNs that
uses cutting plane inference (Riedel 2008).

Similar to the U-Director framework described
above, the MLN framework encodes player actions in
the game environment using three properties: action
type, location, and narrative state. 

Action Type: Type of action taken by the player,
such as moving to a particular location, opening a
door, and testing an object using the laboratory’s test-
ing equipment. Our data includes 19 distinct types of
player actions.

Location: Place in the virtual environment where a
player action is taken. This includes 39 fine-grained
and nonoverlapping sublocations that decompose
the seven major camp locations in Crystal Island.

Narrative State: Representation of the player’s
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progress in solving the narrative scenario. Narrative
state is encoded as a vector of four binary variables,
each of which represents a milestone event within
the narrative. 

The performance of the proposed MLN goal-recog-
nition model was compared to one trivial and two
nontrivial baseline models (Ha et al. 2011). The triv-
ial baseline was the majority baseline, which always
predicted the goal that appears most frequently in
the training data. The nontrivial baselines were two
n-gram models, unigram and bigram. The unigram
model predicted goals based on the current player
action only, while the bigram model considered the
previous action as well. In the n-gram models, player
actions were represented by a single aggregate feature
that combined all three action properties: action
type, location, and narrative state. In addition to
game environments, n-gram models have been used
in previous goal-recognition work for spoken dia-
logue systems (Blaylock and Allen 2003).

The two n-gram models and the proposed MLN
model were evaluated with tenfold cross validation.
The entire data set was partitioned into ten nonover-
lapping subsets, ensuring data from the same player
did not appear in both the training and the testing

data. Each subset of the data was used for testing
exactly once. The models’ performance was meas-
ured using F1, which is the harmonic mean of preci-
sion and recall. Table 5 shows the average perform-
ance of each model over ten-fold cross validation.
The MLN model scored 0.484 in F1, achieving an 82
percent improvement over the baseline. The uni-
gram model performed better than the bigram mod-
el. A one-way repeated-measures ANOVA confirmed
that the differences among the three compared mod-
els were statistically significant (F(2, 18) = 71.87, p <
0.0001). A post hoc Tukey test revealed the differ-
ences between all pairs of the three models were sta-
tistically significant (p < .01).

Educational Impact 
In addition to the version of Crystal Island for mid-
dle school science education described above, two
additional versions of Crystal Island have been
developed: one for elementary science education,
and one for integrated science and literacy education
for middle school students. More than 4000 students
have been involved with studies with the Crystal
Island learning environments. While the learning
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Figure 6. Formulae for MLN Goal-Recognition Model.



environments are in continual development, they
regularly achieve learning gains in students. For
example, an observational study involving 150 stu-
dents investigated the relationship between learning
and engagement in Crystal Island (Rowe et al. 2011).
All students in the study played Crystal Island. The
investigation explored questions in the science edu-
cation community about whether learning effective-
ness and engagement are synergistic or conflicting in
game-based learning. Students were given pre- and
posttests on the science subject matter. An investiga-
tion of learning gains found that students answered
more questions correctly on the posttest (M = 8.61,
SD = 2.98) than the pretest (M = 6.34, SD = 2.02), and
this finding was statistically significant, t(149) =
10.49, p < .001. 

The relationship between learning and engage-
ment was investigated by analyzing students’ learn-
ing gains, problem-solving performance, and several
engagement-related factors. The engagement-related
factors included presence, situational interest, and
in-game score. Rather than finding an oppositional
relationship between learning and engagement, the
study found a strong positive relationship between
learning outcomes, in-game problem solving, and
increased engagement (table 6). Specifically, a linear
regression analysis found that microbiology back-
ground knowledge, presence, and in-game score were
significant predictors of microbiology posttest score,
and the model as a whole was significant, R2 = .33,
F(3, 143) = 23.46, p < .001. A related linear regression
analysis found that microbiology pretest score, num-
ber of in-game goals completed, and presence were
all significant predictors of microbiology posttest per-

formance, R2 = .35, F(4, 127) = 16.9, p < .01. Similar
results have been found with the elementary school
version of Crystal Island. With 800 students over
twelve 50-minute class periods, students’ science con-
tent test scores increased significantly, the equivalent
of a letter grade.

Related Work
Intelligent game-based learning environments lever-
age advances from two communities: intelligent
tutoring systems and intelligent narrative technolo-
gies. Intelligent tutoring systems model key aspects
of one-on-one human tutoring in order to create
learning experiences that are individually tailored to
students based on their cognitive, affective, and
metacognitive states (Woolf 2008). By maintaining
explicit representations of learners’ knowledge and
problem-solving skills, intelligent tutoring systems
can dynamically customize problems, feedback, and
hints to individual learners (Koedinger et al. 1997,
VanLehn 2006). Recent advances in intelligent tutor-
ing systems include improvements to fine-grained,
temporal models of student knowledge acquisition
(Baker, Goldstein, and Heffernan 2011); models of
tutorial dialogue strategies that enhance students’
cognitive and affective learning outcomes (Forbes-
Riley and Litman 2011); models of students’ affective
states and transitions during learning (Conati and
Maclaren 2009, D’Mello and Graesser 2010);
machine-learning-based techniques for embedded
assessment (Feng, Heffernan, and Koedinger 2009);
and tutors that model and directly enhance students’
self-regulated learning skills (Azevedo et al. 2010,
Biswas et al. 2010). Critically, the field has converged
on a set of scaffolding functionalities that yield
improved student learning outcomes compared to
nonadaptive techniques (VanLehn 2006). 

Intelligent narrative technologies model human
story telling and comprehension processes, including
methods for generating interactive narrative experi-
ences that develop and adapt in real time. Given the
central role of narratives in human cognition and
communication, there has been growing interest in
leveraging computational models of narrative for a
broad range of applications in training (Johnson
2010; Kim et al. 2009; Si, Marsella, and Pynadath
2009) and entertainment (Lin and Walker 2011;
McCoy et al. 2011; Porteous et al. 2011; Swanson and
Gordon 2008; Yu and Riedl 2012). In educational set-
tings, computational models of interactive narrative
can serve as the basis for story-centric problem-solv-
ing scenarios that adapt story-centered instruction to
individual learners (Johnson 2010; Lim et al. 2012;
Rowe et al. 2011).

Educational research on story-centered game-
based learning environments is still in its nascent
stages. While there have been several examples of
successful story-centric game-based learning envi-
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Baseline Unigram Bigram Factored MLN

F1 0.266 0.396 0.330 0.484 

Improvement 
over Baseline

N/A 49% 24% 82% 

Table 5. F1 Scores for MLN and Baseline Goal-Recognition Models.

Predictor B SE  

Pretest .46** .09 .33**

Presence .03* .01 .15* 

Final Game Score .01** .00 .31**

R`1   .33  

Table 6. Regression Results Predicting 
Students’ Microbiology Posttest Performance.

Note: ** - p < .01; * - p < .05



ronments for K–12 education (Ketelhut et al. 2010;
Lim et al. 2012; Warren, Dondlinger, and Barab 2008)
and training applications (Johnson 2010), consider-
able work remains to establish an empirical account
of which educational settings and game features are
best suited for promoting effective learning and high
engagement. For example, recent experiments con-
ducted with college psychology students have indi-
cated that narrative-centered learning environments
may not always enhance short-term content reten-
tion more effectively than direct instruction (Adams
et al. 2012). However, the instructional effectiveness
of story-centered game-based learning environments
is likely affected by their instructional designs, game
designs, and capacity to tailor scaffolding to individ-
ual learners using narrative-centered tutorial plan-
ning, student affect recognition, student modeling,
and student goal recognition. Additional empirical
research is needed to determine which features, and
artificial intelligence techniques, are most effective in
various settings. Furthermore, intelligent game-based
learning environments have a broad range of appli-
cations for guided inquiry-based learning, prepara-
tion for future learning, assessment, and learning in
informal settings such as museums and homes. Iden-
tifying how integrated AI systems that combine tech-
niques from intelligent tutoring systems and intelli-
gent narrative technologies can best be utilized to
enhance robust, lifelong learning is a critical chal-
lenge for the field.

Conclusion 
Intelligent game-based learning environments artful-
ly integrate commercial game technologies and AI
frameworks from intelligent tutoring systems and
intelligent narrative technologies to create personal-
ized learning experiences that are both effective and
engaging. Because of their ability to dynamically tai-
lor narrative-centered problem-solving scenarios to
customize advice to students, and to provide real-
time assessment, intelligent game-based learning
environments offer significant potential for learning
both in and out of the classroom. 

Over the next few years as student modeling and
affect recognition capabilities become even more
powerful, intelligent game-based learning environ-
ments will continue to make their way into an
increasingly broad range of educational settings
spanning classrooms, homes, science centers, and
museums. With their growing ubiquity, they will be
scaled to new curricula and serve students of all ages.
It will thus become increasingly important to under-
stand how students can most effectively interact with
them, and what role AI-based narrative and game
mechanics can play in scaffolding learning and real-
izing sustained engagement. Further, continued
improvements in the accuracy, scalability, robust-
ness, and ease of authorship of AI models for narra-

tive-centered tutorial planning, student affect recog-
nition, student modeling, and student goal recogni-
tion will be critical for actualizing wide-scale use of
intelligent game-based learning environments in
learners’ everyday lives.
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