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ABSTRACT 
Accurately detecting and responding to student affect is a critical 
capability for adaptive learning environments. Recent years have 
seen growing interest in modeling student affect with multimodal 
sensor data. A key challenge in multimodal affect detection is 
dealing with data loss due to noisy, missing, or invalid multimodal 
features. Because multimodal affect detection often requires large 
quantities of data, data loss can have a strong, adverse impact on 
affect detector performance. To address this issue, we present a 
multimodal data imputation framework that utilizes conditional 
generative models to automatically impute posture and 
interaction log data from student interactions with a game-based 
learning environment for emergency medical training. We 
investigate two generative models, a Conditional Generative 
Adversarial Network (C-GAN) and a Conditional Variational 
Autoencoder (C-VAE), that are trained using a modality that has 
undergone varying levels of artificial data masking. The 
generative models are conditioned on the corresponding intact 
modality, enabling the data imputation process to capture the 
interaction between the concurrent modalities. We examine the 
effectiveness of the conditional generative models on imputation 
accuracy and its impact on the performance of affect detection. 
Each imputation model is evaluated using varying amounts of 
artificial data masking to determine how the data missingness 

impacts the performance of each imputation method. Results 
based on the modalities captured from students’ interactions with 
the game-based learning environment indicate that deep 
conditional generative models within a multimodal data 
imputation framework yield significant benefits compared to 
baseline imputation techniques in terms of both imputation 
accuracy and affective detector performance.  
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1 Introduction 
Affect plays a critical role in student learning [11]. Recent years 
have seen a significant interest in using physical sensors to 
measure students’ affect as they engage with adaptive learning 
environments. Sensors enable affective models that can generalize 
across learning environments by not relying upon environment-
specific inputs. Sensor-based systems have also seen an increase 
in cost-effectiveness over time, leading to increased accessibility 
and scalability. Multimodal sensor systems employ a wide variety 
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of modalities, including eye gaze [31], posture [16], electrodermal 
activity (EDA) [33], and facial expression [8]. Interaction log-
based modalities, such as keystroke [35] or game trace data [27], 
are also commonly employed within affective modeling due to 
their non-intrusive nature and ease of implementation, 
particularly when physical sensors are prohibitive or impractical 
[2,6]. The use of two or more modalities for affect detection has 
been shown to achieve notable improvement over unimodal 
models [15, 18] as it provides multiple concurrent perspectives on 
a student’s behavior and learning [3].  
 Both sensor-based and interaction-based affect detection 
systems often encounter issues that distort or prohibit consistent 
data capture. Physical and physiological sensors can be impeded 
by noise [16], mistracking [4], and data storage constraints. 
Interaction log-based modalities also suffer from issues such as 
software or hardware failure, network connection problems, data 
logging and transfer problems [30], and incompleteness issues 
[25]. Data loss can also occur due to practical challenges that are 
common in educational settings, including schools’ reliance on 
aging computers, accidental unplugging, and student mishandling 
of machines. Common approaches to addressing these challenges 
include discarding data samples with missing data and simple 
imputation methods such as mean imputation. However, 
discarding data significantly reduces the amount of training data 
available for machine learning models for affect detection. 
 In this paper, we investigate multimodal data imputation with 
deep conditional generative models to address data loss issues in 
student affect detection. We utilize deep conditional generative 
models because of their capability to effectively model complex 
relationships between multiple input variables and data channels. 
Generative neural models have seen increasing usage in areas 
such as synthetic image generation [38], facial expression 
recognition [20], data augmentation [7], translation [22], and data 
imputation [27]. The application of conditional generative models 
to multimodal data streams has received comparatively little 
attention, particularly in the context of modeling student affect in 
adaptive learning environments.   
 Specifically, we investigate two types of conditional 
generative models for multimodal data imputation: conditional 
GANs (C-GANs) and conditional VAEs (C-VAEs). The models are 
evaluated within a multimodal affect detection framework that 
tracks posture data and interaction trace data from students 
engaged with a game-based learning environment for emergency 
medical skills training. Affect detection models are induced to 
predict learning-centered affective states obtained from field 
observations of each student. The models are evaluated using 
varying levels of “missingness” to demonstrate the impact that 
intact data availability has on each generative model. The 
effectiveness of each imputation method is evaluated based on its 
impact on the predictive performance of multimodal affect 
detectors that are previously trained on all available multimodal 
data without any masking. Results indicate that the non-linear 
generative models based on deep neural networks show 
significant promise compared to several competing linear baseline 
approaches for data imputation. 

2 Related Work 

2.1 Multimodal Affect Recognition 
Improvements in the accessibility and flexibility of multimodal 
sensor systems have fostered increased interest in multimodal 
affect recognition in adaptive learning environments. Grafsgaard 
et al. used multiple sensor- and interaction-based modalities such 
as posture, facial expression, dialogue, and task actions to predict 
engagement, frustration, and normalized learning gain in students 
[15]. Their results found a positive relationship between the 
number of modalities used to induce predictive affect models and 
the models’ overall performance. Yang et al. explored the use of 
gaze and posture data in identifying instances of engagement 
elicited as viewers watched various educational videos [35]. Wu 
et al. utilized various multimodal data fusion techniques to 
perform continuous emotion recognition based on facial 
expression, pose, and eye gaze data, concluding that their 
multimodal model using all modalities achieved higher 
performance than other unimodal and bimodal baselines [34]. 
Bosch et al. utilized facial expression data to detect student 
emotion during game-based learning in naturalistic classroom 
settings. Due to various issues with the facial expression data 
capture, the authors also employed gameplay interaction data 
from instances where facial expression data was missing or 
corrupted; however, the gameplay data was not found to be as 
predictive as the facial expression data [5]. Henderson et al. 
investigated the predictive value of various features engineered 
from students’ posture and gameplay trace log data [18]. 
Additionally, various methods of combining the modalities 
through multimodal data fusion were also evaluated. D’Mello and 
Kory provide an in-depth review of multimodal affect detection 
systems, drawing the conclusion that 85% of the observed 
multimodal systems were more effective than their unimodal 
counterparts [12]. However, in many multimodal affect 
recognition tasks, captured data that is noisy or otherwise invalid 
is often discarded completely, significantly reducing the amount 
of data that is available for inducing affect models and potentially 
adversely impacting the overall performance. 

2.2 Multimodal Data Imputation 
Noisy data and missing data are common challenges in 
multimodal systems, and multimodal data imputation techniques 
show significant promise for addressing these challenges. Jaques 
et al. used a multimodal autoencoder to reconstruct data given 
missing modalities and used the latent representation of the 
imputed data to train affect models [19]. Yang et al. also used an 
autoencoder-based approach to address block-wise missingness 
from three sensor-based and interaction log-based modalities. 
They used autoencoders to produce latent-space representations 
of single, pairwise, and entire modalities, reconstructing the 
original data based on the imputation using the pairwise 
mappings [36]. Liu followed a similar imputation approach using 
multimodal autoencoders while applying the latent 
representations of multiple modalities within a translation 
framework to allow the decoder to produce the missing modality 



 

[21]. Thung et al. utilized a deep multitask model to impute 
missing data in separate modalities based on the pairwise 
combinations of missing and non-missing data [32]. Shang et al. 
introduced a multimodal data imputation method using 
generative adversarial networks [27]. By using the GAN model to 
learn cross-modality mappings, a multimodal denoising 
autoencoder was trained on augmented mapping data to 
reconstruct a missing modality.  
 The primary contribution of this work is demonstrating the 
improved performance of deep conditional generative models—
specifically, a C-GAN and a C-VAE—relative to baseline 
approaches for multimodal data imputation in modeling student 
affect. We evaluate each model against multiple baseline 
approaches using three different levels of data “missingness” and 
two masked modalities for a comprehensive analysis of data 
imputation performance. We demonstrate the ability of 
conditional generative models to minimize the impact of missing 
data on multimodal affect detection models trained on all intact 
modalities. 

3 Dataset 
The dataset we use to evaluate generative data imputation models 
contains posture and gameplay data captured from students 
engaged with a game-based learning environment for emergency 
medical skills training, TC3Sim. The data was collected during a 
study involving 119 students (83% male, 17% female) at the United 
States Military Academy. Posture data from each student was 
captured using a front-facing Microsoft Kinect sensor, while the 
gameplay interaction logs were captured using GIFT, an open-
source software framework for the development and deployment 
of adaptive learning environments [29]. As students engaged with 
TC3Sim, two researchers observed each of the students and 
recorded their perceived affective states according to the Baker 
Rodrigo Ocumpaugh Monitoring Protocol (BROMP) [24].  

3.1 TC3Sim Game-Based Learning Environment 
In TC3Sim, students assume the role of a combat medic within 
simulated military combat scenarios (Figure 1). Throughout 
gameplay, students complete a series of interactive medical 
scenarios within a 3D virtual environment, administering 
different forms of combat casualty care to injured computer-
controlled teammates. Each student used TC3Sim individually, 
with each gameplay session lasting approximately one hour.  

3.2 BROMP Protocol 
Using the BROMP observation protocol, two trained observers 
walked around the perimeter of the classroom and discreetly 
annotated occurrences of different affective states using an affect 
recording application running on a small mobile device. Each 
student was observed at approximately 20-second intervals. Using 
observations collected at the beginning of the study, the two 
observers reached an inter-rater agreement in excess of 0.6 in 
terms of Cohen’s Kappa [10]. For this study, six distinct learning-
centered affective states were recorded: boredom, confusion, 

engaged concentration, frustration, surprise, and anxiety. A total of 
755 BROMP observations were captured: 435 were labeled as 
engaged concentration (M = .576, SD = .239), 174 as confusion (M = 
.231, SD = .185), 73 as boredom (M = .097, SD = .161), 32 as 
frustration (M = .042, SD = .182), 29 as surprise (M = .038, SD = 
.045), and 12 as anxiety (M = .016, SD = .089). Due to the relatively 
low number of observations of anxiety, we exclude this affective 
state from our analysis. 

4 Methodology 
We seek to address issues of missing or noisy data in sensor- and 
interaction log-based data channels by investigating several data 
imputation methods based on a single artificially masked 
modality. We investigate multimodal data imputation with 
conditional generative modeling as follows. Feature engineering 
is performed on both modalities based on the data corresponding 
with each BROMP observation. Following this process, baseline 
affect detectors are built using features from both modalities. To 
evaluate the data imputation performance of the generative 
models, one of the modalities is masked by setting either 25%, 50%, 
or 75% of each student’s data to be missing. Following this process, 
generative models are trained using the non-missing data for each 
masked modality and are conditioned using the corresponding 
features from the intact modality. The trained generative models 
then impute the masked data, which are compared to the 
unmasked values which serve as ground truth for validating the 
imputation models. Each model is evaluated in terms of root mean 
squared error (RMSE) to determine the optimal generative model 
configuration. The data imputed by each optimal generative 
model is then used to train new affect detection models for each 
affective state following the same configuration as the baseline 
models. Finally, we compare the deviation of the models’ 
performance to the baseline models’ performance on datasets 
where no data is masked.  

Figure 1: TC3Sim game-based learning environment 



 

 

4.1 Posture-Based Feature Engineering 
The Kinect sensor captured 3D coordinate data for 91 distinct 
vertices. Based on prior work related to posture-based affect 
detection, we selected three vertices from which 73 posture-based 
features were distilled, top_skull, center_shoulder, and head [14]. 
Each of the features was computed based upon the students’ 
posture and movement prior to the given BROMP observation. 
Each vertex produced 18 statistical features, including features 
such as most recent observed distance, most recent Z-coordinate 
value, minimum and maximum observed distance, median 
observed distance, and variance in the observed distances. 
Distance was defined as the Euclidean distance between the vertex 
and the Kinect sensor. Additionally, summative features were 
calculated for each vertex using the minimum, maximum, median, 
and variance in distance observed across the preceding 5, 10, and 
20 seconds prior to each BROMP observation. In addition to these 
54 features, several features were generated to provide the total 
change in position and distance from the Kinect sensor over the 
prior 3 and 20 seconds. Finally, features were engineered to 
indicate whether the student was leaning forward, backward, or 
sitting upright based upon the median distance of the head vertex 
for each individual workstation and the current position of the 
head vertex. These three features were calculated across time 
windows of 5, 10, and 20 seconds, as well as the entire gameplay 
session up to the current BROMP observation. 

4.2 Interaction Log-Based Feature Engineering 
The interaction log-based features are extracted from students’ 
interaction (i.e., gameplay) trace logs from TC3Sim. These 
features represent the students’ actions within the game as well 
as information about the virtual patients that received treatment 
during each training scenario. Features representing the states of 
the virtual patients include changes in systolic blood pressure and 
heart rate, exposed wounds, and lung volume. Features were also 
generated based on students’ gameplay actions such as checking 
a patient’s vital signs or requesting a medical evacuation. Each of 
the features was calculated cumulatively over the preceding 20 
seconds prior to a BROMP observation and reported in terms of 
the sum or current count of a certain action. Additionally, 
measures such as the virtual patient’s blood pressure were 
reported using the standard deviation or average. This process 
produced 39 distinct interaction log-based features. 

4.3 Affect Model Evaluation 
Based on the BROMP observations, separate datasets were created 
for each of the five affective states with a binary class label 
indicating whether the recorded BROMP observation 
corresponded to a positive instance of the target emotion class 
(e.g. bored, confused, engaged concentration, frustrated, surprised). 
Following this process, the datasets were divided into separate 
training and test sets, which were split along a student-level to 
avoid data leakage from a single student’s data during model 
training and evaluation. Additionally, stratified sampling was 
used to ensure a relatively similar class distribution between the 
training and test sets. Approximately 80% of the data was used as 

training data, and the remaining 20% was used as a held-out test 
set. To resolve class imbalances within each dataset, the Synthetic 
Minority Oversampling Technique (SMOTE) was applied to each 
training fold [9]. This process randomly selects a positive instance 
of the minority class and generates synthetic data based on linear 
interpolation between the selected point and another positive 
instance chosen using randomized K-nearest neighbor selection.  
 Automated feature selection was performed based on the 
training set by identifying the features with the highest chi-
squared correlation with the binary emotion label. To combine the 
multimodal feature data, 15 features were selected from each 
modality and concatenated at a feature-level to train each affect 
model [17]. Following the feature selection process, five 
classification techniques were evaluated for each affective state: 
Support Vector Machine (SVM), Logistic Regression (LR), 
Gaussian Naïve Bayes (NB), Random Forest (RF), and Multi-Layer 
Perceptron (MLP). The models were trained using 4-fold cross-
validation while performing iterative grid search on the model 
hyperparameters to determine the optimal model, with the best 
model’s performance reported using the held-out test set. During 
the cross-validation process, synthetic data due to upsampling 
was removed from each fold used as a validation set to avoid 
artificially inflated performance.  

4.4 Conditional Generative Adversarial 
Networks 

C-GANs are an extension of generative adversarial networks 
(GANs), which consist of two deep neural networks, a generator 
and a discriminator, that “compete” against one another other in 
an adversarial fashion [13]. Using a noise vector as input, the 
generator attempts to produce synthetic data that will deceive the 
discriminator, which subsequently attempts to determine whether 
its input is synthetic (i.e., “fake” data) or sampled from the actual 
data (i.e., “real” data). The loss of the discriminator is 
backpropagated through both components of the GAN, with the 
goal of teaching the generator to produce increasingly realistic 
augmented data, while the discriminator also learns to accurately 
distinguish between the real and fake data samples. GAN 
convergence is theoretically achieved when the model achieves a 
Nash equilibrium [1]. Conditional GANs (C-GANs) expand upon 
the traditional GAN model by training the discriminator on 
additional data, or “conditions”, associated with the input feature 
vector, such as a class label [23]. Likewise, the generator is trained 
on the same additional conditions alongside the input noise 
vector. This allows for the generator and discriminator to be 
guided by the conditional input, so the data augmentation process 
is not completely stochastic. In our work, we seek to use the intact 
(non-masked) modality (i.e., posture or interaction log data) to be 
the conditional input to the generator, so the generator imputes 
the missing modality based on the associated, non-missing data.  

4.5 Conditional Variational Autoencoders 
C-VAEs are similar to C-GANs with regard to the conditioning of 
a generative model [28]. The standard VAE contains two neural 
network models, an encoder and a decoder. The encoder learns to 



 

model latent variable representations of the input data, while the 
decoder reconstructs the original input based upon the generated 
latent representation. The VAE model constrains the latent 
representation to follow a specified probability distribution, 
typically a Gaussian distribution. Thus, the loss function of the 
VAE typically consists of two terms: one based on the 
reconstruction error and the other based on the Kullback-Leibler 
divergence between the two relevant distributions (i.e., the latent 
representation distribution and the Gaussian distribution). In the 
C-VAE implementation, the input of the encoder as well as the 
decoder are both conditioned using the same corresponding 
condition vector as the C-GAN. In this work, we use the same 
intact modality as the condition to the C-VAE model. 

4.6 Generative Model Training 
Each generative model is evaluated by masking either the 
interaction log modality or the posture modality. To evaluate the 
performance of the generative models for varying levels of 
missing data, each modality is masked by selecting 25%, 50%, or 
75% of the data points (BROMP observations) for each student. 
The posture data is masked intermittently throughout the 
student’s session, with each data point having an equal probability 
of being masked. This is equivalent to masking posture data in 20-
second intervals, as each BROMP observation coincides with a roll 
up of the prior 20 seconds of student behavior. By masking 20-
second intervals, we effectively simulate sporadic data loss, such 
as that caused by mistracking, a student exiting the sensor’s field 
of view, or intermittent sensor error, where posture data is 
missing for consecutive readings. The interaction log data is 
masked by masking the last 25%, 50%, or 75% of the student’s data. 
This resembles real-world situations where an adaptive learning 
environment crashes or fails resulting in data loss for the 
remainder of the student’s session. The data is masked by setting 
all features in the masked modality to be missing for a selected 
data sample or sequence. The original values are stored as ground-
truth data for evaluation of the data imputation methods. This 
masking process is performed on the training data described 
earlier for inducing affect detection models.  
 Following this phase, fully connected, generative models are 
trained on the non-masked data. The C-VAE is trained using non-
masked features from the masked modality as input, and the 
features from the intact modality are used as conditions for the 
model. The C-GAN also uses features from the intact modality as 
the conditions, but the generator takes a Gaussian noise vector of 
size 32 as input. The C-GAN’s discriminator takes an input of 
either “fake” data produced by the generator or “real” data 
consisting of non-missing data samples from the masked 
modality. The generative models are trained for 1,000 epochs each 
with hyperparameter tuning performed on the number of layers 
in the generator and discriminator (C-GAN), the number of layers 
in the encoder and decoder (C-VAE), and learning rate. Each 
generative model was optimized using the ADAM optimization 
algorithm and binary cross entropy as the loss function. 
Additionally, each model utilized a hyperbolic tangent activation 
function in the hidden layers, necessitating a normalization of the 
data to be within the range of -1 and 1.  

 The optimal model was determined by calculating the RMSE 
between the imputed values and the original, ground-truth values. 
The selected model was then used to impute the missing values in 
the training set which was subsequently used to train affect 
detection models as described in Section 4.3. The changes in the 
affect models’ predictive accuracy demonstrate how different data 
imputation methods approximate masked or removed predictive 
features or trends in the affect training data. In this way, the 
effectiveness of the generative data imputation methods is 
evaluated in two different thrusts. For comparison, we evaluate 
the generative models against two baseline methods: mean 
imputation and probabilistic matrix factorization (PMF) [26]. 
Mean imputation was implemented by taking the mean value of 
each feature within a student’s session data. PMF has become 
relatively common within recommender systems, where data 
imputation is a frequently encountered task. This process factors 
a sparsely populated matrix into two distinct lower-rank matrices, 
the multiplication of which approximates the original data. This 
process is repeated iteratively to minimize the reconstruction loss 
of the imputed data using expectation maximization.  

5 Results 
To determine the impact that missing data and the resulting 
imputation have on affect detection, baseline models induced 
using multimodal data that is completely unmasked are evaluated. 
The ideal performance of the generative model would result in the 
imputed data matching the previously masked data samples 
perfectly, which would result in no deviation from the 
performance of the models trained on non-masked data. This 
allows the impact of the data imputation to be evaluated relative 
to the original, non-masked data, as well as to the performance of 
the affect models trained on masked and non-masked data. 

5.1 Affect Detection Results 
We examine the predictive performance of the affect detection 
models trained with complete data using area under curve (AUC), 
accuracy, precision, recall, and F1 score. The best performing 
classifier, hyperparameter configuration, and selected features 
based on non-masked data are then preserved for the data 
imputation phase. This allows for any deviation in the model’s 
performance to be attributed to the data imputation process rather 
than other factors. For the purpose of this work, the affect 
detection models’ predictive performance serves as a “gold 
standard” for examining how different generative imputation 
methods impact the performance of the affect models trained with 
missing data.  
 Table 1 shows that multi-layer perceptron was the optimal 
classification model for each of the affective states. All of the affect 
models achieved an AUC greater than random chance (0.500) with 
the exception of confused. Frustrated and surprised had relatively 
low precision and recall values, which could be attributed to class 
imbalances, as positive instances of both classes individually 
comprised less than 5% of the total dataset. 



 

 

5.2  Interaction Log Data Imputation 
The four imputation models were evaluated across the five 
affective states, each using three possible levels of missing data. 
The interaction log modality was masked using the end of each 
sequence as the masking location to simulate the loss of all 
interaction log data following a software failure in the middle of 
a student’s interaction with the game-based learning 
environment. The results of data imputation on the affect model 
training data are shown in terms of RMSE in Figure 2. The impact 
of data imputation on affect models using the optimal 
hyperparameter configuration from each model in Table 1 is 
shown in Figure 3. The impact on the affect models’ predictive 
performance is measured in terms of the absolute difference 
between the original affect model’s AUC and the AUC of the same 
model when trained on the imputed data and evaluated on the 
same held-out test set.  
 As shown in Figure 2, deep generative models yielded the best 
data imputation performance for 4 of the 5 affective states when 
25% of the interaction log modality was masked, 2 of the 5 when 
50% was masked, and 3 of the 5 when 75% was masked. 
Specifically, the C-VAE was the best performing model in 2 cases, 
while the C-GAN was the most effective imputation model in 7 
cases. However, C-GAN imputation appeared to have a less 
adverse impact on the affect detection models (Figure 3). From this 
perspective, the C-GAN was the best performing imputation 
approach for 12 of the 15 total evaluations, including all of the 25% 
missingness level. The C-VAE was the best model for only 2 of the 
15 evaluations in terms of adverse impact on the affect models, 
both occurring with the surprised affective state. In total, data 
imputation with generative modeling had the least adverse impact 
on the affect detectors’ performance in 13 of the 15 cases. 

5.3 Posture Data Imputation 
In a similar manner, the same four imputation models were 
evaluated using the posture data as the masked modality, while 
the corresponding interaction log data was used as the conditional 
modality for the generative models. The primary difference from 
the gameplay modality masking is that the posture data was 
masked using a uniform probability across the entirety of each 
student’s sequence. For example, 25% of the posture data samples 
were selected to be masked, but that selection occurred with equal 
probability across all data samples. This was done to ensure 
realistic masking of the sensor-based modality by simulating 
intermittent issues that may occur throughout student 
interactions with an adaptive learning environment, such as 
sensor mistracking, noise, or reliability issues. The results of these 

 Table 1: Performance of optimal affect models.  
 Emotion Model AUC Accuracy Precision Recall F1 Score  
 Boredom MLP 0.837 0.840 0.395 0.833 0.536  
 Confused MLP 0.462 0.463 0.202 0.459 0.281  
 Engaged Concentration MLP 0.620 0.636 0.628 0.807 0.706  
 Frustrated MLP 0.638 0.759 0.128 0.500 0.204  
 Surprised MLP 0.594 0.877 0.118 0.286 0.167  
         

Figure 3: Impact of data imputation on affect models for 
interaction log modality (Lower is better) 

Figure 2: Imputation performance for the interaction log 
modality (Lower is better) 



 

evaluations are based on the missing posture data, evaluated for 
the same 25%, 50%, and 75% levels of missingness, and they are 
shown in terms of imputation performance (Figure 4) and impact 
on affect detector performance (Figure 5).  
 Generative models outperformed the two baselines in terms 
of imputation RMSE for 4 of 5 cases with 25% and 50% masking, 
and all 5 cases with 75% masking. The C-VAE was the optimal 
data imputation method in terms of RMSE for 10 of the 15 
evaluations, compared to only 3 for the C-GAN model. In terms of 
adverse impact on the affect models, the C-VAE was the optimal 
method in 6 cases, while the C-GAN was the optimal method for 
7 cases. However, in several cases the best-performing generative 
model was matched by one or both of the baseline models, such 
as when 50% of the surprised data was masked (Figure 5).  

6 Discussion 
The findings suggest that multimodal conditional generative 
models outperform the two baseline data imputation methods in 
60% (9 out of 15) of the interaction log masking evaluations across 
the three data missingness levels and five affective states with 
respect to data imputation RMSE. This is compared to generative 
modeling outperforming the baseline data imputation methods in 
86.7% (13 out of 15) when using the posture data as the masked 
modality. However, in terms of mitigating the adverse impact of 
missing data on affect detection models’ performance, generative 
models performed optimally for 86.7% (13 out of 15) of the total 
evaluations for interaction log masking, while posture masking 
resulted in generative models outperforming the baselines in 80% 
(12 out of 15) of the evaluations, indicating consistent 
performance across the two modalities. Although different 
imputation methods (e.g., C-VAE, C-GAN) yielded the best 
performance for different affective states and modalities, it should 
be noted that different generative models could be utilized 
depending on the affective state and modality in a run-time 
setting. For this reason, we focus on the performance of deep 
conditional generative models as a family rather than individual 
models.  
 The generative models offer several benefits that contribute 
toward their higher performance than baseline data imputation 
techniques. Because the generative models are conditioned on 
separate, concurrent modalities, it is possible to maintain a 
multimodal perspective during the modeling process, allowing the 
imputation to be based on both non-missing data from the masked 
modality as well as the other intact modality. Mean imputation 
only takes into account a current student’s single feature, and the 
PMF model only focuses on a single modality during its 
imputation. Additionally, because the C-GAN and C-VAE are 
based on deep neural networks, they are well suited to extract and 
model complex patterns between the multimodal data that may 
otherwise be ignored or removed. By using a deep learning-based 
imputation approach, these underlying features are able to be 
partially or fully reproduced within the masked modality, which 
can prove beneficial to the predictive performance of affect 
detection models. This is a possible explanation as to why the 

conditional generative models are the optimal imputation method 
for at least 80% of the affect models examined.   
 It is notable that mean imputation appears to produce similar 
RMSE values compared to the C-VAE and C-GAN models for 
imputing missing data. Many of the features of the interaction log 
data were reported using either a standard deviation or average 
number of certain gameplay actions. Because of the length of 
gameplay sessions (~1 hour each), these attributes may contain 
less variance than the posture-based data. Due to the averaging of 

Figure 5: Impact on affect model performance for posture 
modality (Lower is better) 

Figure 4: Imputation performance for the posture 
modality (Lower is better) 



 

 

these features within mean imputation, it is possible that trends 
in the interaction log data that may be of use to the affect models 
are smoothed during the imputation stage. This may explain why 
the mean imputation produced a similar RMSE to the generative 
models when the interaction log modality is masked.  
 It is notable that the C-GAN was the most frequent optimal 
imputation method in terms of RMSE for the interaction log data 
masking, while the C-VAE was the most frequent for the posture 
data. We observe that the average difference between the C-GAN 
and C-VAE’s RMSE is 0.076 for masked interaction logs, and 0.010 
for masked posture data, indicating that while the C-VAE may 
have outperformed the C-GAN more frequently for the posture-
based evaluations, the margin between the two generative models 
was extremely slim. However, this does not appear to be the case 
with the interaction log masking, where the C-GAN outperformed 
the C-VAE (and baselines) by considerable margins.  
 While the two deep conditional generative methods showed 
improved data imputation performance in most cases, it should be 
noted that the two modeling techniques are inherently different: 
GANs are constructed for generative tasks through the adversarial 
setup of their architecture, whereas VAEs are primary intended 
for latent representation modeling by minimizing the loss defined 
with the Kullback–Leibler divergence and the reconstruction 
error. It is often a challenge to accurately contextualize or 
quantify GAN convergence or performance as a whole due to the 
competing situation between the generator and the discriminator. 
This motivates the need to extend the evaluation of data 
imputation techniques to consider adverse impacts on the affect 
models, which appears to provide additional support for the use 
of C-GANs as a multimodal data imputation method. 
 The performance of data imputation techniques appeared to 
be related to specific affective states. For example, during 
interaction log masking, the C-GAN produced the lowest RMSE 
for frustrated in each of the missingness levels but produced the 
highest RMSE for surprised in each of the missingness levels. This 
behavior was also observed when evaluating the variance of the 
affect models. This can be attributed to a number of factors, such 
as inherent data imbalances (particularly for frustrated and 
surprised), physical behavioral cues that are distinct for each 
affective state, and differently predictive features for each binary 
class label.   
 A decline in imputation performance is expected as the 
missingness level increases [19, 37], particularly for deep learning 
models that suffer from significantly reduced training data. While 
this behavior does occur for each of the affective states and 
modalities, the decline is not as drastic as might be expected given 
the size of the initial training data, step size of the masking (25% 
increments), and depth of the deep learning architectures, 
particularly the C-GAN. As the amount of intact data decreases 
for a certain modality, the generative models risk overfitting to 
the training data or generating random noise as output. However, 
this issue is partially mitigated through the conditional input to 
each of the generative models. The inclusion of the condition as 
input allows the discriminator to be provided with additional 
training data, consisting of 1) real, non-masked data with 
corresponding conditional data, and 2) fake, synthetic data 

generated with randomly selected conditional data. This allows 
for the generator to be further refined during the training phase 
and provides further support for the use of C-GANs within our 
multimodal data imputation framework. 

7 Conclusion 
Multimodal student affect detection has shown significant 
promise for adaptive learning environments. However, both 
sensor-based and interaction-based data streams are often 
plagued by noisy or missing data, which significantly impedes the 
performance of affect detection models due to insufficient training 
data. To address this issue, we present a multimodal data 
imputation framework based on deep conditional generative 
models to support student affect detection in adaptive learning 
environments. Results indicate that conditional variational 
autoencoders (C-VAEs) and conditional generative adversarial 
networks (C-GANs) show significant promise for imputing 
sensor- and interaction log-based modalities for affect modeling. 
The generative models were compared against two common 
imputation methods, mean imputation and probabilistic matrix 
factorization (PMF), and outperformed these baseline models 
across a range of learning-centered affective states and levels of 
data missingness. Overall, deep conditional generative models 
show significant promise for their capacity to model patterns of 
data that are important for multimodal affect detection in adaptive 
learning environments and serve as an improved alternative to 
mean imputation and PMF. Conditional generative models impute 
data using input from separate, intact modalities, which allows the 
imputation process to maintain a multimodal perspective during 
data imputation in contrast to the baseline methods. 
 There are several promising directions for future work. 
Investigating additional types of data corruption, including 
artificial noise injection, within the multimodal data imputation 
framework is an important future extension to this work. 
Examining feature-level masking, data sample-level masking, or 
entirely missing modalities should also be considered. Conditional 
generative models for multimodal data imputation should also be 
investigated with additional sensor-based modalities that are 
commonly used in adaptive learning environments, such as facial 
expression, eye tracking, and physiological data. One area of 
interest is the use of multiple modalities as the conditioning 
factors for each generative model, and conversely, the imputation 
of multiple modalities using a single conditioning modality. 
Finally, additional generative model architectures should be 
explored, including auxiliary classifier GANs (AC-GANs), stacked 
VAEs, and Wasserstein-based GANs (W-GANs) to investigate 
their impact on improving student affect detection.  
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