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Abstract—Computational models of interactive narrative offer 

significant potential for creating educational game experiences 
that are procedurally tailored to individual players and support 
learning. A key challenge posed by interactive narrative is 
devising effective director agent models that dynamically 
sequence story events according to players’ actions and needs. In 
this paper, we describe a supervised machine learning 
framework to model director agent strategies in an educational 
interactive narrative, CRYSTAL ISLAND. Findings from two studies 
with human participants are reported. The first study utilized a 
Wizard-of-Oz paradigm where human “wizards” directed 
participants through CRYSTAL ISLAND’s mystery storyline by 
dynamically controlling narrative events in the game 
environment. Interaction logs yielded training data for machine 
learning the conditional probabilities of a dynamic Bayesian 
network (DBN) model of the human wizards’ directorial actions. 
Results indicate that the DBN model achieved significantly higher 
precision and recall than naïve Bayes and bigram model 
techniques. In the second study, the DBN director agent model 
was incorporated into the run-time version of CRYSTAL ISLAND, 
and its impact on students’ narrative-centered learning 
experiences was investigated. Results indicate that machine 
learning director agent strategies from human demonstrations 
yields models that positively shape players’ narrative-centered 
learning and problem-solving experiences. 
 

Index Terms—Narrative, interactive drama, serious games, 
Bayesian networks, machine learning. 
 

I. INTRODUCTION 
ECENT years have witnessed substantial growth in 
research on computational models of interactive narrative 

in digital games [1–5]. Computational models of interactive 
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narrative aim to procedurally adapt story experiences in 
response to players’ actions, as well as tailor story elements to 
individual players’ preferences and needs. A common 
metaphor for interactive narrative models is a director agent 
(drama manager), which is a centralized software agent that 
works behind the scenes to procedurally direct a cast of non-
player characters and storyworld events [4], [6–7]. The 
capacity to augment and revise narrative plans at run-time has 
shown promise for several applications, including 
entertainment [8–10], art [1], training [11], and education [6], 
[12–13]. In education, computational models of interactive 
narrative have been embedded in narrative-centered learning 
environments for a range of subjects, including language and 
culture learning [14], social skills development [12], network 
security [15], and middle school science [16]. 

Modeling interactive narrative director agents poses several 
computational challenges. Interactive narratives correspond to 
spaces of possible story experiences that grow exponentially 
in their number of events. Consequently, interactive narrative 
director agents are expected to effectively navigate large story 
spaces during run-time, and they are expected to recognize 
and react to players’ subjective experiences. In educational 
applications of interactive narrative, personalizing story events 
to support student learning and engagement is a promising 
direction for improving educational outcomes, but there is a 
dearth of theoretical guidance, or even best practices, to guide 
the design of interactive narrative models. In recognition of 
these challenges, efforts have been undertaken to 
automatically induce computational models of interactive 
narrative from large data sets [7], [17–18].  

A promising approach for automating the creation of 
director agents is machine-learning models directly from 
human demonstrations. This approach requires humans to 
simulate director agents by controlling story events in an 
interactive narrative. Non-director players, often adopting the 
role of the story’s protagonist, simultaneously explore the 
narrative environment under the guidance of the human 
director’s actions. Data from these human-human interactions 
yields a training corpus for automatically inducing models of 
director agent strategies, which can be obtained by applying 
supervised machine learning techniques. The end result of this 
approach is a data-driven director agent model that can replace 
the human director in the interactive narrative environment. In 
educational interactive narratives, the director agent acts as a 
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narrative-centered tutor, providing personalized guidance and 
feedback within the narrative to enhance the learning 
environment’s pedagogical effectiveness. 

In this paper, we present a framework for machine learning 
director agent strategies from observations of human-human 
interactions in an educational interactive narrative. The 
approach involves training dynamic Bayesian network models 
of director agent strategies from a corpus of human directorial 
actions. In order to investigate the framework, we use a 
testbed interactive narrative called CRYSTAL ISLAND. 
CRYSTAL ISLAND features a science mystery where players 
investigate a spreading illness afflicting a team of scientists. 
Results from two empirical studies with human participants 
playing CRYSTAL ISLAND are reported. The first study 
employed a Wizard-of-Oz paradigm—in other words it 
involved regular (i.e., non-wizard) users interacting with 
wizard users providing directorial guidance in CRYSTAL 
ISLAND—in order to generate a training corpus for inducing 
director agent models. The corpus was used to machine learn 
conditional probability tables in a dynamic Bayesian network 
(DBN) model of the human wizards’ directorial strategies. The 
second study involved a modified version of CRYSTAL ISLAND 
that replaced human wizards with the DBN director agent 
model. A comparison between the DBN model and a baseline 
system is described, including the systems’ differential 
impacts on players’ narrative-centered learning experiences. 
Empirical findings demonstrating our framework’s impact on 
students’ learning outcomes are presented. 

II. RELATED WORK 
Several families of algorithms have been employed for 

modeling interactive narrative director agents. Classical 
planning is one prevalent approach because STRIPS-style 
plans align naturally with computational representations of 
stories. Plan-based director agents monitor and revise the 
executions of story plans in order to respond to players’ 
actions and preserve desirable narrative properties [8]. In 
addition to classical planning, reactive planners have been 
investigated for dynamically responding to player actions 
under real-time performance constraints. Several of these 
systems incorporate special-purpose data structures inspired 
by narrative concepts, such as dilemmas or beats, in order to 
bundle story content for reactive delivery [1], [19].  

Search-based approaches have been investigated for 
dynamically managing interactive narratives. Search-based 
approaches attempt to find plot sequences that optimize 
designer-specified evaluation functions [20]. These 
formalisms often use memoization or depth-bounded search 
techniques in order to constrain their computation times. 
However, they are sensitive to the narrative evaluation 
functions employed, which may be difficult to craft.  

Case-based reasoning techniques have been used in several 
story-centric interactive narrative systems. The OPIATE story 
director dynamically responds to user actions by retrieving 
Proppian sub-plots rooted in particular story contexts using k-
nearest neighbor techniques [21]. Work by Sharma et al. [9] 
modifies earlier search-based drama management approaches 
[20] by incorporating a case-based player model that 

approximates users’ plot preferences. 
Another important class of narrative adaptation techniques 

relies on decision-theoretic planning algorithms [3], [6–7], 
[22]. A family of interactive narrative models, known as 
declarative optimization-based drama managers (DODM), 
employs Markov decision processes to encode director agent 
tasks [7], [22]. DODM models’ parameters are automatically 
induced using on-line reinforcement learning techniques (such 
as temporal-difference learning) with large interactive 
narrative corpora generated from simulated users. 

U-Director is an example of a decision-theoretic director 
agent that utilized dynamic decision networks in an early 
version of the CRYSTAL ISLAND interactive narrative [6]. The 
director agent triggers story-based hints that assist students 
while they investigate the interactive science mystery. 
THESPIAN is another example of a decision-theoretic 
interactive narrative system; it endows virtual characters with 
goal-oriented decision-making models that are loosely based 
on partially observable Markov decision processes (POMDPs) 
[3]. Each virtual character implements a recursive “theory of 
mind” model in order to reason about how its actions impact 
the beliefs and goals of other agents. 

Recently, data-driven techniques have been employed to 
automatically devise interactive narrative models. Interactive 
narrative models have been machine learned from simulation 
datasets [7], [22], induced from large corpora of narrative blog 
entries [18], and distilled from crowd-sourced narrative 
descriptions [17]. In work that is perhaps most closely related 
to our own, Orkin [23] automatically induces models of social 
behavior and dialogue from thousands of human-human 
interactions in The Restaurant Game. Orkin’s approach, called 
collective artificial intelligence, differs from ours by focusing 
on models of characters’ social behaviors rather than director 
agent strategies. Further, Orkin’s computational framework 
combines crowd-sourcing, pattern discovery, and case-based 
planning techniques, whereas our approach leverages Wizard-
of-Oz studies and dynamic Bayesian networks to induce 
models of director agent strategies. 

Work on computational models of interactive narrative for 
education has also examined several algorithmic techniques. 
Efforts to provide personalized, story-embedded support for 
learning have largely focused on rule-based techniques for 
delivering hints [13], decompositional partial-order planning 
techniques for scaffolding problem solving [15], hand-
authored dynamic decision networks for narrative-centered 
tutorial planning [6], and POMDP-based multi-agent 
simulations for interactive pedagogical dramas [14]. Other 
work has examined character-based models of interactive 
narrative generation for social skills learning [12], although 
this work did not investigate director agents. In our work, we 
induce educational interactive narrative models directly from 
data generated by human users serving as director agents. 

III. DATA-DRIVEN DIRECTOR AGENT FRAMEWORK 
Data-driven frameworks for learning models of director 

agent strategies hold considerable appeal for addressing the 
challenges inherent in creating director agent models. Our 
framework for inducing director agent models consists of four 
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phases: corpus collection, model learning, predictive model 
evaluation, and runtime model evaluation. Fig. 1 depicts the 
first three stages of the approach for inducing director agent 
strategies from human-human interaction data using dynamic 
Bayesian networks. 

A. CORPUS COLLECTION 
In order to acquire a corpus of interactive narrative training 

data that effectively represents canonical directorial 
sequences, the corpus collection process should address the 
following considerations. First, the corpus collection should be 
conducted using a data-collection version of the interactive 
narrative environment in which a human player, or wizard, 
controls the behavior of a simulated director agent. Other than 
the decision-making mechanism responsible for driving the 
director agent, the narrative environment should mirror the 
final “director-enhanced” version of the game; it is important 
for players’ interactions to closely resemble the interactions 
that ultimately occur in the final narrative environment. This 
symmetry increases the chances that a model trained from 
corpus data will also perform well when integrated into the 
final interactive narrative. 

Second, the human director agent should be provided with 
an easy-to-use narrative dashboard in order to control the 
progression of the interactive narrative. The narrative 
dashboard enables the human director agent to perform actions 
(e.g., directing a non-player character to perform a specific 
action, triggering an in-game object to appear) in an 
omnipotent manner, mimicking the capabilities of a 
computational director agent. In addition to controls, the 
narrative dashboard should report on the storyworld’s state in 

order to inform the wizard’s decisions. It is important to note 
that the dashboard must be designed carefully so as not to be 
too complex for the wizard to effectively use while an 
interactive narrative is underway.  

Third, the wizard should make her directorial decisions 
based on observable story information brokered by the game 
environment (e.g., storyworld state, player behaviors), 
constraints imposed on the interactive story by the plot graph, 
and beliefs about actions that will lead to the most compelling 
story for the player.  

Fourth, wizards should be given ample opportunity to 
familiarize themselves with the narrative-dashboard and 
interactive narrative’s structure as encoded by the plot graph. 
Pilot data collections can be performed as part of training 
wizards prior to collecting actual corpus data. One should not 
necessarily expect that a human will be an effective director 
agent without prior training or opportunities to familiarize 
herself with the narrative environment. 

B. MODEL LEARNING 
Models of director agent strategies are machine learned 

from narrative interaction logs acquired during a corpus 
collection study with human participants. Models are induced 
from training datasets using supervised machine learning 
techniques specific to the models being devised (e.g., dynamic 
Bayesian networks, naïve Bayes). The wizard’s directorial 
actions serve as class labels to be predicted by induced 
models. In choosing models to encode director agent 
strategies, several factors should be considered. First, the 
model should be capable of explicitly representing changes in 
the director agent’s belief state over time, as well as temporal 

Fig. 1.  Data-driven framework for modeling director agent strategies from human demonstrations. 
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changes to the game’s narrative and world states. Second, the 
director agent model should not only recommend what 
directorial action to perform at a given decision point, but also 
indicate the appropriate time to intervene. Third, the director 
agent should be capable of integrating observations from 
several sources to inform its directorial strategies. Sources of 
observations might include narrative history, storyworld state, 
player activity, and player beliefs. Finally, the model must be 
capable of addressing these requirements while operating at 
run-time, functioning efficiently enough for integration with 
game engine technologies. 

C. PREDICTIVE MODEL EVALUATION 
Once a director agent model is induced using a training 

corpus and supervised machine learning algorithms, the 
learned model should be evaluated using test datasets to 
examine the director agent model’s ability to predict a human 
director’s narrative decisions. The performance of the learned 
model can be evaluated with respect to predictive accuracy, 
including metrics such as precision and recall. The model 
should be compared to a baseline approach in order to 
determine how effectively the learned model performs relative 
to alternate techniques. 

D. RUNTIME MODEL EVALUATION 
Once a sufficient level of predictive accuracy is obtained, 

the director agent model can be integrated into the runtime 
interactive narrative system. This introduces the opportunity to 
empirically evaluate the induced director agent model through 
studies with human participants examining how the system 
affects and engages players. 

IV. CRYSTAL ISLAND INTERACTIVE NARRATIVE TESTBED 
To investigate director agent strategies, a Wizard-of-Oz1 

data collection was conducted with a customized version of 
the CRYSTAL ISLAND interactive narrative [16].  

A. CRYSTAL ISLAND 
CRYSTAL ISLAND is an educational adventure game that 

features an interactive science mystery set on a recently 
discovered tropical island. The game is built using Valve 

 
1 A Wizard-of-Oz study is a study paradigm in which participants interact 

with what appears to be an autonomous computer system, but is actually a 
person (the “wizard”) in another location. 

Corporation’s Source™ engine, the game technology behind 
the popular Half-Life® 2 series. CRYSTAL ISLAND has been 
designed to help middle school students learn microbiology 
concepts through an engaging and immersive story-centric 
experience [16]. Within the story, the player adopts the role of 
a protagonist attempting to discover the identity and source of 
an infectious disease plaguing a research station that is located 
on the island. Throughout the mystery, the player is free to 
explore the world and interact with other characters while 
forming questions, generating hypotheses, collecting data, and 
testing hypotheses. The player can pick up and store objects, 
view posters, operate lab equipment, and talk with non-player 
characters to gather clues about the source of the disease. 
During the course of solving the mystery, the player completes 
an in-game diagnosis worksheet to organize her findings, 
hypotheses, and conclusions. Upon completing the diagnosis 
worksheet, the player verifies its contents with the camp nurse 
and develops a treatment plan for the sickened CRYSTAL 
ISLAND team members. 

B. CRYSTAL ISLAND: Wizard-of-Oz Version 
For the corpus collection, a custom episode of CRYSTAL 

ISLAND (Fig. 2) was created that includes a companion agent 
who assists the player to solve the mystery. The player adopts 
the role of Alex Reid visiting her father, Bryce, who serves as 
the research station’s lead scientist. CRYSTAL ISLAND’s 
narrative backstory is as follows: Alex has arrived at CRYSTAL 
ISLAND to visit her father whom she has not seen for a while. 
As she approaches the dock, she hears news that her father has 
fallen ill from Al, the camp foreman. Al tells her that Audrey, 
Ford, and her father were out on an expedition gathering 
specimens. Their expedition was scheduled to last for two 
days; however, they failed to return to the camp on time. Al 
found this very unusual since they were known to adhere 
closely to schedule. Fearful for their safety, Al led a search 
team to locate them. After two days of searching, the research 
team discovered that the expedition team had fallen ill on the 
south side of the island. It appears that the group lost their 
way, became ill, and could not make it back to the camp. They 
are in the infirmary and are being attended to by the camp’s 
nurse. Upon hearing the news, Alex hurries to the infirmary to 
see her father and his colleagues. Kim, the camp’s nurse, 
informs her that their condition is poor. Her father seems to be 
doing much worse than the others. Kim is baffled by the 

Fig. 2. WOZ-enabled CRYSTAL ISLAND. 
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illness and does not know what could have caused it. She asks 
Alex to help her identify the disease and its source. 

C. Wizard-of-Oz Functionalities 
To investigate director agent strategies, CRYSTAL ISLAND 

was extended to include new functionalities specific to a 
Wizard-of-Oz study design. In this WOZ-enabled version of 
CRYSTAL ISLAND, a human wizard provides narrative planning 
functionalities as well as spoken natural language dialogue for 
the companion character. Playing the role of the camp nurse, 
the wizard works collaboratively with the player to solve the 
science mystery while also performing directorial actions to 
guide the interactive narrative experience. Together in the 
virtual environment, the wizard and player carry on 
conversations using voice chat and observe one another’s 
actions while investigating the mystery scenario. In addition to 
directing the nurse character’s navigation, spoken 
communication, and manipulation behaviors, the wizard 
guides the player’s investigative activities and controls the 
narrative’s pace and progression. To support these activities, 
the wizard’s computer terminal includes a detailed dashboard 
that provides information about the player’s activities in the 
environment (e.g., reading books, testing objects, updating the 
diagnosis worksheet) as well as controls to initiate key 
narrative events in the environment (e.g., introducing new 
patient symptoms, having a non-player character deliver 
additional items for testing). This narrative dashboard 
provides the wizard with sufficient capabilities to simulate a 
computational director agent.  

In addition to new wizard functionalities, the CRYSTAL 
ISLAND narrative environment was streamlined to increase 
focus on a reduced set of narrative interactions between the 
player and wizard, as well as reduce the amount of time spent 
navigating the environment. This was accomplished by 
confining the scenario to a single building that encompasses 
the camp’s infirmary and laboratory. Within this environment 
the player and wizard gain access to all of the materials 
needed to solve the science mystery (e.g., sickened 
researchers, background books and posters, potential sources 
of the disease, lab equipment). The scenario, controls, and 
narrative dashboard were refined throughout a series of pilot 
studies with college students that were conducted prior to the 
corpus collection described in this paper.  

D. Example Scenario 
 To illustrate the behavior of the WOZ-enabled CRYSTAL 

ISLAND environment, consider the following scenario. A 
player has been collaborating with the nurse character, whose 
behaviors are planned and executed by a human wizard. The 
player has learned that an infectious disease is an illness that 
can be transmitted from one organism to another, often 
through food or water. Under guidance of the nurse, the player 
has examined the patients’ symptoms and run lab tests on food 
items. Through this exploration, the user has come to believe 
that the source of the illness is a waterborne disease and that it 
is likely cholera or shigellosis. Although she believes cholera 
is more likely, she is unable to arrive at a final diagnosis. 

Through her conversation with the nurse character, the wizard 
determines that the player is having difficulty ruling out 
shigellosis. The wizard decides that this is an opportune 
moment to provide a hint. The wizard uses the narrative 
dashboard to enable the Observe Leg Cramp Symptom plot 
point, which results in one of the patients moaning loudly in 
the infirmary. The player hurriedly examines the patient and 
informs the wizard, “He has leg cramps. That means it is 
cholera.” The wizard asks the player to update her diagnosis 
worksheet with her new hypothesis and explain why she 
believes her recent finding. The player then provides a 
detailed explanation justifying her diagnosis, and the story 
concludes with the nurse treating the patients for cholera. 

V. CORPUS COLLECTION PROCEDURE  
A study with human participants was conducted in which 

more than twenty hours of trace data were collected using the 
WOZ-enabled version of the CRYSTAL ISLAND game 
environment. The trace data includes detailed logs of all 
player and wizard actions (e.g., navigation, manipulation, and 
decision making) in the interactive narrative environment, as 
well as audio and video recordings of their conversations. 

A. Participants 
The participants were 33 eighth-grade students (15 males 

and 18 females) from North Carolina ranging in age from 13 
to 15 (M = 13.79, SD = 0.65). Two wizards assisted with the 
corpus collection, one male and one female. Each session 
involved a single wizard and a single student. The student and 
wizard were physically located in different rooms throughout 
the session.  

B. Wizard Protocol 
To improve the consistency of the wizards’ interactive 

narrative decision-making and natural language dialogue 
activities, a wizard protocol was iteratively developed and 
refined through a series of pilot studies. The resulting protocol 
included a high-level procedure for the wizards to follow (e.g., 
introduce yourself as the camp nurse, describe the patient 
situation to the player), a set of interaction guidelines (e.g., 
collaboratively work with the player to solve the mystery, 
encourage the player to explain her conclusions), and a set of 
narrative guidelines (e.g., descriptions about the overall story 
structure, suggestions about appropriate contexts for narrative 
decisions, explanations about event ordering constraints). 

Prior to the corpus collection with the eighth grade students, 
each wizard was trained on the CRYSTAL ISLAND 
microbiology curriculum and the materials that would be 
provided to students during the corpus collection. The wizard 
training also included information on key concepts from the 
CRYSTAL ISLAND curriculum and the protocol to follow. After 
carefully reviewing the materials over the course of a week 
and having any of their questions answered, the wizards 
participated in at least three training sessions with college 
students. After each training session, a researcher performed 
an “after action review” with the wizard to discuss his or her 
interactions with the students and adherence to the wizard 
protocol. Through these training sessions, wizards gained 
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considerable experience performing directorial actions in 
CRYSTAL ISLAND, and they developed strategies for directing 
students toward successful learning and problem-solving 
outcomes. While the wizards were not professional tutors, 
they did have significant prior experience in educational 
technology. Consequently, the wizards were considered to 
possess above-novice pedagogical skills, as well familiarity 
with the CRYSTAL ISLAND environment. These qualifications 
suggested that the wizards were capable of demonstrating 
effective directorial strategies for machine learning. 

C. Participant Procedure 
When participants arrived at the data collection room, they 

were greeted by a researcher and instructed to review a set of 
CRYSTAL ISLAND handouts, including information on the back 
story, task description, characters, and controls. Upon 
completing their review of the handouts, the researcher 
provided further direction to the participants on the use of the 
keyboard and mouse controls. The researcher then informed 
the participants that they would be collaborating with another 
human-controlled character, the camp nurse, in the 
environment to solve the science mystery. Participants were 
asked to communicate with the camp nurse throughout their 
sessions. Finally, the researcher answered any questions from 
the participants, informed them that the sessions were being 
videotaped, instructed them to put on their headsets and 
position their microphones, and asked them to direct all future 
communication to the camp nurse. The researcher remained in 
the room with the participant for the duration of their session. 
The CRYSTAL ISLAND session concluded once the participant 
and wizard arrived at a treatment plan for the sickened virtual 
scientists. The participants’ sessions lasted no more than sixty 
minutes. During data analysis, data from one of the 
participants was eliminated as an outlier—the data was more 
than three standard deviations from the mean—leaving thirty-
two usable trace data logs. 

VI. MODELING DIRECTOR AGENT STRATEGIES WITH 
DYNAMIC BAYESIAN NETWORKS 

The Wizard-of-Oz study yielded a training corpus for 
machine learning models of director agent strategies in the 
CRYSTAL ISLAND narrative environment. In order to emulate 
director agent strategies effectively, it is necessary to induce 
models that prescribe when to intervene with a directorial 
action, as well as which action to perform during an 
intervention. These two tasks correspond to two sub-models 
for the director agent: an intervention model and an action 
model. Director agents utilize numerous storyworld 
observations that change over time to accurately determine the 
most appropriate time to intervene and the next director agent 
action to perform in an unfolding story.  

In order to induce models to perform these tasks, we 
employed dynamic Bayesian networks [24]. A dynamic 
Bayesian network (DBN) is a directed acyclic graph that 
encodes a joint probability distribution over states of a 
complex system over time. DBNs consist of nodes 
representing random variables, directed links that encode 

conditional dependencies among random variables, and 
conditional probability distributions annotating the nodes. A 
defining feature of DBNs is their use of time slices, which 
characterize the state of the underlying system at particular 
phases of time. By utilizing time slices, DBNs support 
probabilistic inference about events that change over time. 

The DBN models in this work were implemented with the 
GeNIe/SMILE Bayesian modeling and inference library [25]. 
The DBNs’ network structure was hand authored, but the 
conditional probability tables that annotate each node were 
automatically induced from the training corpus. The 
Expectation-Maximization algorithm from the SMILearn 
library was used to learn the DBNs’ conditional probability 
tables. Expectation-Maximization was used as a matter of 
convenience; there were no hidden variables or missing data 
(i.e., missing attributes). SMILearn’s implementation of 
Expectation-Maximization served as an off-the-shelf method 
for parameter learning. More specialized parameter-training 
techniques, such as relative-frequency estimation, would have 
also been appropriate, but a single iteration of Expectation-
Maximization can serve the same purpose for fully observable 
models such as the DBNs in this work. After the models’ 
parameters were learned, the resulting networks were used to 
infer directorial decisions about when to intervene in the 
CRYSTAL ISLAND interactive narrative, as well as which action 
to perform during an intervention. It should be noted that 
while the set of conditional probability values induced as 
parameters for the DBN models are specific to the story arc, 
characters, and game environment of CRYSTAL ISLAND, we 
anticipate that the data-driven methodology advocated by this 
paper generalizes across narrative spaces and game 
environments. 

A. Feature Selection 
Feature selection is an important problem that has been 

studied for many years by the machine learning community 
[26]. By selecting the most relevant predictor features from a 
corpus of training data, the performance of machine learned 
models are often improved considerably. In our study we 
utilized a two-step feature selection approach to induce 
accurate models of director agents’ intervention and action 
decision strategies. First, we performed a post-study “after 
action review” with the wizards to discuss his/her narrative 
decision strategies while interacting with the players. During 
the corpus collection we video recorded all of the actions 
taken by the wizards within the WOZ-enabled version of 
CRYSTAL ISLAND. After the corpus collection was over, we 
asked the wizards to watch the recorded videos and “think 
aloud” by retrospectively describing why they chose particular 
narrative decisions. The wizard was periodically prompted to 
explain the factors that drove her directorial decisions. The 
wizard was also asked what features she considered when 
making the narrative decisions. Afterward, we conducted a 
qualitative analysis of the wizards’ responses to identify an 
candidate features for the intervention and action models. 

During the second stage of feature selection, we performed 
a brute force feature ranking method. Selected features were 
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evaluated with all possible combinations of the input features. 
Subsets consisting of features that yielded the most efficient 
performance for each intervention and action model were 
chosen and implemented. The initial pool consisted of eight 
features identified from the retrospective commentaries 
provided by wizards. The automated brute force feature 
selection process reduced the set to four features in the 
intervention model and two features in the action model. 
There were no features considered from the spoken natural 
language dialogues between wizards and players. For the 
purpose of this investigation, all features were computed from 
the in-game trace data.  

B. Intervention Strategies 
The high-level structure of the dynamic Bayesian network 

model of director agent intervention strategies—i.e., when to 
perform a directorial action—is shown in Fig. 3. Three time-
slices are illustrated in the figure. In each slice, the 
intervention decision from the previous time slice, 
intervention decisiont-1, influences the current intervention 
decision, intervention decisiont. Within each time slice, 
observations from the story world, collectively known as 
narrative statet, also influence the intervention decision. These 
observations include the physical state of the storyworld, 
progression of the narrative, user knowledge of the story, and 
the overall story timeline. Each time slice encodes a 
probabilistic representation of the director agent’s beliefs 
about the overall state of the narrative. 

The DBN director agent intervention model consists of the 
following variables: 

• Intervention Decision. Intervention decision is a binary 
variable with two values: action and no-action. Action 
indicates that a director agent should perform an action to 
intervene in the story. No-action indicates that the director 
agent should remain inactive. 

• Physical State. Physical state is a discrete variable, with 
nine possible values, that encodes the player’s current 

location and the wizard’s location in the story world. 
Locations are subdivided into discrete regions spanning 
the environment’s virtual infirmary and laboratory. All 
user interactions occur within these locations. 

• Narrative Progress. Narrative progress is a discrete 
variable, with five possible values, that characterizes the 
narrative structure of CRYSTAL ISLAND’s plot. To 
represent narrative progress, we modeled CRYSTAL 
ISLAND’s plot structure in terms of a five-phase narrative 
arc framework: exposition, complication, escalation, 
climax, and resolution. Transitions between narrative 
phases were deterministically triggered by the occurrence 
of plot points within CRYSTAL ISLAND’s narrative. For 
example, when the leg-cramp-reveal plot point occurred 
in the narrative, that marked the transition from the 
climax phase to the resolution phase, because at this point 
the student had all of the information needed to diagnose 
the illness with certainty. These triggers were manually 
specified by CRYSTAL ISLAND’s designer. Both students 
and wizards experienced the same real-time progression 
of narrative phases; there were no differences in how 
wizards and students witnessed the plot advance, although 
wizards were able to control how and when certain plot 
points occurred through directorial actions. 

• Player Knowledge. Player knowledge nodes are discrete 
variables, with ten possible values, that encode the 
player’s beliefs about salient facts of the story learned 
through interactions with the narrative environment and 
non-player characters. Player knowledge is measured on 
an ordinal scale. Within the CRYSTAL ISLAND 
environment, players complete a diagnosis worksheet 
while solving the science mystery, which provides details 
regarding players’ current beliefs about the story. Player 
knowledge node values are determined from user 
performance on the diagnosis worksheet. 

• Time Index. Time index nodes are discrete variables that 
model the overall timeline of the storyworld, providing 

Fig. 3. High-level illustration of dynamic Bayesian network model for director agent intervention strategies. 
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temporal evidence to guide intervention decisions. There 
are 84 possible time index values, each corresponding to a 
discrete time slice in the model. 

During runtime, new observations are made available to the 
director agent–such as player locations and narrative phases–
which trigger corresponding nodes in the DBN to update with 
observed values. These updates propagate throughout the 
network by changing the marginal probabilities of connected 
nodes. Propagating evidence enables the model to perform 
inferences about the most probable intervention decisiont at 
time slice t, which encodes whether a director agent should 
intervene or not intervene at a given point in time. 

C. Action Strategies 
The high-level structure of the dynamic Bayesian network 

model created for director agent action strategies—i.e., which 
directorial action to perform—is shown in Fig. 4. The set of 
directorial actions were those controlled by the wizard’s 
narrative dashboard; navigation, object manipulation, 
conversation, and non-player character behaviors were not 
part of the model. The figure illustrates three time slices and 
their corresponding narrative action decisions: action 
decisiont-2, action decisiont-1, and action decisiont. The three 
time slices incorporate narrative observations that encode 
information about the physical state of the storyworld and the 
narrative’s plot progression. The action model shares 
structural similarities with the intervention model, although 
different predictor features are used. 

In the action model, action decision nodes encode current 
and prior actions performed by the director agent during 
interventions. The Physical state and Narrative progress 
nodes are identical to the equivalent nodes in the intervention 
strategies model described in the prior section. When selecting 
directorial actions, the model consults beliefs about the 
narrative environment’s current physical state and plot 
progress, as well as its prior history of action decisiont-1 and 
action decisiont-2 (Fig. 4). 

Given a DBN structure such as the one described above, 
conditional probability tables (CPTs) for each observation 
node in the network can be induced from a training corpus of 
wizard-player interaction data. After the model’s network 
structure and conditional probability tables have been 
obtained, the model can be used to guide director agent 
strategies during runtime. When the model is used for runtime 
decision-making, observed evidence is provided to the DBN 
model, which causes updates to marginal probability values in 
the network that in turn affect the computed probabilities of 
intervention and action decisions at each time slice. 

D. Predictive Model Evaluation Results and Discussion 
Models of director agent intervention and action strategies 

were machine learned from the training corpus. The predictive 
performance of these models was evaluated with respect to 
predictive accuracy, recall, and precision using cross-
validation techniques. This subsection describes results from 
these two machine-learning analyses. 

 
Directorial Intervention Model 

The unrolled DBN intervention model contained a total of 
84 time slices. We chose 84 time slices by considering the 
average length of a narrative episode in the training corpus 
(approximately 45 minutes), identifying the minimum time 
required to perform a run-time Bayesian update without 
inhibiting CRYSTAL ISLAND’s graphical performance 
(approximately 32 seconds), and then computing the 
maximum number of Bayesian updates that could occur in an 
average episode (45 * 60 / 32 ≈ 84). The unrolled network 
consisted of 84 time slices. It should be noted that the large 
number of conditional probabilities in each time slice raised 
potential data sparsity concerns for machine learning the 
DBN’s parameters. While GeNIe requires the unrolled 
network be provided as an input for parameter learning, data 
sparsity issues were ameliorated by GeNIe’s parameter 
learning process: the parameters for a given time slice in a 

Fig. 4.  High-level illustration of dynamic Bayesian network model for director agent action strategies. 
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DBN are learned using data from all time slices in the training 
corpus. In our case, 33 traces multiplied by 22 observations 
per slice yielded approximately 726 training observations per 
DBN time slice. In effect, the unrolled DBN’s parameter 
learning process mirrors training a DBN consisting of just two 
time slices. It is possible to further reduce data sparsity 
concerns by performing smoothing. However, we did not 
perform an explicit smoothing step in our analysis. The 
DBN’s conditional probability tables were directly those 
computed by GeNIe/SMILE’s implementation of Expectation-
Maximization with the training corpus. 

Statistical analyses were conducted to assess the 
effectiveness of dynamic Bayesian networks for modeling 
director agent intervention strategies. To determine the 
relative effectiveness of the DBN model, an alternate naïve 
Bayes model was developed as a baseline for comparison 
purposes. The naïve Bayes model leveraged the same set of 
observation variables as the DBN model, but the observable 
variables were assumed to be conditionally independent of one 
another. Further, temporal relations between successive time 
slices were not included in the naïve Bayes model. By 
contrast, the DBN model included conditional dependence 
relations between successive time slices. These relations are 
shown as directed links in Fig. 3. Both of the models were 
learned using the same training corpus: trace data collected 
from thirty-two player interactions with the CRYSTAL ISLAND 
game environment during the aforementioned Wizard-of-Oz 
study. A leave-one-out cross validation method was employed. 
We employed leave-one-out cross validation in order to ensure 
that we had enough training data to induce accurate predictive 
models. In some cases, leave-one-out cross validation can be 
subject to overfitting—a potential tradeoff of this validation 
scheme—but in practice we find that it is sufficient for 
validating models that perform well in run-time settings.  

Recall, precision, and accuracy were computed for each 
model. Table I displays classification results for the naïve 
Bayes and DBN models. The DBN model outperformed the 
baseline naïve Bayes model in all categories, achieving a more 
than 16% absolute improvement in accuracy over the baseline 
approach. Also, the DBN model achieved sizable absolute 
gains in recall and precision, 34% and 50% respectively, as 
compared to the baseline approach. 

The evaluation indicates that inducing dynamic Bayesian 
network models from human demonstrations of director agent 
intervention strategies is an effective approach, and the 
independence assumptions inherent in naïve Bayes models 
may not be appropriate for interactive narrative environments.  
Directorial Action Model 

The unrolled DBN model of director agent action strategies 
contained a total of 22 time slices. We chose 22 time slices 
because that was the maximum number of interventions 
observed in the training episodes. Once again, the DBN used 
conditional probability table values induced from 
GeNIe/SMILE’s implementation of Expectation-
Maximization run on the training corpus. Statistical analyses 
were performed to investigate the effectiveness of dynamic 
Bayesian networks for predicting human directors’ action 

decisions during interactive narrative interventions. To 
examine the relative effectiveness of the DBN model 
compared to a baseline approach, a bi-gram model was 
developed in which only the previous action decision was used 
to predict the next action decision. This network structure was 
an appropriate baseline for comparing against the DBN model 
because it represents the most basic form of temporal 
probabilistic model for guiding director agent strategies.  

The models’ predictive performances were evaluated in 
terms of overall accuracy, macro-averaged recall, and macro-
averaged precision. The action decision model solves a multi-
class classification problem, which requires the use of macro-
averaging techniques when using evaluation metrics such as 
recall and precision [27]. Macro-averaging is commonly used 
by the natural language processing community to evaluate 
linguistic classifiers. Macro-averaging is performed by taking 
the arithmetic means of all predicted classes. This method 
assumes that each class has equal weight. The resulting values 
are considered macro-averaged recall and macro-averaged 
precision, respectively.  

Leave-one-out cross validation was employed to evaluate 
the DBN and bi-gram director agent models. Results from the 
evaluation are shown in Table II. The bi-gram model predicted 
human directorial actions with 71% accuracy, whereas the 
DBN model achieved an accuracy of 93.7%. These results 
correspond to a 23% absolute improvement by the DBN 
model over baseline approaches. Further, the DBN model 
achieved sizable gains in both recall and precision compared 
to the baseline approach. These results suggest that leveraging 
evidence about narrative structure, physical locations, and 
action decision history can substantially improve models of 
director agents’ action decisions. 

VII. EVALUATING DBN MODELS OF DIRECTOR AGENT 
STRATEGIES IN RUNTIME SYSTEMS 

To examine the effectiveness of DBN models of director 
agent strategies in a runtime setting, the intervention model 
and action model were both integrated into the CRYSTAL 
ISLAND interactive narrative environment. After the 
integration was completed, the updated version of CRYSTAL 
ISLAND was the subject of a second study involving human 

TABLE I 
CLASSIFICATION RESULTS OF DIRECTOR AGENT INTERVENTION MODELS 

Narrative Intervention 
Model Recall Precision Accuracy 

Naïve Bayes 39.3 % 31.9 % 75.5 % 
DBN 73.3 % 82.0 % 92.8 % 

 
 TABLE II 

CLASSIFICATION RESULTS OF DIRECTOR AGENT ACTION MODELS 

Narrative Action 
Model Recall* Precision* Accuracy 

bi-gram 74.0 % 73.0 % 71.0 % 
DBN 93.0 % 94.0 % 93.7 % 

*Macro-averaged Recall and Precision 
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participants. In this study, the game environment was identical 
to the WOZ-enabled version of CRYSTAL ISLAND from the 
corpus collection with two exceptions: 1) the DBN director 
agent controlled narrative events and non-player character 
behaviors rather than a human wizard, and 2) the nurse 
character’s dialogue was delivered in the form of pre-recorded 
speech and text rather than natural language conversation 
between the wizard and participant. While the omission of 
natural language dialogue is a limitation, we anticipated that it 
would not impact the interactive narrative’s dynamics in such 
a manner that would inhibit the DBN director agent’s ability 
to impact players’ narrative-centered learning experiences.  

The director agent’s actions were reified in the narrative 
environment by the camp nurse character. When the 
directorial action was chosen, the nurse automatically moved 
to an appropriate location in the story world and performed the 
directed action. For example, if the director agent model chose 
to advance the interactive narrative by helping the player 
gather patient symptoms, the director agent would direct the 
camp nurse to approach the player and suggest that the player 
examine the patient. The camp nurse would also lead the 
player toward the infirmary where patients lay in medical cots. 
Whenever the nurse was in an idle state (i.e., not 
implementing a directorial action), she followed the user 
around the environment using built-in path finding, only 
responding to user requests for information. The camp nurse’s 
dialogue was presented through simultaneous speech and text; 
pre-recorded speech was provided a human voice actor, and 
the text of her dialogue appeared at the bottom of the screen. 
Players interacted with the nurse and other non-player 
characters to receive environmental information (e.g., How 
does one operate the laboratory equipment? Where is the 
library?), and uncover clues about the science mystery (e.g., 
What is a waterborne disease? What are Bryce’s symptoms?). 
Players selected their questions using dialogue menus. All 
character dialogue, including the nurse’s dialogue, was 
selected deterministically, and it was fully specified in fixed 
dialogue trees. In the case of the nurse, the dialogue tree was 
designed to approximate, at a simple level, the conversations 
that occurred during the Wizard-of-Oz corpus collection 
study. However, the DBN director agent model did not impact 
characters’ dialogue behavior, except in cases where 
triggering dialogue was part of a directorial action.  

A. Runtime Evaluation Experiment 
An evaluation experiment was conducted to examine 

players’ narrative learning experiences while interacting with 
the updated CRYSTAL ISLAND environment with integrated 
DBN director agent models. The between-group study design 
included two experimental conditions: one condition featured 
the DBN models of director agent strategies to guide narrative 
events in CRYSTAL ISLAND. The second condition used a 
simplified model that did not leverage machine learned 
directorial strategies. Participants’ narrative experiences and 
learning outcomes were compared between conditions to 
examine the relative effectiveness of director agent models 
induced from human demonstrations. 

Machine-Learned Model 
 In the condition with machine-learned director agent 

models, players investigated the CRYSTAL ISLAND mystery 
under the guidance of the DBN director agent model. The 
director agent actively monitored players as they interacted 
with the storyworld, determined when to intervene, and 
selected appropriate directorial actions to guide participants 
through the intended narrative. The director agent had control 
over director intervention decisions (i.e., deciding when to 
intervene) and director action decisions (i.e., selecting what 
intervention to perform). The machine-learned director agent 
model had access to fifteen potential directorial actions—
actions that were originally controlled through the narrative 
dashboard during the Wizard-of-Oz study—which are listed in 
Table III. The machine-learnered model did not directly 
control non-player characters’ behavior, or the nurse’s 
navigation and dialogue behavior, except in cases where the 
behaviors were part of a directorial action listed in Table III. 

 
Base Model 

In the base condition, players investigated the CRYSTAL 
ISLAND mystery under the guidance of a minimal director 
agent model that did not use machine learned directorial 
strategies. This director agent model controlled a subset of 5 
directorial actions (Table III) that were required for solving 
the mystery (i.e., the player could not progress in the narrative 
without the director taking action). The director agent in this 
condition was a simple rule-based model, not a machine-
learned model. Directorial decisions such as introducing new 
patient symptoms and objects, were triggered whenever 
specific pre-conditions were satisfied in the environment.  

This particular baseline was chosen for several reasons. 
First, we considered comparing the machine-learned model to 
a human wizard. However, it was logistically infeasible to 
recruit, train, and observe additional wizards (with no prior 
experience) to participate in the study due to the planned 
number of participants. Furthermore, human wizards would 
introduce a confounding variable—natural language 
dialogue—to the experiment that would potentially impact the 
results. Therefore, we removed this study design from 
consideration. Second, we considered comparing the machine-
learned model to a prior director agent model for the CRYSTAL 
ISLAND environment, U-Director (Mott & Lester, 2006). 
However, U-Director was designed for an older version of 
CRYSTAL ISLAND, and it would have required a complete re-
implementation to work in the updated environment. 
Consequently, we elected to pursue a third option, a rule-based 
model that provides minimal pedagogical guidance, to 
examine the DBN model’s ability to effectively coach students 
as they solved the science mystery. 

B. Study Method 
A total of 123 participants played CRYSTAL ISLAND. 

Participants were middle school students ranging in age from 
12 to 15 (M = 13.40, SD = 0.53). Six of the participants were 
eliminated due to hardware and software issues, and fifteen 
participants were eliminated due to incomplete data on pre- 
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and post-experiment questionnaires. Among the remaining 
participants, 45 were male and 57 were female. 

Several days prior to playing CRYSTAL ISLAND, participants 
completed a short series of pre-experiment questionnaires. The 
questionnaires included a microbiology curriculum test to 
assess student understanding of science concepts that were 
important in CRYSTAL ISLAND’s science mystery. The 
curriculum test consisted of 20 multiple-choice questions 
about microbiology concepts, including the scientific method, 
pathogens, disease transmission methods, and infectious 
diseases. During the experiment, participants were randomly 
assigned to a study condition, and they were given 45 minutes 
to complete CRYSTAL ISLAND’s interactive narrative scenario. 
Immediately after solving the mystery, or 45 minutes of 
interaction, whichever came first, participants exited the 
CRYSTAL ISLAND game environment and completed a series of 
post-experiment questionnaires. By terminating interactive 
narrative episodes after 45 minutes, it was ensured that the 
director agent models would not exceed the supported number 
of time slices. The post-experiment questionnaires included 
the microbiology curriculum test, which was identical to the 
pre-test version. The post-experiment questionnaires took 
approximately 30 minutes to complete. In total, the study 
sessions lasted no more than 90 minutes. 

C. Results 
Statistical analyses were conducted to assess the relative 

effectiveness of the director agent models between 
participants. The analyses focused on two experiential 
outcomes: participants’ science learning gains and 
participants’ efficiency at solving the science mystery. The 
first outcome relates to how successfully the director agent 
model promotes CRYSTAL ISLAND’s primary objective: 
science learning. The second outcome relates to how 
effectively the director agent model guides participants toward 
a desired narrative resolution. 
 Participants achieved significant positive learning gains 
from playing CRYSTAL ISLAND.  A matched pairs t-test 
comparing pre- and post-experiment curriculum test scores 
indicated that participants’ learning gains were statistically 
significant, t(102) = 2.23, p < .05. Examining learning 
outcomes within each condition revealed that participants in 
the Machine-Learned Model condition achieved significant 
learning gains, but participants in the Base Model condition 
did not achieve significant gains (Table IV). Furthermore, 
there was a significant difference between the conditions in 
terms of learning gains. An analysis of covariance 
(ANCOVA) comparing post-test scores between conditions 
while controlling for pre-test scores revealed that learning 
gains from the Machine-Learned Model were significantly 
greater than the Base Model, F(2, 99) = 38.64, p < .001. 

A second analysis of the director agent model focused on 
participants’ efficiency at solving CRYSTAL ISLAND’s mystery. 
The investigation examined two metrics for each condition: 
whether participants solved the mystery, and the duration of 
time taken by participants to solve it. Table V shown means 
and standard deviations for the metrics in each condition. 

To examine whether the two conditions differed in terms of 
participants who successfully solved the mystery, a chi-square 
test was performed. The results showed that the correlation 
was significant, (likelihood ratio, χ2 = 9.14, Pearson, χ2 = 
8.84, p < .01), indicating that the number of participants who 
solved the mystery varied significantly between the 
conditions. Participants in the Machine-Learned Model 
condition solved the mystery at a rate of 92.7%, whereas 
participants in the Base Model condition solved the mystery at 
a much lower rate of 70.2%.  

We also examined differences in time taken by participants 
to solve CRYSTAL ISLAND’s mystery narrative. An ANOVA 
revealed that differences between the two conditions were 
statistically significant, F(1, 82) = 27.01, p < .001. These 
results indicate that participants in the Machine-Learned 

TABLE III 
DIRECTOR AGENT DECISIONS 

Decisions Descriptions 

START-SESSION* Agent gives a brief explanation of the user’s 
objectives and goals. 

INTRODUCE-SCIENTIFIC-
METHOD 

Agent explains to the user and suggests they 
use the scientific method while diagnosing 
the mysterious illness. 

INTRODUCE-WORKSHEET 
Agent explains usage of the diagnosis 
worksheet to help the user formulate and 
refine their hypothesis. 

EXAMINE-PATIENT-
SYMPTOMS 

Agent and user work together to examine 
symptoms of each of the patients. 

UPDATE-WORKSHEET 
Agent reminds the user to update the 
diagnosis worksheet with new knowledge 
and hypothesis. 

READ-DISEASE-BOOKS 
Agent guides the user to read relevant 
disease information in the library, which 
helps them refine their hypothesis. 

INTRODUCE-HEADACHE* 
Agent triggers an action resulting in a 
patient moaning and complaining about 
having a headache. 

TEST-CAMP-ITEMS User and agent test food items the 
expedition team took with them from camp. 

TEST-OUTSIDE-CAMP-
ITEMS 

User and agent test food items the team 
found during their expedition. 

TEST-CONTAMINATED-
BANANAS 

User and agent test the bananas, which end 
up being contaminated. 

INTRODUCE-DIRTY-
WATER* 

Agent triggers an event causing a door to 
open and a water bottle to appear in the 
infirmary room. 

INTRODUCE-LEG-
CRAMPS* 

Agent triggers an event causing one of the 
patients to complain about leg cramps. 

COMPLETE-WORKSHEET 
Agent asks user to update all remaining 
information that has not been entered and 
formulate their final hypothesis. 

REPORT-RESOLUTION 
Agent asks user to explain their final 
hypothesis and how they arrived at their 
conclusion using the scientific method. 

END-SESSION* Agent thanks user and tells her that the 
patients will be treated based on her finding. 

*Decisions employed in Base Model condition 
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Model condition solved the mystery significantly more 
efficiently than participants in the Base Model condition. 

VIII. DISCUSSION 
Empirical evaluation of the DBN-based director agent 

models supports the promise of data-driven approaches for 
creating interactive narrative systems. Findings from a 
controlled experiment with human participants revealed that 
machine-learned dynamic Bayesian networks significantly 
outperformed baseline approaches for modeling director agent 
strategies in a run-time narrative-centered learning 
environment. Participants who interacted with machine-
learned director agent models achieved significantly greater 
learning outcomes than participants in the baseline condition, 
and they also solved the science mystery scenario more 
frequently and efficiently. These experiential measures are 
highly relevant for educational applications of interactive 
narratives, which is a key focus of the CRYSTAL ISLAND game 
environment. A possible explanation for these results is the 
DBN-based director agent delivered hints and prompts 
effectively to reduce obstacles to student learning, as well as 
maintained effective pacing to minimize student boredom and 
frustration. In contrast, the base model did not provide 
comparable story-embedded educational support, either in 
terms of timeliness or content. It should be noted that these 
results merit complementary analyses that focus on aesthetic 
dimensions of player experiences. Studies of players’ 
subjective experiences, as well as empirical patterns in their 
aesthetic experiences, are important for understanding the 
aggregate impacts of director agent models. 

Furthermore, statistical analyses involving leave-one-out 
cross validation found that dynamic Bayesian networks are 
capable of accurately modeling human demonstrations of 
directorial strategies. We believe that DBNs’ ability to 
accurately model human directorial strategies is a key reason 
for their effectiveness in the run-time CRYSTAL ISLAND 
environment. The findings are also notable because the DBN 
models did not incorporate any features from the spoken 
natural language dialogues that occurred in the Wizard-of-Oz 
study. While natural language dialogue is widely believed to 
be a key channel in learning-related communication [28], in 
this case it was not necessary to induce models of directorial 
strategies with high degrees of accuracy, or induce a director 
agent model that effectively enhanced student learning and 
problem-solving outcomes in a run-time environment. 

While supervised machine learning techniques based on 
dynamic Bayesian networks show considerable promise, they 
do have limitations. The computational complexity of 
probabilistic belief updates increases as growing numbers of 
narrative features or actions are introduced to a model, or as a 
network’s connectedness increases. Increasing the 
dimensionality of narrative representations can lead to 
increased predictive power, but these gains come at the cost of 
runtime performance. A careful balance must be maintained to 
ensure that director agent models can effectively reason about 
key aspects of an interactive narrative while still completing 
inferences within reasonable durations of time. These 

tradeoffs are particularly salient in graphically intensive 
games, which may have limited CPU and memory resources 
available for AI-related computations. 

Furthermore, the current framework’s requirement that a 
corpus collection version of an interactive narrative mirror the 
final version of the interactive narrative may prove limiting for 
some categories of games. A growing number of games are 
updated continuously after release through downloadable 
content, expansion packs, and in-app purchases. These updates 
result in game dynamics that frequently change. This 
relatively recent advancement in game distribution poses 
notable challenges for data-driven approaches to devising 
interactive narrative models, but at the same time modern 
networking technologies introduce substantial opportunities 
for collecting training data at relatively low costs. 

IX. CONCLUSION AND FUTURE WORK 
Computational models of interactive narrative offer 

considerable potential for creating engaging story-centric 
game experiences that are dynamically tailored to individual 
players. Devising effective models of director agent strategies 
is critical for achieving this vision. We have presented a data-
driven framework for machine learning models of director 
agent strategies using dynamic Bayesian networks. The 
framework enumerates key considerations of corpus 
acquisition, model learning, predictive model evaluation, and 
runtime model evaluation phases of the approach, and its 
efficacy has been demonstrated through implementations with 
the CRYSTAL ISLAND interactive narrative environment. 
Empirical studies involving human participants revealed that 
dynamic Bayesian networks can accurately predict interactive 
narrative director agent strategies demonstrated by human 
players. Furthermore, statistical analyses of data from a 
controlled experiment indicated that machine-learned DBN 
director agent models have significant positive impacts on 
participants’ experiential outcomes, including learning and 
narrative progress. The results suggest that the proposed 
framework for modeling director agent strategies holds 
considerable promise for promoting effective and engaging 
narrative-centered learning experiences. 

TABLE IV 
LEARNING GAINS BY CONDITION 

Conditions Gain Avg. SD t p  

Machine-learned 1.28 2.66 2.03 < 0.05  
Base 0.89 3.12 1.23 0.22  

 
 

TABLE V 
MYSTERY-SOLVING EFFICIENCY BY CONDITION 

Conditions Solved Mystery 
Completion Time (s) 

Mean SD 

Machine-learned 92.7 % 1724 417.0 
Base 70.2 % 2229 461.6 
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Several directions for future work are promising. First, user 
modeling played a minor role in this work, but it could serve a 
much more prominent role in enhancing computational models 
of interactive narrative. By maintaining fine-grained models of 
players’ knowledge during interactive narratives, opportunities 
for new classes of directorial actions may be introduced. 
Another promising direction is exploring natural language 
dialogue in interactive narrative. Endowing virtual characters 
with sophisticated natural language dialogue capabilities 
offers a mechanism for guiding players through interactive 
stories using naturalistic and engaging interfaces. During the 
Wizard-of-Oz study described in this paper, wizards used 
natural language dialogue to guide participants whenever 
unexpected behaviors were encountered. While this was 
emulated through voice-acted speech in the evaluation study, 
and lack of natural language dialogue did not prevent the 
machine-learned director agent model from effectively 
shaping students’ narrative-centered learning outcomes, 
devising adaptive models of interactive dialogue represents a 
promising line of investigation for future enhancements to 
narrative-centered learning environments. 
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