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Abstract. Recent years have seen growing interest in utilizing sensors to detect 

learner affect. Modeling frustration has particular significance because of its 

central role in learning. However, sensor-based affect detection poses important 

challenges. Motion-tracking cameras produce vast streams of spatial and 

temporal data, but relatively few systems have harnessed this data successfully to 

produce accurate run-time detectors of learner frustration outside of the 

laboratory. In this paper, we introduce a data-driven framework that leverages 

spatial and temporal posture data to detect learner frustration using deep neural 

network-based data fusion techniques. To train and validate the detectors, we 

utilize posture data collected with Microsoft Kinect sensors from students 

interacting with a game-based learning environment for emergency medical 

training. Ground-truth labels of learner frustration were obtained using the 

BROMP quantitative observation protocol. Results show that deep neural 

network-based late fusion techniques that combine spatial and temporal data yield 

significant improvements to frustration detection relative to baseline models. 
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1 Introduction 

Affect has a key role in shaping student learning outcomes [1]. Affective states such as 

flow tend to promote learning, while states such as boredom are not as conducive to 

learning. The affective state of frustration has a complex relationship with learning [2–

5]. On the one hand, frustration often coincides with student efforts to overcome 

impasses, and it signifies situations in which students are grappling with a concept that 

is challenging [6]. On the other hand, frustration can lead to student disengagement, 

and it has been correlated with negative learning outcomes [7]. The ability to accurately 

detect student affect at run-time is critical to the development of affect-sensitive 
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learning technologies that dynamically intervene to support engagement and emotion 

regulation [3, 8]. The complex relationship between frustration and learning 

underscores the importance of reliable frustration detection to inform how affect-

sensitive pedagogical interventions are delivered within intelligent tutoring systems [3]. 

Several methods for detecting student frustration have been investigated in recent 

years. These include both sensor-free methods and sensor-based methods. Sensor-free 

methods leverage trace log data from student interactions with a learning environment 

to train machine learning-based models of affect [9, 10]. Results have shown that 

sensor-free affect detection, in combination with deep recurrent neural networks, can 

yield accurate models across several affective states [9]. Alternatively, sensor-based 

methods utilize physical sensors to capture trace-level data on learner behavior and 

physiology, including facial expression, eye gaze, electrodermal activity (EDA), 

electroencephalography (EEG), and posture [3, 4, 11]. Sensor-based methods show 

promise for enabling generalized affect detection, which eschews domain-specific input 

feature representations, instead leveraging sensor data that can be gathered across a 

range of educational domains and learning environments. Notably, sensor-based 

approaches to affect detection do not necessarily require specialized hardware because 

a growing number of sensors are built directly into computers and tablets, including 

webcams, motion-tracking cameras, and increasingly, eye trackers.  

Sensor-based frustration detection has shown good results when targeting self-

reported affect data [12] or deploying sensors in laboratory settings [4]. Specific data 

channels, such as facial expression, have also shown promise using student data from 

classrooms [13], but other data channels, such as posture, have received less attention. 

Sensor-based frustration detection outside of the lab raises significant challenges [3]. 

Physical sensor data can be affected by reliability issues, background noise, poor 
calibration, subject mistracking, data storage constraints, and inconsistent sensor 

configurations. Further, trace-level data generated by sensors is intrinsically temporal, 

yet the input feature representations that are distilled from these data streams often 

contain limited temporal information [3]. Spatiotemporal data has been demonstrated 

to significantly improve the performance of sensor-based classifiers for action 

recognition [14] and engagement intensity [15], and it is likely to benefit affect-

sensitive learning technologies as well. 

In this paper, we investigate sensor-based frustration detection using deep neural 

network-based data fusion techniques integrating spatial and temporal data on student 

posture captured by Microsoft Kinect cameras. The dataset was gathered from a study 

involving students using a game-based learning environment for emergency medical 

training, TC3Sim. Ground-truth labels for learner frustration were obtained using the 

BROMP quantitative observation protocol [16]. We compare the effectiveness of deep 

neural network-based early- and late-fusion techniques across several evaluation 

metrics. Results show that deep neural network-based late-fusion yields significant 

improvements to frustration detection compared to several baseline techniques. 

2 Related Work 

There is growing interest in sensor-based affective modeling in advanced learning 

technologies. Bosch et al. [13] utilized webcam recordings of students engaged in a 
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physics-based learning game to construct feature vectors extracted from observed head 

positions and movement, brow position, and gross body movement. Ground truth data 

was obtained through the BROMP protocol, using trained observers to mark instances 

of certain affective states at set time intervals. Utilizing BROMP observations as a 

target label, a multitude of classifiers were trained, including Bayesian classifiers and 

C4.5 decision trees, to detect affective states such as frustration, boredom, confusion, 

delight, and engagement. Motion-tracking cameras, such as the Microsoft Kinect, have 

also been utilized in sensor-based affect detection [17]. Grafsgaard et al. utilized learner 

posture and gesture data gathered by a Microsoft Kinect as learners engaged in 

computer-mediated tutoring sessions for introductory programming [17]. Posture 

estimation vectors were distilled from the Kinect’s depth-channel data, and the vectors 

were used to determine correlations between specific postures and self-reported 

frustration, engagement, and learning gains. DeFalco et al. [3] utilized posture data from 

a Kinect sensor to detect learner affect in a game-based learning environment for 

emergency medical training. Separate classifiers were induced for each of five affective 

states: boredom, confusion, concentration, frustration, and surprise. The affect detectors 

performed only slightly better than chance, yielding Kappa values between 0 and 0.11. 

As an alternative to sensor-based affect detection, Jiang et al. [10] utilized interaction 

trace log data in an investigation of deep neural network-based representation learning 

versus expert feature-engineering for sensor-free affect detection using BROMP data. 

Time, frequency, and ratio-based features were calculated for each student based on 

his/her individual interaction with a game-based learning environment for physics 

education. Overall, deep neural network-based models achieved equal or better 

performance compared to feature engineering-based models, with a lone exception 

being frustration (i.e., the feature-engineering approach was slightly more accurate). 
Subsequent work showed that recurrent neural networks (RNNs) outperformed the 

previous classification algorithms in the same affect detection task [9].  

Recent efforts in affect detection have started to explore usage of temporal data 

channels as an input modality. Yang et al. [15] used several feature extraction 

approaches on spatiotemporal face and posture data to train long short-term memory 

(LSTM) networks alongside regression fusion to approximate engagement intensity in 

individuals watching an educational video. Temporal information has also been used to 

develop rule-based models to classify affect through recognition of sequences of joint 

movement and repetition of certain motions [18].  The frustration detection framework 

presented in this paper builds on recent advances in deep neural network-based data 

fusion and introduces an artificial temporal data stream (i.e., a “fourth dimension”) 

derived from spatial 3D posture data to enhance run-time detector accuracy during 

student interactions with a game-based learning environment.  

3 TC3Sim Game-Based Learning Environment 

We investigate automatic detection of student frustration in the context of a game-based 

learning environment for training military medical personnel, the Tactical Combat 

Casualty Care Simulation (TC3Sim). Developed by Engineering and Computer 

Simulations (ECS), TC3Sim (Fig. 1) is widely used by the U.S. Army to train soldiers 

in the essential procedures required of an Army Combat Medic or Combat Life Saver. 
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In TC3Sim, trainees complete a series of 3D simulated combat missions alongside a 

group of computer-controlled teammates. Each story-driven training scenario includes 

a series of simulated combat events that lead to the eventual injury of one or more 

teammates. Trainees must administer tactical combat casualty care in real-time, which 

includes securing the area, assessing casualties, performing triage, administering 

treatment, and preparing for medical evacuation. Trainees encounter opportunities to 

handle a wide range of injuries, including cuts, puncture wounds, blocked airways, 

amputations, and burns. In the present work, we focus on learner interactions with four 

training scenarios from TC3Sim, including a tutorial scenario, a leg injury scenario, a 

narrative scenario involving a squad of soldiers on patrol, and a final scenario that is 

impossible to complete successfully—the patient expires regardless of treatment. Prior 

work with TC3Sim has found evidence of a negative relationship between frustration 

and learning, and further, motivational feedback interventions that target frustration can 

positively impact learning outcomes [3]. We seek to improve the effectiveness of 

generalizable frustration detectors to enable affect-sensitive pedagogical support with 

enhanced effectiveness and reliability. 

4 Detecting Frustration with Posture-Based Temporal Data 

Fusion 

The primary goal of this work was to induce machine learning-based classifiers for run-

time frustration detection using student posture data collected by a Microsoft Kinect 

sensor. The detector’s objective was to classify whether a student was frustrated or not 

given an input feature vector consisting of spatial and/or temporal posture data. 

4.1 Dataset 

We utilized a previously published dataset containing data from 119 students (83% 

male, 17% female) at the United States Military Academy. The training materials were 

administered using the Generalized Intelligent Framework for Tutoring (GIFT), an 

Fig. 1. Screenshot of injured soldier in TC3Sim. 
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open-source software framework for building and deploying adaptive training systems 

[19]. All participants worked individually at laptops and received the same materials; 

there were no experimental conditions. Study sessions lasted approximately 1 hour. 

The study procedure was as follows. First, learners completed a brief demographic 

questionnaire and content pre-test. Next, they viewed a PowerPoint presentation about 

tactical combat casualty care. Afterward, participants completed a series of training 

scenarios in TC3Sim, each working at their own pace. The session concluded with a 

brief post-test, which included the same knowledge assessment items that were 

presented on the pre-test. Utilizing identical items on both the pre- and post-tests 

reduced the challenge of identifying items with matching difficulty for 

counterbalancing the assessments. Further, no feedback was given about student 

performance on the pre-test during the study. 
During the study sessions, each participant was instrumented with a tripod-mounted 

Microsoft Kinect for Windows 1.0 sensor. The Kinect sensor was positioned in front of 

each participant to capture all head movements, body movements, and gestures 

throughout participants’ interactions with TC3Sim using built-in skeletal-tracking 

features supported by GIFT. Kinect sensor data was recorded at approximately 

10-12 Hz. The data consisted of a series of timestamped feature vectors containing 3D 

coordinate data for 91 vertices, each corresponding to a facial or body joint tracked by 

the Kinect. In addition to the Kinect, learners were equipped with a wireless Affectiva 

Q-Sensor bracelet, and their interaction trace log data was recorded by GIFT. The 

Q-Sensors captured timestamped data on learners’ skin temperature, learners’ 

electrodermal activity, and sensor 3D coordinates as measured by built-in 

accelerometers. However, the Q-Sensor data contained significant recording gaps for a 

large number of participants, and therefore it was not utilized in the current work. The 
interaction trace log data was not relevant to devising sensor-based frustration 

detection, so it was also not utilized. 

To obtain ground-truth labels of learner affect, two field observers recorded learners’ 

affect and behavior using the BROMP quantitative field observation protocol 

throughout the study [16]. The field observers, who were both BROMP-certified 

coders, walked around the perimeter of the classroom and used a hand-held Android 

device running the HART field-observation software to discreetly record each learner’s 

affect and behavior at 20-second intervals in round robin sequence. The following 

emotional states were recorded: Concentrating, Confused, Boredom, Surprised, 

Frustrated, Contempt, and Other.  

In total, the study yielded 3,066 BROMP observations by the two field observers. 

For the purpose of the current analysis, we utilize a subset of 755 observations 

coinciding with the time period during which participants interacted with the TC3Sim 

game-based learning environment and on which there was no disagreement between 

BROMP coders about the occurrence of a target affective state. The distribution of 

affective states across these observations were the following: 435 (57.6%) were coded 

as Concentrating, 174 (23.1%) as Confused, 73 (9.7%) as Boredom, 32 (4.2%) as 

Frustrated, 29 (3.8%) as Surprised, and 12 (1.6%) as Contempt. 

To prepare the data for training posture-based frustration detectors, we re-coded the 

data into binary categories, yielding 32 instances of Frustrated and 723 instances of 

Not-Frustrated. The Kinect data was cleaned to remove instances of tracking anomalies 

and extraneous vertex data. Sessions containing fewer than 3 BROMP observations 
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were also removed. Of the 91 vertices tracked by the Kinect, 3 were utilized for posture-

based frustration detection: top_skull, head, and center_shoulder. These vertices were 

selected based on prior efforts investigating affect detection from Kinect data [17]. 

Next, Kinect and BROMP data were integrated and temporally aligned. A set of 73 

posture-related features were computed for each BROMP observation after the initial 

data collection, serving as input features for frustration detection. These features 

captured spatial information about student posture, and they included summary 

statistics (e.g., median, variance, min, max) calculated over time windows of 5, 10, and 

20 seconds preceding the BROMP coding event. These time window sizes are similar 

to prior work on affect detection, including a maximum window size that corresponds 

to the targeted maximum time between BROMP observations [3, 13]. In addition, 

features capturing aggregate changes in learner posture, as well as forward/backward 

lean behaviors, were computed. In aggregate, these features provided a detailed view 

of the spatial orientation of learners’ posture. 

4.2 Temporal Feature Engineering 

The spatial features that were distilled from the Kinect posture data had ranges that 

varied widely, so feature scaling was performed. Each student’s data was normalized 

using Z-score standardization: for each session, the difference between a single data 

point and session mean was divided by the session standard deviation. Temporal 

posture features were computed from the spatial posture feature vectors using the first 

derivative of each observation’s posture coordinates [20]. Using the head vertex, for 

each set of (x, y, z) posture coordinates, the coordinate deltas across two consecutive 

sensor readings were calculated. The deltas were used to calculate velocity features 

averaged across time windows of 3, 5, 10, and 20 seconds. For each posture coordinate, 

the mean, median, max, and variance of the average corresponding velocity were 

calculated. This process provided an additional 48 temporally-related posture features. 

Due to the large number of additional features calculated per vertex, velocity 

information was not calculated for center_shoulder and top_skull. The temporal data 

was normalized using the same Z-score normalization described previously.  

4.3 Feature Selection  

Given the large number of available posture features, automated feature selection was 

utilized to reduce the size of the final feature sets for training frustration detectors. 

Forward feature selection was performed to investigate alternate configurations of 

feature vectors up to length 10. Greedy feature selection was performed using 

RapidMiner 9.0, and it was guided by classification performance with the sequential 

minimal optimization (SMO) variation of a polynomial-kernel support vector machine 

(SVM) [21]. We utilize RapidMiner because it is a convenient toolkit for processing 

and modeling data using a range of supervised learning algorithms, and it has been used 

widely in prior work on affect detection [3]. Forward feature selection is a common 

approach in prior work on affect detection, and SVMs trained with SMO have 

previously been found to outperform competing algorithms for frustration detection 

with learner data from the TC3Sim environment [3, 13]. 
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4.4 Deep Neural Network Architecture 

Each dataset produced by the feature-selection algorithm was used to train a multi-layer 

perceptron neural network. Each network was comprised of feed-forward layers 

containing 800, 800, 500, 100, 50, and 2 nodes, respectively. Each hidden layer utilized 

a Rectified Linear Unit (ReLU) activation function. The networks were trained for 10  

epochs and used an ADADELTA [22] adaptive learning rate to help prevent overfitting. 

All deep neural network models were implemented using RapidMiner 9.0 [23].  

4.5 Data Fusion 

To investigate alternate approaches for integrating spatial and temporal posture 

features, we compared several classifiers induced with both early- and late-fusion 

techniques. Early fusion is based on the concept of “feature-level” fusion, or 

concatenation of multiple feature vectors to form a single vector prior to supervised 

learning [24]. To determine the best sequence of feature selection and feature-level 

fusion, we implemented two variants of early fusion. The first method, EarlyFusion1, 

performs feature selection after concatenating the spatial and temporal feature vectors. 

(Fig. 2A). The second method, EarlyFusion2, performs feature selection on spatial and 

temporal features separately. After feature selection, feature-level fusion is performed 

Concatenated Feature Vector

Spatial Features Temporal Features
Feature 

Selection

(A) EarlyFusion1

Multi-layer Perceptron

Prediction

Spatial Features

Temporal Features

Feature 
Selection

Feature 
Selection

Concatenated Feature Vector

Spatial Features Temporal Features

(B) EarlyFusion2

Multi-layer Perceptron

Prediction

Spatial Features

Temporal Features

Feature 
Selection

Feature 
Selection

Match-Score 
Fusion

Prediction

(C) LateFusion

Multi-layer Perceptron

Multi-layer Perceptron

Fig. 2. Three data fusion techniques for integrating spatial and temporal 

posture-based frustration detection methods. 
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on the top-selected features from each modality (Fig. 2B). LateFusion involves training 

a model on each modality separately and integrating the results of each classifier to 

produce a single prediction (Fig. 2C). This prediction can be determined using several 

different methods, such as majority voting, averaging, or weighting [25]. In this work, 

we compare the results of late fusion using match-score fusion [26] and the highest 

confidence level of the late-fusion output. 

5 Results 

Frustration detectors were trained using 10-fold student-level cross validation. Data 

splits were maintained across all modeling approaches to ensure fair comparisons. To 

ensure adequate training coverage for both target classes (i.e., frustrated and not-

frustrated), the training data was oversampled using cloning of minority class instances. 

Feature selection and early fusion techniques were implemented in RapidMiner 9.0 

[23]. RapidMiner does not support decision-level fusion, as required by our LateFusion 

method. Therefore, feature selection and deep neural network models were created 

using RapidMiner, the raw outputs of the models were recorded, and then decision-

level fusion was performed outside of RapidMiner using Python.  

We observed that z-score feature normalization has a sizable impact on the predictive 

accuracy of posture-based frustration detectors. As a baseline, we reproduced a machine 

learning pipeline for training SVM-based frustration detectors using spatial posture 

data, which had been previously reported in [3], and we investigated how the resulting 

models compared to an equivalent machine learning pipeline with z-score feature 

normalization added. Evaluation metrics included Cohen’s kappa [27], area under the 

curve (AUC), total accuracy, and F1 score. Results are shown in Table 1. 

Table 1. Effect of z-score normalization on sensor-based frustration detection using  

spatial posture features. 

Classifier Kappa AUC Accuracy F1 Score 

SVM 0.056 0.600 0.687 0.113 

SVM (Normalized) 0.190 0.500 0.737 0.249 

Based on these results, z-score normalization was used for the remainder of the 

analyses reported in this section. Next, we replaced the SVM classifier with the deep 

neural network described in Section 4.5. Results from comparing the deep neural 

network-based frustration detector with the SVM-based detector are shown in Table 2. 

The deep neural network model did not show significant improvement regarding Kappa 

and F1 score, and even displayed a decrease in the raw accuracy compared to the SVM 

model. However, there was substantial improvement in the AUC measurement. Slight 

increases in Kappa and F1 score, as well as AUC score indicated that the neural network 

had the potential to capture complex patterns in the training data possibly not detected 

by the SVM.  

Next, temporal posture features were computed from the Kinect data, normalized, 

and used as input for the three data fusion methods. For the LateFusion model, two  
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     Table 2. Comparison of SVM and deep neural network models for spatial posture-based 

frustration detection under 10-fold student level cross validation. 

Classifier Kappa AUC Accuracy F1 Score 

SVM 0.190 0.500 0.737 0.249 

Deep Neural Network 0.192 0.808 0.685 0.254 

 

different selection schemes were tested. The first selection scheme used the model 

prediction with the highest confidence level. The second selection scheme took the 

average of all confidence levels for a predicted class and used the highest average, 

similar to match-score fusion [26]. However, detector accuracy did not change when 

the two selection methods were interchanged. This may be due to the high confidence 

levels of the classifiers for this particular data set, as well as the relatively small amount 

of test data available.  

Results from a comparison of early- and late-fusion methods combining spatial and 

temporal posture data are shown in Table 3 alongside results from the deep neural 

network trained with spatial posture data only as a baseline. Best results for each 

evaluation metric are shown in bold. It is apparent that the addition of temporal feature 

information improved the quality of frustration detection, particularly for the 

LateFusion model. Due to the high proportion of non-frustration observations versus 

frustration observations in the test data, additional emphasis is placed on the Cohen’s 

kappa metric, as it accounts for the potential of obtaining true-positives by chance. 

Table 2. Results of early fusion and late fusion on posture and temporal feature data. 

Classifier Kappa AUC Accuracy F1 Score 

Baseline Network 0.192 0.808 0.685 0.254 

EarlyFusion1 Network 0.178 0.780 0.845 0.213 

EarlyFusion2 Network 0.281 0.854 0.900 0.321 

LateFusion Network 0.355 0.809 0.906 0.396 

EarlyFusion2 outperformed EarlyFusion1 across all evaluation metrics. This may be 

attributable to the dimensionality of the datasets used to train the respective models. 

Because feature selection operated on a single data stream for EarlyFusion1, the main 

difference between this model and the baseline deep neural network was the set of 

candidate features subjected to SVM-based feature selection, as EarlyFusion1 

concatenated temporal velocity features with spatial posture features prior to feature 

selection. The temporal posture features added 48 additional attributes to the existing 

73 spatial posture features, but feature selection only returned up to 10 features in each 

scenario. Alternatively, in EarlyFusion2, two separate feature selection processes are 

employed in parallel, yielding a maximum of 20 features as input to the neural network. 

This increase in number of attributes is a possible explanation for the improved 

accuracy of EarlyFusion2 over EarlyFusion1. 

Late fusion offers a different approach due to its capacity to “correct” a single 

model’s prediction during circumstances where the model’s confidence level is 

relatively low. Upon closer examination, several instances were observed when the 

spatial posture-based detector made an incorrect prediction with a low confidence level, 
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and the temporal posture-based model made a correct prediction with a high confidence 

level, and the latter was chosen as the representative prediction during match-score 

fusion. Several instances of the inverse scenario—the spatial posture-based model 

corrected a prediction by the temporal posture-based model—were also observed. This 

interaction contributed to the increased accuracy of LateFusion frustration detection 

over baseline SVM and deep neural network models, as well as the early fusion 

methods. 

6 Conclusion 

Detection of learner frustration is critical to the creation of affective-sensitive learning 

technologies. However, devising sensor-based run-time models of learner frustration 

using posture data poses significant challenges. We have introduced a data-driven 

framework that combines deep neural network-based data fusion and spatiotemporal 

representations of posture data to improve run-time models of frustration detection. 

Posture features were distilled using sensor data collected from participants engaging 

with a game-based learning environment for emergency medical training. We found 

that late fusion methods combining deep neural network-based frustration detectors 

trained with spatial and temporal posture feature data outperform several baseline 

techniques, including early fusion-based models and spatial posture-based models. 

The results suggest several promising directions for future research. First, it will be 

important to investigate whether posture-based temporal data fusion techniques are 

transferable to other learning emotions (e.g., boredom, confusion, engaged 

concentration, surprise) as well as other learning environments. A key promise of 

sensor-based affect detection is the potential for creating computational models of 

learner affect that generalize across different educational subjects and settings. Second, 

alternate deep neural network architectures should be investigated, particularly those 

that are explicitly designed for modeling sequential data, such as recurrent neural 

networks, to better capture the temporal dynamics of affect as expressed through 

posture. Recent work has shown that recurrent neural network architectures, such as 

long short-term memory networks, yield significant improvements to sensor-free affect 

detection, but it remains to be seen how these methods are best utilized in sensor-based 

models of affect. Finally, there is significant promise in integrating posture-based 

temporal data fusion techniques for affect detection into run-time learning 

environments, enabling delivery of dynamic interventions designed to support student 

engagement and foster improved learning. 
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