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Abstract. Game-based learning environments are designed to provide effective and engaging learning experiences 

for students. Predictive student models use trace data extracted from students’ in-game learning behaviors to 

unobtrusively generate early assessments of student knowledge and skills, equipping game-based learning 

environments with the capacity to anticipate student outcomes and proactively deliver adaptive scaffolding or notify 

instructors. Reflection is a key component of self-regulated learning, and it is critical in effective learning. However, 

there is currently limited work exploring the utility of reflection for inducing accurate predictive student models. This 

article presents a predictive student modeling framework that leverages natural language responses to in-game 

reflection prompts to predict student learning outcomes in a game-based learning environment for middle school 

microbiology, CRYSTAL ISLAND. With data from a pair of classroom studies involving 118 middle school students, we 

investigate the accuracy of early prediction models that utilize features extracted from student trace data combined 

with word embedding-based representations (i.e., GloVe, ELMo) of student reflection responses. We evaluate the 

accuracy of the predictive models over time using data from incremental segments of each student's interaction with 

the game-based learning environment, and we compare against models that omit student reflection features. Results 

reveal that models encoding students' natural language reflections with ELMo word embeddings yield significantly 

improved accuracy compared to other representations, with the greatest accuracy demonstrated by an ensemble of 

predictive models. We discuss the implications of these results for the design of game-based learning environments. 
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Introduction 
 

Game-based learning holds considerable potential for student engagement, learning, and motivation 

(de Freitas 2018; Plass et al. 2020; Qian and Clark 2016). Because game-based learning environments can 

create learning experiences that are effective and engaging, they have shown success across a diverse range 

of subject matter (Brezovsky et al. 2019; Pesare et al. 2016; Tsatsou et al. 2019). Game-based learning 

environments can provide students with adaptive support in the form of personalized hints and feedback as 

well as tailored curricular sequencing. Delivering adaptive support requires access to a student model to 

estimate the learner’s current knowledge and competencies that can drive pedagogical decision making and 

timely interventions. Accurate student models are critical in successfully employing adaptive support, as 

incorrectly tailored support can negatively affect student learning outcomes (San Pedro et al. 2013; Chen 

and Law 2016).   

There are multiple approaches to student modeling, including stealth assessment and knowledge 

tracing, which aim to model student competencies based on their interactions with a learning environment. 

These approaches, while exhibiting significant differences, both require an explicit mapping from student 

actions to knowledge content that is developed by subject matter experts. This mapping can be challenging 

to generate for game-based learning environments, where an action may not neatly pair with specific 

content knowledge or skills (e.g., movement, picking up item). Another important approach to student 

modeling is to predict future student competencies using data acquired from a student up to a specific 

moment. This type of modeling, predictive student modeling, automatically induces a student model using 

features extracted from trace logs of students’ gameplay interactions to predict student learning outcomes, 

eliminating the need for labor-intensive encoding of human domain knowledge. Recent years have seen 

significant interest in machine learning approaches to predictive student modeling in game-based learning 

environments (Akram et al. 2018; Emerson et al. 2019; Falakmasir et al. 2016; Karumbaiah et al. 2018; 

Min et al. 2017b, 2020; Sabourin et al. 2013b). Deep neural networks, in particular, have demonstrated 

significant improvements over other machine learning approaches for inducing accurate predictive student 

models (Akram et al. 2018; Geden et al. 2020; Min et al. 2017b, 2020; Piech et al. 2015; Wang et al. 2017), 

although these improvements have not proven universal (Xiong et al. 2016). 

A promising direction for enriching predictive student models is to leverage evidence of self-regulated 

learning (SRL). Effective use of SRL strategies has been shown to yield positive learning outcomes in 

game-based learning environments (Nietfeld et al. 2014; Sabourin et al. 2013a; Taub et al. in press). 

Predictive student models that leverage trace log data interactions have been shown to model SRL behaviors 

in a wide range of computer-based learning environments (Biswas et al. 2018; Desmarais and Baker 2012; 

Kinnebrew et al. 2015). Reflection is a key component of SRL (Greene and Azevedo 2007; Schunk and 

Greene 2018; Winne and Hadwin 1998) that involves the deliberate examination of one’s own knowledge, 

skills, motivational beliefs, emotions, and goals following a learning activity (e.g., post-problem-solving 

episode). A common approach to examining students’ reflection processes is prompting students to create 

written (i.e., textual) descriptions of their reflections (Thorpe 2004; Minott 2008; Hume 2009; Bannert and 

Reimann 2012; Van den Boom et al. 2004). Reflection responses may describe new information that the 

student has learned or goals that the student may have recently accomplished or a new understanding of 

potentially novel ways to learn, use strategies, and acquire skills. Reflection can be prompted periodically 

during a student’s interaction with a game-based learning environment, or it can be prompted after a student 

has finished interacting with the game.  

To assess students’ reflection processes, written reflections are often annotated using a manual coding 

process. Manual coding is labor-intensive (Shute 2011; Poldner et al. 2014; Prilla and Renner 2014; Bannert 

and Reimann 2012), which is an obstacle to providing real-time adaptive support for student reflection. An 

alternative approach is utilizing natural language processing to automatically assess students’ written 

reflections. Automated assessment methods have been devised that employ latent semantic analysis (LSA) 

to derive features from text responses to predict the quality of student reflections (Cheng 2017; Kovanović 

et al. 2018). Word embedding techniques have also been investigated (Pennington et al. 2014; Peters et al. 

2018). Word embedding techniques enable automatic distillation of syntactic and semantic meaning from 
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text, and they have been shown to consistently outperform LSA with respect to capturing word 

relationships. Using these automated text analysis methods, it is possible to build predictive student models 

that utilize features from written reflections to drive real-time adaptive support in game-based learning 

environments. 

In this work, we incorporate student written responses to in-game reflection prompts using word 

embedding methods for early prediction of student learning. We extract features from students’ reflections 

in an unsupervised fashion by using GloVe and ELMo pre-trained word embeddings (Pennington et al. 

2014; Peters et al. 2018), which have been shown to yield significant benefits in automated text analytics. 

GloVe word embeddings are generated using a co-occurrence matrix derived from a large corpus of text. 

ELMo embeddings are generated with stacked bi-directional LSTMs and capture additional information 

related to the specific context in which a word was used. By using word embeddings that are pre-trained on 

a large text corpus, we are able to capture complex syntactic and semantic characteristics of students’ 

natural language reflections from a comparatively small dataset. We compare predictive models that use 

word embedding representations to models that do not incorporate student reflection features using a range 

of supervised learning techniques, including deep recurrent neural networks, ensemble techniques, and 

several traditional classification algorithms (e.g., naïve Bayes, k-nearest neighbor, support vector 

machines). We explore the effectiveness of this approach in a game-based learning environment for middle 

school microbiology, CRYSTAL ISLAND. Word embedding-based reflection feature representations are 

evaluated on a dataset consisting of log data from student interactions with CRYSTAL ISLAND during two 

classroom studies (N=118). In addition to evaluating model accuracy, we measure the success of early 

prediction models by evaluating the standardized convergence point and convergence rate of each model 

(Min et al. 2020; Blaylock and Allen 2003; Min et al. 2016). Results point toward the promise of leveraging 

features extracted from students’ reflection processes to devise predictive student models that can inform 

adaptive support in game-based learning environments.  
 

Background 

 
Reflection 

 
Reflection is a key component of self-regulated learning (Greene and Azevedo 2007; Winne and Hadwin 

1998; Winne and Azevedo 2014). Reflection is a deliberate process that involves performing an 

introspective examination of one’s own experience, perspective, and feelings with respect to a personally 

relevant problem (Ullmann 2015). Effective reflection can lead students toward novel insights about their 

own learning (Rogers 2001), resulting in novel understanding, new perspectives, or the acquisition of 

knowledge and skills (Schön et al. 2017; Boud et al. 2013). Self-regulatory strategies, such as reflection, 

are critical to student learning (Greene et al. 2011) and can lead to positive learning outcomes in adaptive 

learning environments (Van den Boom et al. 2004; Bannert 2006; Van den Boom et al. 2007). 

A common practice for fostering reflection is prompting students to engage in written reflection after a 

learning activity (Thorpe 2004; Minott 2008; Hume 2009). Reflective writing can enhance learning 

outcomes by encouraging students to think critically about the educational materials and their meta-

cognitive judgments (Bisman 2011; Burrows et al. 2001; Cisero 2006). There are many formats for 

reflection prompts depending upon the context in which they are used, but generally, they entail individuals 

writing about their thoughts and feelings on their previous experiences. While written reflections produce 

a measurable artifact of an individual’s reflection process, assessing student reflection typically requires 

labor-intensive manual coding (Shute 2011; Poldner et al. 2014; Prilla and Renner 2014).  

There are numerous methods for assessing reflection quality, but they broadly belong to two types of 

measurement: depth and breadth. Depth of reflection represents the sophistication and complexity of a 

student’s reflection, and it is typically measured on a binary (e.g., non-reflective, highly reflective; Lai and 

Calandra 2010) or ordinal scale (Kember 1999; Poldner et al. 2014; Wong et al. 1995). Ordinal scales of 

reflection can involve different levels of reflection complexity (Wise and Jung 2019), forms of reflection 
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(Lai and Calandra 2010), or types of information included in the reflection (Poldner et al. 2014). Breadth 

of reflection can be assessed by categorizing the range of subjects present in written reflections, such as 

understanding, content, assumptions, perspectives, and personal beliefs (Prilla and Renner 2014; Kember 

et al. 2008; Boenink et al. 2004; Ullmann 2019; Bell et al. 2011).  

There is a growing interest in developing and utilizing automated methods for assessing reflection by 

analyzing written responses to reflection prompts. While there has been some work on modeling students’ 

reflective process as a whole (Blaney et al. 2014; Ullmann, 2011, 2019), the majority of existing work has 

investigated the primary subjects of students’ reflections, such as their experiences, difficulties, intentions, 

and beliefs (Cheng 2017; Kovanović et al. 2018). Prior work has largely utilized dictionary methods and 

latent semantic analysis to extract features for training machine learning models such as naïve Bayes, 

support vector machines, or random forests to predict metrics of student reflection (e.g., quality, category). 

We utilize word embedding techniques to extract general syntactic and semantic features from the reflective 

text in lieu of latent semantic analysis due to their ability to transfer accurate representations leveraged from 

large corpora (Peters et al. 2018). We then provide the word embedding-based representation of student 

reflection directly to a predictive student model. 
 

Predictive Student Modeling 

Devising predictive models of student knowledge and behavior in game-based learning environments has 

shown significant promise (Min et al. 2016, 2017a; Wang et al. 2017; Emerson et al. 2019; Wu et al. 2019). 

Predictive student modeling focuses on making early predictions about students’ future performance, 

knowledge, or skills using currently available data. A primary characteristic of predictive student modeling 

is that predictive student modeling infers future performance rather than current knowledge and skills. For 

example, knowledge tracing typically focuses on modeling whether a student has mastered a particular 

knowledge component or skill during their interactions with an adaptive learning environment. Knowledge 

tracing is often performed using hidden Markov models or recurrent neural networks (Baker et al. 2008; 

Piech et al. 2015). Stealth assessment uses trace data from student interactions with a game-based learning 

environment to predict student knowledge based on an evidence-centered design (ECD) framework (Shute 

et al. 2016; Kim et al. 2016). Computational models of stealth assessment often utilize Bayesian networks 

to link individual student actions to content knowledge. Temporal representations of student data can be 

captured through the use of sequence-based models, such as long short-term memory (LSTM) networks. In 

Min et al. (2020), LSTMs were used to predict student post-test performance following interactions with a 

game-based learning environment for middle grade computational thinking. This approach, called deep 

stealth assessment, minimizes the need to manually create a mapping between in-game actions and student 

knowledge; instead, the mapping is constructed automatically using deep learning techniques. In our work, 

we utilize a similar formulation of student modeling and develop predictive models that converge toward 

an accurate early prediction of student post-test performance, assessing model fit through a diverse set of 

accuracy and convergence metrics. Additionally, we investigate the use of students’ in-game reflection 

responses as a complementary data channel with which to model post-test performance. While previous 

work has investigated using data from student dialogue with virtual agents in adaptive learning 

environments to inform models of student learning (Graesser 2016), utilizing student responses to in-game 

reflection prompts to enhance predictive student models is a novel contribution of this work. 

Early Prediction 

Early prediction enables adaptive learning environments to proactively deliver support to students (Acharya 

and Sinha 2014; Mao et al. 2019; Sabourin et al. 2013b; Winchell et al. 2018; Emerson et al. 2019). There 

is a growing literature on methods for accurately predicting student performance at key early points in a 

student’s interaction with an adaptive learning environment. Common predictor features include static 

attributes such as demographic data, survey data, and pre-test scores. Olivé et al. (2019) use static features 

extracted from student data collected up to two days before an assignment deadline to predict on-time 
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submissions. Other feature representations include sequential data on students’ academic behavior or 

interactions with an adaptive learning environment. For example, Jiménez et al. (2019) use sequences of 

student data (e.g., course enrollment history, grades) in a three-year computer science program with the 

goal of finding the earliest moment in a student’s academic career in which a reliable prediction of dropout 

is possible.  

Many early prediction tasks in adaptive learning environments are formalized as classification 

problems. A classic example is predicting whether a student will be a high or low performer in a course 

(Costa et al. 2017; Gitinabard et al. 2019; Polyzou and Karypis 2019). Student performance is often 

discretized by performing a median split on student outcome data or by distinguishing between pass versus 

fail outcomes. Gitinabard et al. (2019) predicted student performance in a blended class that mixed in-

person instruction with online learning platforms, splitting students into two groups: A- and above, and B+ 

and below. They segmented the data by defining a time threshold for consecutive actions in the online 

platforms. Then, they extracted features from the segmented data at different points in the semester, 

identified the most predictive features, and compared the predictive performance of using features 

encompassing the entire semester to features extracted using only data from earlier points in the semester. 

Polyzou and Karypis (2019) predicted student course grades in future semesters, with a focus on poor-

performing students.  

When making early predictions about student outcomes, it is common to use a small set of discrete data 

segments defined by course milestones (e.g., semester start, semester end, assignment due dates, 

examination dates). For example, Baneres et al. (2019) split a course timeline into deciles to generate 

predictions about student success at each time point. Kostopoulos et al. (2019) split the academic year into 

four consecutive time periods, separating demographic and survey data from time-variant data as two 

“views” in order to predict if a student will pass or fail a class. These methods require access to the entire 

set of data prior to segmentation and would be challenging to apply to game-based learning environments 

where there can be an absence of clear event boundaries. A range of computational techniques have been 

utilized for early prediction, with recent years focusing increasingly on deep neural networks 

(Lykourentzou et al. 2009, Min et al. 2020). Botelho et al. (2019) built multi-task deep learning models to 

predict student attrition and wheel spinning at each learning opportunity in an adaptive learning 

environment.  

We build upon the literature on predictive student modeling by leveraging deep recurrent neural 

networks to generate early predictions of student post-test performance following interactions with a game-

based learning environment. We show how the predictive model performs during early phases of students’ 

action sequences, and we use an absolute measure of time (i.e., minutes elapsed) rather than a relative 

measure (e.g., percentage-based) to segment student data. Furthermore, we utilize features extracted from 

students’ in-game reflection responses, yielding an enriched view of student learning processes in order to 

enhance the predictive accuracy of student models in game-based learning environments.  

 
CRYSTAL ISLAND 
 

CRYSTAL ISLAND is a game-based learning environment for middle school microbiology education (see 

Fig. 1). Students take the role of a medical investigator who has recently arrived on a remote island research 

station to identify the cause of an outbreak that is spreading among a team of scientists. Students must 
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identify what type of pathogen is causing the illness, what is the disease’s transmission source, and what is 

the proper treatment for the disease. The events of CRYSTAL ISLAND take place in an open-world game 

environment. Students are free to explore the island and interact with any of the island’s non-player 

characters (NPCs) or educational resources. Students can ask NPCs about their symptoms, read in-game 

informational texts about various microorganisms and illnesses, and test various food objects for pathogenic 

contaminants in a virtual laboratory. Additionally, students fill out a diagnosis worksheet to keep track of 

key information they have learned during their investigation. CRYSTAL ISLAND has been used by thousands 

of middle school students worldwide, and it has been shown to yield significant science learning benefits 

(Lester et al. 2014; Meluso et al. 2012; Rowe et al. 2011). 

Students interacted with a version of CRYSTAL ISLAND that periodically prompted them to reflect on 

what they have learned and their upcoming plans in the game (i.e., “In your own words, please describe the 

most important things that you’ve learned so far, and what is your plan moving forward?”). The embedded 

reflection prompts were designed to elicit reflective thinking, thus encouraging students to monitor and 

adapt their self-regulated learning processes based on their previous game-based learning behavior and 

problem-solving plans (Van den Boom et al. 2007). After the reflection prompt, students were instructed to 

Fig. 1 CRYSTAL ISLAND game-based learning environment. 

Fig. 2 In-game reflection prompt. 
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self-report their problem-solving progress on a 10-point Likert scale. The prompts were delivered following 

key milestones in the game’s science problem scenario.  

Students were prompted to reflect on their actions thus far and to comment on their plans moving 

forward (Table 1). The reflection prompt took the form of a message, delivered via the student’s in-game 

smartphone, requesting an update about the student’s investigation (see Fig. 2). When students finished the 

game, they were asked to reflect on whether their approach to solving the mystery was successful, and 

whether they would do anything differently when solving a similar problem in the future. In total, students 

spent an average of about 6 minutes interacting with reflection prompts, corresponding to approximately 

8% of their total time in CRYSTAL ISLAND. 

Student responses to the reflection prompts varied significantly in length, specificity, quality, and 

content (Table 2). Some responses exhibited limited reflection by the student, providing only proximal 

information about the student’s latest and current actions. (See second row of Table 2.) Other students 

provided detailed responses which incorporated updates about their beliefs and hypotheses. (See fourth row 

of Table 2). 
 

Table 1 In-game reflection prompts 

Trigger In-game Investigation Update Request Presence of 

Progress 

Self-report 

After talking to the 

camp nurse for the 

first time 

“Agent, it looks like you’ve spoken with the camp nurse. Before 

you continue, we’d like a report on your progress” 

Yes 

After reading six 

virtual books 

“Agent, it looks like you’ve found several materials that may be 

useful. Before you continue, we’d like a report on your progress.” 

Yes 

After obtaining a 

positive test result in 

the virtual laboratory 

“Agent, it looks like you found an object that tested positive for 

pathogenic contaminants. Before you continue, we’d like a report 

on your progress.” 

Yes 

After submitting a 

proposed diagnosis 

and getting it wrong.  

“Agent, it looks like you are making progress on diagnosing the 

illness, but you’re not quite there yet.” 

Yes 

After solving the 

mystery 

“Well done, Agent! You’ve saved everyone on the island. Now 

that you are finished, we would like to ask a couple of final 

questions. “ 

- “Please explain how you approached solving the mystery”. 

- “If you were asked to solve a similar problem in the future, what 

would you do the same and/or differently?” 

No 

After time expires, 

but the student has 

not solved the 

mystery 

“Thank you for playing CRYSTAL ISLAND. Now that you are 

finished, we would like to ask a couple of final questions.” 

- “Please explain how you approached solving the mystery.” 

- “If you were asked to solve a similar problem in the future, what 

would you do the same and/or differently?” 

No 
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Table 2 Examples of reflection responses 

1 “I have learned that the disease is either a mutagen, pathogen, or carcinogen. Moving forward, I 

am going to discover which one the disease on the island is.” 

2 “I think I have a diagnosis. I am going to test my findings.” 

3 “To move forward I will just keep testing foods.” 

4 “I learned that the disease spreading is either a pathogen, mutagen, or carcinogen, but I am 

leaning towards pathogen because of how I think it spread. I am talking to the patients now to 

learn their symptoms in order to verify.” 

5 “The sickness is passing from one person to the other” 

 

Methods 

 
Participants 

 
Eighth-grade students from a middle school in the mid-Atlantic region were enrolled in 2018 and 2019 as 

part of two separate classroom studies. The studies shared the same version of CRYSTAL ISLAND, procedure, 

and materials, but there were also several differences. The studies were conducted in different classrooms 

and at different points in the semester. We combine the data collected across the 2018 (n=61) and 2019 

(n=95) studies into a single dataset and analyze it in aggregate. A binary variable representing which data 

collection the student belonged to was added as a feature to account for systematic differences between 

years. After removing students with missing data, the final dataset was composed of data from 118 students. 

Missing data was due to a number of factors, including student absences, failure to complete the post-study 

surveys, and forgetting assigned participant IDs during the pre-survey or post-survey phases of the study. 

There were 37 participants with missing pre- or post-survey data. The average age of students was 13.6 

(SD=0.5). There was approximately an equivalent number of students who identified as male (n=55) and 

female (n=60), with 3 students responding as Other. There were 43 students who identified as White, 32 as 

Black or African American, 21 as Hispanic or Latino, 3 as Asian, 1 as American Indian or Alaskan Native, 

and 18 as Other.  
 

Measures 

 
Demographics. The pre-study survey began with a short series of demographic questions involving 

the student’s current age, gender, and race. None of these items were included as features in the predictive 

student model to avoid disparate treatment of students based on protected attributes.  

Emotions and Values questionnaire. Following the demographic questions, the pre-study survey 

contained a 16-item questionnaire on emotions using a 5-point Likert scale adapted from Pekrun et al. 

(2011). The response options pertained to the student’s degree of agreement about their contemporaneous 

experience of the following emotions: happy, hopeful, proud, angry/frustrated, anxious/fearful, ashamed, 

hopeless, bored, surprised, contemptuous/disgusted, neutral, confused, interested/curious, sad, 

eureka/sudden understanding, and that the task/activity is valuable. The items were treated as continuous 

features for model input.  

Microbiology content knowledge test. The pre-study survey included a 17-item multiple-choice 

content knowledge assessment on the student’s microbiology content knowledge (M = 6.78, SD = 2.75). 

This pre-test consisted of thirteen factual and four application questions. An example question from the test 

was “Which of the following diseases is caused by a viral infection?” The response options included, 
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“Anthrax,” “Smallpox,” “Salmonellosis,” and “Sickle Cell.” The items were converted to binary variables 

based on the correctness of the student’s responses, and they were included in the predictive model as input 

features. After the student played CRYSTAL ISLAND, they were presented with a post-test that contained a 

separate set of 17-items addressing the same microbiology content knowledge (M = 7.36, SD = 3.36). The 

post-test consisted of fourteen factual and three application questions. All of the information needed to 

answer the questions on both assessments could be found in CRYSTAL ISLAND, whether through books or 

articles, conversations with in-game characters, or by viewing informational posters. Pearson correlations 

indicated significant relationships between the pre- and post-tests (r = 0.53, p < 0.01). Both the pre- and 

post-tests were created by an interdisciplinary team of researchers. 

Gameplay features. While students played CRYSTAL ISLAND, the game automatically time-stamped and 

logged their gameplay actions. Similar to Min et al. (2017a), we encoded students’ in-game actions in terms 

of several components. The first component was the completion of any of the eight key milestones within 

the game (e.g., talked to the camp nurse, submitted a diagnosis for the epidemic). The second component 

was the action type, which denoted whether the student had moved to a new location, conversed with an 

NPC, read a virtual book or article, completed a problem-solving milestone (e.g., submitting a correct 

diagnosis worksheet), used the testing equipment in the virtual laboratory, or recorded notes in the diagnosis 

worksheet. In this study, the data included nine action types. The third component of an in-game action was 

the action argument, which varied based upon the action type. Action arguments included the titles of virtual 

books, the names of NPCs with whom the student conversed, the type of food object the student tested in 

the virtual laboratory, and the content entered into the diagnosis worksheet. The data included 95 different 

action arguments. The fourth component of an in-game action encoding was the location where the action 

occurred. The data included 24 non-overlapping, discrete locations in the virtual environment. Finally, three 

of the features were count-based action arguments that pertained to only a specific action type (e.g., number 

of edits in the diagnosis worksheet). In total, this yielded 130 distinct action features (8 milestones, 24 

locations, 95 binary actions, 3 count-based actions). We represent actions with a one-hot encoding of each 

action component (i.e., action type, action argument, action location) to produce 127 binary features and 

three count-based features. Each encoded action also included the timestamp for the action’s occurrence 

during a gameplay session.  

Reflection prompt responses. At several milestones in the game, students were prompted to reflect on 

their learning by providing a free-response description of their recent progress and upcoming problem-

solving plans. Students also responded to a self-report question about their progress using a 10-point Likert 

scale (M = 6.6, SD = 2.3). Students were prompted up to five times at selected trigger points in the game 

chosen to minimize disruption to gameplay. (See the left column in Table 1 for several example trigger 

points.) Students’ reflections added information to the predictive student models that was complementary 

to the pre-test and gameplay data to describe student behavior. 
 

Procedure 

 
After students completed the pre-study survey, researchers briefly described the overall purpose of the 

study. Next, all students watched a brief video that introduced the game’s science mystery storyline. 

Afterward, students began playing the tutorial phase of the game, which introduced them to the controls 

and game environment. Once finished with the tutorial, students had full agency to explore the island and 

investigate the mystery. Students in the 2018 study were allotted approximately two class periods and 

students in the 2019 study were allotted approximately three class periods to play the game until they either 

solved the mystery or ran out of time. The average playtime across all students was 76.3 minutes (SD = 

19.5). After all students had either solved the mystery (72%) or run out of time (28%), they were directed 

to the post-study survey.  
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Reflection Writing Processing 

 
Students’ written responses to the reflection prompts underwent a series of pre-processing steps. First, 

punctuation was removed and all text was converted to lowercase. Next, misspellings were identified and 

corrected with a plausible candidate that was found within a Levenshtein (edit) distance of two. Incorrectly 

spelled words for which a plausible correction could not be found were removed. Word embeddings for 

each response were computed using one of two methods: 300-dimensional GloVe embeddings (Pennington 

et al. 2014) or 1024-dimensional ELMo embeddings (Peters et al. 2018). These embedding sizes were 

chosen because they are the most similar in size—the largest pre-trained GloVe embeddings are of size 

300, and the smallest pre-trained ELMo embeddings are of size 1024. GloVe generates word embeddings 

based on non-sparse elements of a global co-occurrence matrix through a log-bilinear regression on a local 

context window. ELMo generates context specific word embeddings through concatenating the output of 

the top layer of stacked bi-directional LSTMs. We utilized the final hidden layer of the ELMo language 

model to derive embeddings. 

 

 
Fig. 3 t-SNE visualizations of embedding-based representations of student reflections: (a) GloVe embedding t-SNE 

plot, (b) ELMo embedding t-SNE plot, (c) Example student reflections. 
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A single representation of each reflection response was then created by averaging the word-level 

embeddings (Wieting et al. 2016; Adi et al. 2017). Word embeddings were averaged along each dimension 

across all words included in a student’s written reflection. The limited sample size made the averaged word 

embedding approach advantageous compared to a sequential representation of the word embeddings, 

because a sequential approach (e.g., GRU, LSTM) would require learning many more model parameters. 

Additionally, averaging word embeddings has been shown to perform similarly or better than more complex 

methods across a number of datasets (Shen et al. 2018). These average word embeddings differentiated 

between reflection responses based on the words used and the structure of the response. For example, 

responses that included statements that were structurally similar to “I have learned...disease/illness...I plan 

to…” had similar embeddings, as did responses that contained phrases like “tested positive for 

pathogenic/nonpathogenic bacteria/virus” (see Fig. 3). Finally, a single representation of the student’s 

overall reflections at the time of model prediction was created by averaging their mean reflection 

embeddings across all reflection prompts to which they had responded. For example, if the student, at the 

16-minute mark, had responded to two reflection prompts, then their reflection features would be the 

average of their two word-level averaged embeddings up to that point. At time points prior to the student’s 

first reflection prompt, a zero-vector was used.  
 

Results 

 

All models were constructed in Python using Keras and Scikit-learn (Pedregosa et al. 2011). Model training 

and evaluation were conducted using 10-fold cross-validation on the student-level. The outcome variable 

was a binary indicator derived from a median split of post-test scores (low/high performance). The median 

post-test score was 7, and the split exhibited an approximate bimodal distribution (see Fig. 4). By using this 

outcome variable, the predictive student modeling task centered on predicting student knowledge at the end 

of the session, rather than predicting the change in knowledge during the session. The input features for the 

models consisted of each question from the emotions questionnaire (k=16), pre-test questions (k=17), and 

a one-hot encoding of student gameplay actions (k=131). The predictive accuracy of the models was 

compared across three conditions, which varied in their utilization of reflection feature data: no reflection 

data, GloVe embeddings of reflection data (k=300), and ELMo embeddings of reflection data (k=1024). 

The conditions incorporating the reflection embeddings also included the self-report Likert item asking 

about the student’s problem-solving progress. 

 
Fig. 4 Histogram of student post-test scores. 

 

Student performance on the post-test was predicted at two-minute intervals of gameplay as well as at 

the conclusion of the game. Given that large sections of the game involve reading text, this time interval 

allows for the inclusion of several game actions and events within each prediction interval. For each 

interval, we used a cumulative representation of student data up to that point. For example, the first 

interval’s prediction was based upon the first two minutes of gameplay for each student. The second 
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interval’s prediction was based upon the first four minutes, and so on. The construction of the gameplay 

intervals caused students with long gameplay durations to be overrepresented during training compared to 

students who solved the problem scenario quickly. To counterbalance this effect, within each training fold, 

the training data was sampled with replacement so that all students had the same number of instances. Early 

prediction was evaluated using standardized convergence point with no penalty (Min et al. 2016) and 

convergence rate (Blaylock and Allen 2003), as well as several standard classification metrics (i.e., F1 

score, precision, recall, AUC, and accuracy). Standardized convergence point is the proportion of the 

sequence of predictions which had converged, with 0 indicating the sequence never converged and 1 

indicating an entirely accurate sequence. Convergence rate is the proportion of sequences with an accurate 

final prediction when utilizing the entirety of the student’s data.  

Several classification algorithms were compared across each of the embedding conditions (no reflection 

features, GloVe embeddings of reflection, ELMo embeddings of reflection): majority classifier, naïve 

Bayes, k-nearest neighbors (KNN), linear support vector machine (LinearSVM), logistic least absolute 

shrinkage and selection operator (LASSO), random forest, and Adaboost. The input features were the pre-

test items, the sum of the one-hot encoded gameplay features, elapsed game time, and the reflection 

embeddings. All features were standardized within the 10-fold cross-validation, and then hyperparameter 

tuning of non-neural classification models occurred on an additional internal 10-fold cross-validation. The 

internal cross-validation split the training set into a training and validation set which were iteratively used 

to evaluate a range of model hyperparameters.  

In addition, a recurrent neural network was evaluated that utilized a sequential representation of the 

gameplay features. The neural network consisted of a gated recurrent unit (GRU; Cho et al. 2014) for the 

gameplay features and a fully connected layer for the concatenation of the pre-test and reflection features. 

The output of the GRU and fully connected layers were then concatenated and propagated into an additional 

fully connected layer before the output layer (Fig. 5).  

For regularization, dropout was applied after the GRU and both fully connected layers at a rate of 0.66 

(Srivastava et al. 2014). The model was optimized with RMSprop, and training was terminated through 

early stopping with a patience of 5 or a maximum of 50 epochs. Early stopping used a validation split from 

the training data within the 10-fold cross-validation. The number of units in both fully connected layers 

was selected through hyperparameter tuning based on the validation data across 16, 32, 64, and 128 units. 

The number of units selected from hyperparameter tuning for the fully connected layer following the pre-

test/reflection concatenation and the fully connected layer following GRU were 32/32 for the no-embedding 

model, 64/16 for the GloVe embedding model, and 128/128 for the ELMo embedding model. Finally, an 

ensemble was created using predictions from all seven models (e.g., naïve Bayes, KNN, linear SVM) using 

hard voting. The results for each model using either no-embeddings, GloVe embeddings, or ELMo 

embeddings are respectively presented in Tables 3, 4, and 5. 

The accuracy of the predictions across each interval of a student’s sequence from the best early 

prediction model, the ensemble of models with ELMo embeddings, is presented in Fig. 6. Generally, 

predictions look to stabilize after the first 20 minutes of gameplay with the exception of a set of students 

whose predictions continued to oscillate throughout the entirety of their sequence of predictions. There 

were several students whose predictions never reached an accurate prediction throughout the entire 

sequence. However, no discernible characteristics were found that distinguished this set of students from 

the larger set of students (e.g., no significant differences in pre-test performance or questionnaires). 

 
Fig. 5 Recurrent neural network architecture for predictive student modeling with student reflections. 
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Table 3 Early prediction models for classification on post-test without reflection data 

 Early Prediction Overall Classification 

Models Standardized 

Convergence 

Point 

Convergence 

Rate 

F1 Score Precision Recall Accuracy AUC 

Majority .44 .55 .71 .55 1.0 .55 .50 

Naive Bayes .61 .61 .48 .58 .42 .59 .58 

KNN .40 .66 .62 .63 .62 .65 .65 

LinearSVM .44 .68 .65 .69 .61 .70 .69 

LASSO .45 .63 .62 .67 .58 .68 .67 

Random Forest .51 .56 .49 .55 .44 .58 .57 

Adaboost .52 .56 .52 .53 .51 .57 .56 

Sequential NN .37 .66 .58 .66 .52 .66 .62 

Ensemble .47 .62 .63 .67 .59 .68 .67 

 

 

Table 4 Early prediction models for classification on post-test using GloVe embeddings for reflection data 

 Early Prediction Overall Classification  

Models Standardized 

Convergence 

Point 

Convergence 

Rate 

F1 Score Precision Recall Accuracy AUC 

Majority .44 .55 .71 .55 1.0 .55 .50 

Naive Bayes .59 .60 .43 .60 .34 .59 .58 

KNN .41 .67 .61 .62 .60 .65 .64 

LinearSVM .46 .71 .61 .65 .57 .66 .65 

LASSO  .43 .70 .62 .66 .58 .67 .66 

Random Forest .53 .61 .46 .55 .40 .57 .56 

Adaboost .57 .61 .48 .51 .45 .55 .54 

Sequential NN .41 .71 .67 .66 .68 .69 .69 

Ensemble .43 .74 .63 .67 .58 .68 .67 
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Table 5 Early prediction models for classification on post-test using ELMo embeddings for reflection data 

 Early Prediction Overall Classification 

Models Standardized 

Convergence 

Point 

Convergence 

Rate 

F1 Score Precision Recall Accuracy AUC 

Majority .44 .55 .71 .55 1.0 .55 .50 

Naive Bayes .56 .69 .58 .59 .57 .62 .62 

KNN .36 .72 .67 .66 .69 .70 .70 

LinearSVM .44 .73 .73 .71 .75 .75 .75 

LASSO .40 .73 .70 .74 .66 .74 .73 

Random Forest .45 .69 .60 .61 .59 .64 .64 

Adaboost .43 .69 .58 .63 .53 .65 .64 

Sequential NN .37 .74 .68 .68 .68 .71 .71 

Ensemble .41 .77 .71 .74 .69 .75 .74 

  

 
Fig. 6 Early prediction accuracy by student for the ensemble model using ELMo embeddings of reflection. Sorted 

by length for interpretability. 



 

 

15 

Discussion 
 

Game-based learning environments show significant promise by providing adaptive learning experiences 

to individual students, but the effectiveness of adaptive learning experiences is dependent upon access to 

accurate, reliable student models. Predictive student modeling is critical for building effective adaptive 

learning environments, enabling the delivery of student-specific coaching and feedback. We examined 

several machine learning models for early prediction of student post-test scores within a game-based 

learning environment, CRYSTAL ISLAND. The predictive models utilized three alternate feature 

representations incorporating word embedding-based encodings of student reflection data: no reflection 

features, GloVe embeddings of reflection, and ELMo embeddings of reflection. The linear SVM model and 

an ensemble consisting of seven models (e.g., naïve Bayes, recurrent neural network, linear SVM) that 

utilized ELMo embeddings of student reflection data demonstrated the best performance on overall 

classification accuracy and convergence rate, and substantially improved performance on F1 score and 

standardized convergence point relative to baseline models. The ensemble model achieved superior early 

prediction accuracy, while the linear SVM demonstrated superior overall accuracy. 

The incorporation of features extracted from student reflections provided a substantial improvement to 

the model’s predictive performance when utilizing ELMo embeddings. However, the GloVe embeddings 

provided little additional benefit compared to the no reflection feature representation. The large difference 

in classification accuracy across the GloVe and ELMo embeddings of reflection could be due to the 

additional capability of ELMo to encode contextual information into the feature representation. Through 

the use of contextual representations, ELMo is able to effectively disambiguate word sense, unlike GloVe, 

which forces a single representation for polysemous words. These results indicate that the incorporation of 

an additional information channel based upon student reflection text-based responses contributes toward 

the creation of predictive student models and student reflections can assist in inducing more effective 

predictive models. Additionally, the utilization of word embeddings allows for the integration of students’ 

written reflection responses to reflection prompts without requiring resource intensive annotation by subject 

matter experts on the breadth and depth of the student’s reflections. 

The best performing models varied significantly across the six evaluation metrics. Standardized 

convergence point results revealed limited variability across the three different feature representations, 

while convergence rate, F1 score, AUC, and accuracy all varied substantially. Given the use of a median 

split for post-test score, it was not surprising to see similar model selection across the accuracy and F1 

score. Convergence rate consistently selected different models from the standardized convergence point, 

indicating a tradeoff between how early a model can get an accurate prediction and how reliably the early 

predictions are accurate. These results show the benefit of evaluating early prediction models using a 

diverse set of metrics, including convergence metrics borrowed from the research literature on planning 

and goal recognition (Min et al. 2020; Blaylock and Allen 2003; Min et al. 2016).  

Predictive student modeling has great potential to satisfy the requirements of adaptive learning 

environments by providing efficient, accurate, and reliable student models. The creation of predictive 

models that leverage automatically generated representations of student reflections circumvents the need 

for resource-intensive annotations of students’ natural language writing in the assessment process. The 

improved accuracy of early prediction models that utilize word embedding representations of student 

reflection allows for game-based learning environments that confidently adapt to student actions early in 

their problem-solving experience, thus providing greater opportunity to support the student. For example, 

if the predictive student model indicates that a student will perform poorly after 15 minutes, it may 

recognize that the student has missed several critical resources in the game, triggering a prompt to the 

student directing their attention toward the missed resources. Conversely, a confident prediction about 

student knowledge that occurs near the end of a student’s gameplay session has limited utility, because 

there is limited opportunity remaining to intervene by providing adaptive coaching and support. Generally, 

early prediction models that can accurately and efficiently predict student learning outcomes offer the 

ability to alert instructors or drive adaptive scaffolding features to provide assistance to struggling students. 
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Limitations 

 
A limitation of this study is that, in order to utilize the convergence metrics, students’ post-test scores were 

converted into a binary variable. Ideally, post-test scores would be modeled directly as a regression 

problem, removing issues associated with classifying students near the median boundary as different 

classes. A second limitation is the treatment of students’ reflection responses as an average of mean 

embeddings. This bag-of-words approach loses sequential information about how the student’s reflections 

change over time during in-game problem solving and contextual information about word ordering in the 

written reflections. Investigating the use of convolutional or recurrent neural networks instead of average 

word embedding models is a promising approach to address this limitation, especially since word-order 

information is important when working with short responses. An additional limitation is the assumption 

that the content of prompted written reflection is representative of self-generated naturalistic reflection. 

Students with low motivation or engagement could produce responses to the written reflection prompts 

with limited authentic reflective thinking. Finally, while the incorporation of student written reflections 

using word embedding methods sidesteps the need for subject matter expert annotations of reflection 

quality, it does not provide a clear understanding of which features extracted from the written reflections 

lead to improved accuracy of the predictive student model. On the one hand, it is possible that the models 

may encode key attributes of the students’ reflections based on the word embeddings. On the other hand, it 

is also possible that the model simply utilizes surface-level attributes of the reflection texts, such as word 

complexity, word usage, and sentence length.  
  

Conclusion  
 

Predictive student models enable game-based learning environments to adapt to individual students’ needs 

in real-time. Therefore, it is critical that the models be accurate and reliable. Reflection is a central 

component of self-regulated learning, and leveraging data on students’ reflective thinking processes can 

greatly improve the accuracy of predictive student models. This study leveraged written reflections elicited 

throughout each student’s interaction with a game-based learning environment by prompting the student to 

respond to embedded reflection prompts at different moments in the game. These written reflections were 

integrated into predictive student models, along with other data channels, by using pre-trained word 

embedding representations, such as GloVe and ELMo, to represent students’ natural language responses to 

reflection prompts. Leveraging word embedding techniques removes the need for manual coding to extract 

relevant features from the written reflections. Additionally, the use of word embeddings that account for 

the context of each word in the student written reflections significantly improves the performance of 

predictive student models, as demonstrated using ELMo word embeddings. By combining student 

interaction data and written reflections represented using ELMo embeddings, predictive student models are 

able to accurately predict student learning outcomes at early points in the student’s interaction with the 

game-based learning environment. Specifically, an ensemble of machine learning models employing ELMo 

word embeddings of written reflections demonstrated the best early prediction performance compared to 

other feature representations and model architectures. This approach grants the utilization of written 

reflections while eschewing the need to acquire resource-intensive annotations of the text. These findings 

highlight the importance of both capturing available data channels on student learning processes and 

encoding them automatically in ways that are beneficial for modeling student learning outcomes. Capturing 

these data channels not only enhances the promise of incorporating predictive student models into run-time 

game-based learning environments, but also provides insight into student learning processes.  
 

Future Directions 

 
There are several promising future directions for this work. Developing convergence metrics for continuous 

variables will be an important next step for evaluating early prediction in student models. Additionally, 
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analyzing written responses can be extended beyond the direct application of unsupervised word embedding 

methods to more explicitly extracted qualitatively relevant reflection features. One approach is to pre-train 

word embeddings of written reflections to predict expert annotations of reflection characteristics (e.g., 

depth, categories, knowledge). The word embeddings from the pre-trained model could then be fine-tuned 

in a second supervised model predicting student knowledge. Finally, it will be important to investigate the 

application of predictive student modeling within run-time game-based learning environments, setting the 

stage for empirically assessing the efficacy of early predictive models that integrate student reflection data 

to improve student learning outcomes. 
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