
Two Modes are Better Than One: 
 A Multimodal Assessment Framework 

 Integrating Student Writing and Drawing 
 

Samuel Leeman-Munk, Andy Smith, Bradford Mott, Eric Wiebe, James Lester 

 
North Carolina State University, Raleigh, NC 27695 

{spleeman, pmsmith4, bwmott, wiebe, lester}@ncsu.edu 
 
 
 
Abstract. We are beginning to see the emergence of advanced automated 
assessment techniques that evaluate expressive student artifacts such as free-
form written responses and sketches. These approaches have largely operated 
individually, each considering only a single mode. We hypothesize that there 
are synergies to be leveraged in multimodal assessments that can integrate 
multiple modalities of student responses to create a more complete and accurate 
picture of a student’s knowledge. In this paper, we introduce a novel 
multimodal assessment framework that integrates two techniques for 
automatically analyzing student artifacts: a deep learning-based model for 
assessing student writing, and a topology-based model for assessing student 
drawing. An evaluation of the framework with elementary students’ writing and 
drawing assessments demonstrate that 1) each of the framework’s two 
modalities provides an independent and complementary measure of student 
science learning, and 2) together, the multimodal framework significantly 
outperforms either uni-modal approach individually, demonstrating the 
potential synergistic benefits of multimodal assessment. 
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1   Introduction 

Recent years have seen a growing interest in real-time formative assessment. 
Recognizing that the more restrictive methods traditionally used in summative 
assessment, such as multiple choice questions, are limited in their ability to provide 
the analyses necessary for guiding real-time scaffolding and remediation for students, 
a broad base of research in science education has been investigating the role of 
formative assessment in instruction [1]. 

As a tool for formative assessment, short-text constructed response items reveal 
cognitive processes and states in students that are difficult to uncover in multiple-
choice equivalents [2]. Even when it seems that items could be designed to address 
the same cognitive construct, success in devising multiple-choice and constructed-
response items that behave with psychometric equivalence has proven to be 
challenging [3]. Because standards-based STEM education in the US explicitly 
promotes the development of writing skills for which constructed response items are 
ideally suited, the prospect of designing text analytics techniques for automatically 



assessing students’ textual responses has become even more appealing and has 
spawned a growing body of research in the area [4]. 

In a parallel development, drawing is becoming recognized as central activity in 
science education, particularly in earlier grades. Van Meter and Garner posit that the 
benefits of student-generated drawing arise from students engaging in three key 
cognitive processes: selecting relevant information, organizing the information to 
build up an internal verbal model, and constructing an internal nonverbal 
representation to connect with the verbal representation [5]. A wide range of studies 
have shown that learning strategies focusing on student-generated drawing can 
produce effective learning outcomes, such as improving science text comprehension 
and student engagement [6].  

The intelligent tutoring systems community has begun to investigate each of these 
modalities for assessment. Automated assessment methods for short answer text has 
been the focus of many studies, with techniques ranging from Latent Semantic 
Analysis to Soft Cardinality achieving varying degrees of success [4]. Though less 
common, sketch understanding systems have been used to analyze undergraduate 
student drawings in a variety of contexts, including clustering via an analogical 
generalization [7], and drawing-based simulations[8]. However, this prior work has 
focused on single modality assessment frameworks. 

To investigate the potential of multimodal assessment, we explore two research 
questions. First, we investigated how accurately an individual modality (student 
writing assessment and student drawing assessment) can automatically assess student 
artifacts in relation to a gold standard human coding. We found that a convolutional 
neural network approach for analyzing writing and a topology-based approach for 
analyzing drawing closely mirror the assessments performed by human graders. 

Second, we investigated how accurately a multimodal assessment framework that 
considers student artifacts from multiple modalities can automatically assess student 
artifacts. We found that not only does each modality individually predict student 
learning outcomes, as measured by a summative post-test, but the integrated 
multimodal framework outperforms either uni-modal assessment individually.  

2   Data Collection and Coding 

For the past four years our laboratory has been developing a digital science notebook 
for elementary school science education, LEONARDO (Figure 1) [9]. Designed to run 
on both conventional and tablet computing platforms, LEONARDO integrates 
intelligent tutoring systems technologies into a digital science notebook that enables 
students to graphically model science phenomena with a focus on the physical and 
earth sciences. LEONARDO is designed to be used in the classroom in conjunction with 
physical experiments and is aligned with the Next Generation Science Standards for 
elementary school science education.  

LEONARDO’s curriculum is organized around focus questions that encourage 
students to follow the scientific method. For each focus question, students explore 
natural phenomena through writing and drawing about underlying scientific 
principles. Writing exercises are in the form of short answer questions where the 



student reads a question and answers it in a sentence or two. Drawing exercises 
consist of students creating symbolic sketches of different concepts depending on the 
current topic. Given the challenges of machine recognition of freehand sketch, as well 
as concerns of excessive cognitive load for fourth graders working on such an 
unstructured task, LEONARDO supports symbolic drawing. While drawing, students 
choose from a variety of semantically grounded objects and can add, remove, rotate, 
and move the elements to produce the visual artifact. 

 

 
Figure 1: LEONARDO Digital Science Notebook 

 
For the data analyzed in this study, student writing and drawing samples were 

collected from a learning activity in which students investigate what happens to 
magnetic particles in the presence of a magnetic field. Two writing samples for each 
student were evaluated. The first sample was taken at the beginning of the exercise in 
response to the prompt, “What happens to the particles when an object is turned into a 
temporary magnet?” The second written response was collected at the end of the 
exercise using the same prompt. During the exercise, two drawings were also 
collected. The first drawing prompt instructed students to draw what a paperclip and 
straw’s particles look like when far from a magnet, and the second prompt asked what 
the particles would look like when close to the magnet. 

To manually assess student learning, a rubric was designed to evaluate student 
responses in both written and graphic form. This rubric evaluated student responses 
against several criteria. Four of the criteria concerned the usage of core ‘actors’ from 
the magnetism investigation: paperclips, straws, magnifiers, and particles. Three 
dimensions were related to the accurate depiction of the particulate nature of 
permanent magnets, objects that could be magnetized (e.g., paper clips), and 
nonmagnetic objects (e.g., straws). Written responses were also scored on the 
dynamic and symbolic nature of the response. The dynamic dimension scored 
whether students referenced a change over time. The semiotic dimension indicated 
whether the nature of the written arguments was evaluated as iconic (i.e., only using 



words to represent concrete ideas, or symbolic, (i.e., using words representing abstract 
concepts). 

Two raters coded the graphic and textual artifacts created by students in response 
to specific prompts in LEONARDO. Inter-rater reliability was calculated via Cohen’s 
kappa (κ) and a protocol for drawing and writing coding using a 3-classroom training 
set before coding the entire corpus. Coders initially coded a portion of the training set 
and discussed differences in order to refine the coding process and ambiguities in the 
rubrics. Coders then independently coded drawings for each question from the three 
training classrooms and achieved an acceptable level of agreement (κ = .88) before 
coding the remainder of the corpus. The procedure was then repeated for the writing 
prompts, achieving a κ = .76, after which the remainder of the corpus was coded. 

3   Methods 

To explore the hypothesis that multimodal assessment offers the potential to more 
accurately assess student learning than conventional uni-modal assessment, we 
created a multimodal assessment framework that considers two modalities: 1) student 
writing, which is assessed with a convolutional neural network (a type of deep 
learning neural network) for short answer response analysis, and 2) student drawing, 
which is assessed with a topology-based drawing analysis model.  

3.1   A Convolutional Neural Network for Short Answer Analysis 

To analyze students’ written responses, we used a convolutional neural network with 
max-pooling. A convolutional neural network (CNN) differs from a feed-forward 
network in that it can evaluate inputs of arbitrary length, which is useful in language 
processing where statements can be anywhere from one word to pages or chapters of 
text. We select it over a more conventional method such as latent semantic analysis 
because it takes word order into account and has proven to be effective in recent 
applications to other text analytics tasks, such as sentiment prediction and question 
type classification [10]. We also select this method because it automatically learns 
relevant features and constructs from the text itself, thus  requiring no labor-intensive 
human engineering of features. 

Analysis of a student short answer using our CNN is a four-step process: 
vectorization, convolution, max-pooling, and sending the output to a shallow feed-
forward neural network. This process is illustrated in Figure 2. The first step, 
vectorization, consists of taking the input words and converting them into semantic 
vector representations. These representations are trained along with the model or via 
unsupervised techniques on large corpora. We used the word vectors available from 
GLoVe: 300 dimensions trained on 840 billion tokens in the Common Crawl corpus 
[11]. The second step, convolution, performs an affine transformation on, or 
convolves, sets of adjacent word vectors, defined by a window of a fixed size. For 
example, for the student answer “north and south poles,” our system’s convolution 
layer would take word vectors in groups of three, such as the vector representations of 
“north and south.” In order to avoid words on the ends of the sentence being 



underrepresented, we add empty padding values on either side. These convolutions go 
to the max pooling layer. Max pooling selects the three hundred highest values (based 
on the length of the word vector). The convolution and max-pooling layers can have 
multiple copies with different weights, each of which is known as a feature map. Each 
of these copies generates three hundred values. Finally, the values from the max-
pooling layer are concatenated and used as the input layer to a shallow feed-forward 
neural network. This network outputs a real-valued grade. For training, the objective 
function is the root mean squared error between human and machine score, which is 
backpropagated through the network. For more details on CNNs for sentence 
modeling, see Kalchbrenner et al. [10].  

 
Figure 2: A Convolutional Neural Network For Short Answer Analysis 

We built the convolutional neural network for this task in Theano, a python-based 
deep learning library [12]. Because many students had written answers to the relevant 
questions but were missing data elsewhere, we used these students’ answers for 
training. Our dummy values that padded the ends of each sentence were simply 
vectors with zeros in every dimension. Words that did not appear in the GLoVe 
vectors list we used are also represented with the same dummy value. 

Hyperparameters were selected based on making a low-dimensional model with 
small root mean squared error (RMSE). Three is the smallest symmetric window size 
that still takes advantage of context. In a sweep over one through nine the best-
performing number of feature maps was five. We use only one feed-forward hidden 
layer, and it is one hidden word in size, i.e., 300 values. Out of 50,100,150, and 200 
as options for epochs, 50 performed best.  

3.2   Topology-based Drawing Assessment 

Building on previous work on automatic assessment of symbolic drawings [9], we 
endeavored to emulate human assessment of drawing evaluation through automated 
analyses of the topological relations between objects in the drawing space. We first 
defined a set of possible relations between objects for this domain. Because both 



target drawings used the same set of elements (paperclip, arrow, straw, magnetic 
particle, inert particle, magnifying bubble, magnet), we were able to use the same set 
of relations for both drawing prompts. In this domain, the relevant relationships 
between elements were identified as near, far, and contains. Next, a mapping was 
created between the 2-dimensional arrangement of the particles and the semantic 
relations. This mapping was hand-authored by defining thresholds for distance 
between objects (using bounding boxes and rectangle-to-rectangle distance) and 
checking for intersections between objects’ bounding boxes. Figure 3 shows an 
example student drawing and the corresponding topological network. For this 
question “far” was defined as closer than 100 pixels from the magnet, which is always 
present at a fixed location in the diagram. The “contains” relation is based on more 
than one 2D relation between objects. 

 
Figure 3: Student Drawing Converted Into Semantic Network 

Because particles could only be evaluated in relation to another object, the system 
assigns particles by first determining if it can assign a relationship between any 
magnifiers in the drawing and any straws, paper clips, or magnets. It does this by 
checking if each magnifier’s magnification point intersects with any such objects. If a 
magnifier happens to intersect multiple objects, the particle is assigned to the object 
with the closest center. After assigning magnifiers, particles are assigned to the 
magnifier that they overlap, deciding shared overlaps based on closeness to the 
magnifier’s center. Any remaining unassigned particles are then checked to see if they 
overlap with a straw, a paperclip or the magnet, as some students did not use the 
magnifier and instead placed particles directly on the objects. Particles assigned to the 
same parent object are split into two groups, inert and magnetic. The orientation of 
the magnetic particles is then checked to determine if the group is “aligned,” signaling 
that all particles are rotated to the target rotation, or “unaligned”, signaling that at 
least one particle’s rotation does not match the target rotation for this group. After the 
final network is completed, it can be queried to generate scores based on the expert-
defined rubric. For example in the network shown in Figure 3, points would be 
credited for the presence of a “far” edge between the magnet and paperclip, a 
“contains” edge between aligned particles and magnet, as well as the other 
connections relevant to the rubric described in Section 2. 



4   Evaluation and Discussion 

To evaluate how well the uni-modal assessment models’ performance levels compare 
to the gold standard human scoring, machine-generated scores were compared to 
human scores. To measure the accuracy of the continuous scores generated for 
writing, root mean squared error (RMSE) was used. Although the rubric described 
earlier allowed for scores between zero and sixteen, no student achieved a score 
above nine. The deep learning model produced a RMSE of 1.23, or 13% when 
normalized by the observable range across the 190 student answers analyzed (95 
students, 2 answers per student). A Pearson correlation between the human and 
machine writing scores was conducted with an r of .53 (p < .001), in range with 
scores from previous systems on a similar task [4]. Further analysis of our model’s 
RMSE shows that is greatly impacted by a small number of outliers in the human 
grades with 5 answers out of 190 accounting for 22.7% of the total squared error.   

For the drawings, our system was able to produce scores for each of the seven 
rubric criteria. Cohen’s κ was calculated to measure agreement between machine and 
human scorings for each criteria of the two drawings with an average κ =.89 for the 
first drawing and an average κ = .85 for the second drawing. This result suggests that 
the drawing assessment model is capable of replicating human scoring with a high 
level of agreement.  

The encouraging results also suggest directions for future work. For example, since 
the topology is generated from a list of elements placed in the drawing space, it makes 
no assumptions about occlusion. In several student drawings paperclips, particles, or 
other elements affecting the machine score were fully obscured from the image 
viewed by the human grader causing a mismatch in scoring.  

The next question we investigated was whether machine-scored written and 
drawing artifacts are useful predictors of student conceptual knowledge. We first 
looked at the predictive power of drawing and writing separately and found them to 
be significant predictors, even when controlling for pre-test. We next built a model 
combing the predictors and found that, even when combined, both scores provide 
unique and complementary predictive value. These results are summarized in a series 
of multiple linear regression models shown in Table 1. For all models, the dependent 
variable predicted was the student performance on a summative multiple-choice post-
test. The independent variable pre-test represents student performance on a 20-
question multiple-choice assessment administered before students used LEONARDO. 
We include the pre-test score as a covariate in our analysis as a proxy for prior 
knowledge and to provide a more rigorous standard for our model to meet. Auto 
Writing Score and Auto Drawing Score represent the average of the machine-
generated scores for the two exercises of each modality.  

By themselves, writing score and drawing score are both significant predictors of 
post-test performance, even when controlling for pre-test performance. Both models 
explain similar amounts of variance, with Drawing providing slightly more predictive 
value. Further supporting the value of combining writing and drawing is the almost 
8% increase in variance explained by the third model containing averages of both 
scores as well as the pre-test score. Writing and Drawing Score are both significant 
predictors in this model, with analysis of the semi-partial R2 values showing that 
while there is some common variance captured by the different factors, writing and 



drawing uniquely represent 8% and 11% respectively of the total variance captured by 
the model. These results suggest that the level of conceptual understanding in the 
student writings and drawings are complementary, and that there is additive value in 
assessment across multiple modalities. 

A potential explanation for the cause of these encouraging results is the “cognitive 
complementarity” of the two modalities. Recognizing that writing and drawing 
exercises different cognitive processes, the science education community advocates 
the use of science notebooks in the elementary grades because they provide an 
effective tool for promoting learning through both writing and drawing [13]. Prior 
research has demonstrated that students’ scientific knowledge is distributed across 
both of these sources [14], and not surprisingly, because both drawing and writing 
shape and reveal underlying student mental models [15], there is a growing 
recognition that science notebooks offer a potent source of data for formative 
assessment of students’ scientific knowledge.  

Table 1: Regression Models Using Machine Assigned Scores 

Variable Β t sr2 R2 ΔR2 
Pre-Test Only    .270 .270 
Pre-Test .52 5.87***    
Pre-Test + Writing    .380 .110 
Pre-Test .439 5.20*** .182   
Auto Writing Score .34 4.03*** .110   
Pre-Test + Drawing    .412 .032 
Pre-Test .37 4.30*** .118   
Auto Drawing Score .405 4.71*** .141   
Full Model    .491 .079 
Pre-Test .317 3.87*** .084   
Auto Writing Score .292 2.56*** .079   
Auto Drawing Score .362 .426*** .112   

Note. N=95; *p<.05, **p<.01, ***p<.001 

Table 2: Regression Model of Human Scores 

Variable  Sig sr2 R2 
Model     .451 
Pre-test .356 .000 .109  
Human Writing Scores .216 .010 .040  
Human Drawing Scores .332 .000 .090  

 
One particularly curious result is that both of our automatic systems outperform 

their human equivalents in predicting post-test score, as seen by the predictive power 
of the human scores in Table 2. As one possible explanation on the writing side, it 



might in fact be an advantage rather than a disadvantage that our system dampens 
some of the high variance found in the human scores.  

7   Conclusions and Future Work 

Formative assessment is a crucial part of the instructional process, enabling both 
teachers and students to evaluate conceptual understanding and misconceptions. 
Similarly, automated assessment methods are emerging that can evaluate students’ 
understanding across an increasingly wide range of modalities. These modalities are 
typically studied in isolation, with research often stopping at measuring the reliability 
and validity of a given assessment. However, there is great potential in better 
understanding how the different modalities work in consort. For example, automated 
writing and drawing assessment each provide meaningful insights into student science 
understanding. Together, writing and drawing assessment have the potential to 
provide a much more nuanced picture of student science comprehension than either 
alone.  

To investigate the potential of assessment with multiple modalities, we have 
introduced an integrated multimodal assessment framework. The multimodal 
assessment framework has been studied in the context of science education with a 
student writing assessment model that uses a convolutional neural network approach 
and a student drawing assessment model that uses a topology-based approach for 
drawing analysis. An evaluation shows that 1) both methods are capable of assessing 
student work accurately compared to a human scoring, and that 2) the multimodal 
assessment framework utilizing both models is predictive of students’ post-test 
performance, even when controlling for prior knowledge. These results suggest that 
multimodal assessment may be a valuable approach to utilizing the new generation of 
formative assessment approaches designed to evaluate students’ responses formulated 
in more than a single mode.  

In future work, it will be important to identify the families of modalities that offer 
the greatest potential synergistic benefits. We anticipate that some combinations of 
modalities may have overlap in their diagnostic power, while others will be exhibit 
great complementarity. Future data collections will focus on more closely coupling 
the drawing and writing tasks and encouraging explicit references between artifacts. It 
will also be important to empirically investigate how multimodal assessment can be 
integrated into a real-time formative assessment system and used as the basis for 
generating personalized scaffolding. 

Acknowledgments 
The authors wish to thank our colleagues from the LEONARDO project for their 
contributions to the design, development, and classroom implementations of 
LEONARDO: Courtney Behrle, Mike Carter, Angela Shelton, and Robert Taylor. This 
material is based upon work supported by the National Science Foundation under 
Grant No. DRL-1020229. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science Foundation. 



References 
 

1. Abell, S., Lederman, N.: Handbook of Research on Science Education. Routledge, 
New York, NY (2007). 

2. Nicol, D.: E-assessment by Design: Using Multiple-choice Tests to Good Effect. 
Journal of Further and Higher Education. 31, 53–64 (2007). 

3. Kuechler, W., Simkin, M.: Why is Performance on Multiple-Choice Tests and 
Constructed-response Tests not More Closely Related? Theory and an Empirical 
Test. Decision Sciences Journal of Innovative Education. 8, 55–73 (2010). 

4. Burrows, S., Gurevych, I., Stein, B.: The Eras and Trends of Automatic Short 
Answer Grading. International Journal of Artificial Intelligence in Education. 60–
117 (2014). 

5. Van Meter, P., Garner, J.: The Promise and Practice of Learner-Generated 
Drawing: Literature Review and Synthesis. Educational Psychology Review. 17, 
285–325 (2005). 

6. Schmeck, A., Mayer, R.E., Opfermann, M., Pfeiffer, V., Leutner, D.: Drawing 
Pictures during Learning from Scientific Text: Testing the Generative Drawing 
Effect and the Prognostic Drawing Effect. Contemporary Educational Psychology. 
39, 275–286 (2014). 

7. Chang, M., Forbus, K.: Clustering Hand-Drawn Sketches via Analogical 
Generalization. Proceedings of the Twenty-fifth Annual Conference on Innovative 
Applications of Artificial Intelligence. pp. 1507–1512. Bellevue, WA (2013). 

8. Van Joolingen, W., Bollen, L., Leenaars, F.: Using Drawings in Knowledge 
Modeling and Simulation for Science Teaching. Advances in Intelligent Tutoring 
Systems. pp. 249–264 (2010). 

9. Smith, A., Wiebe, E., Mott, B., Lester, J.: SketchMiner  : Mining Learner-
Generated Science Drawings with Topological Abstraction. Proceedings of the 
Seventh International Conference on Educational Data Mining. pp. 288–291. 
London, U.K. (2014). 

10. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A Convolutional Neural Network 
for Modelling Sentences. Proceedings of the Fifty-Second Annual Meeting of the 
Association for Computational Linguistics. pp. 655–665. Baltimore, MD (2014). 

11. Pennington, J., Socher, R., Manning, C.D.: GloVe  : Global Vectors for Word 
Representation. Proceedings of Empiricial Methods in Natural Language 
Processing. Doha, Quatar (2014). 

12. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., 
Bouchard, N., Warde-Farley, D., Bengio, Y.: Theano: New Features and Speed 
Improvements. The Deep Learning and Unsupervised Feature Learning Workshop. 
pp. 1–10. Lake Tahoe, CA (2012). 

13. Campbell, B., Fulton, L.: Science Notebooks: Writing About Inquiry. Heinemann, 
Portsmouth, NH (2003). 

14. Minogue, J., Wiebe, E., Bedward, J., Carter, M.: The Intersection of Science 
Notebooks, Graphics, and Inquiry. Science and Children. 48, 52–55 (2010). 

15. Schnotz, W., Bannert, M.: Construction and Interference in Learning from 
Multiple Representation. Learning and Instruction. 13, 141–156 (2003).  

 
	  


