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Understanding the role of physiological responses within the behavioral, cognitive, and affective domains of 
a training intervention are an important step towards designing augmented adaptive systems that respond to 
the learner’s cognitive and affective states. Multiple studies have shown that specific affective states are 
related to learning (Craig, Graesser, Sullins, & Gholson, 2004; Graesser & D’ Mello, 2011; Kort, Reilly, & 
Picard, 2001). This paper explores trainees’ skin conductance responses to specific behavioral events and 
theorized cognitive and affective events, and their relationship to learning during a training session within 
the programming domain. A series of independent samples t-tests revealed that students who exhibited a 
skin conductance response (SCR) to the behavioral event of compile begins, as well as to affective events of 
displays of uncertainty, negative feedback, and minimizations of failure had significantly higher learning 
gain and post-test scores than students who did not exhibit a SCR to these events. These findings provide a 
step towards understanding the relationship between the physiological measure of skin conductance and 
affective experiences of the learner in the course of events during a training session, and inform the design 
of adaptive training and learning systems. 

INTRODUCTION 

Augmented systems aspire to maximize human cognition through 
a union of humans and computational systems. Augmented 
training systems can serve to improve human performance 
through appropriately adapting and responding to a learner’s 
state. This union of human and machine in the form of adaptive 
systems have tremendous potential for the training field (Stanney 
et al., 2009). In order to develop such systems, it is important (1) 
to know what aspects of a learner’s affective state influence 
performance during a training intervention, (2) have valid and 
reliable measures of these states, and (3) be able to integrate this 
knowledge into a computational model that appropriately 
responds to the learner’s state to maximize cognition and improve 
performance.  

Recent research indicates that both cognition and affect play an 
important role in training and learning interventions (Craig et al., 
2004; Graesser & D’Mello, 2011; Kort et al., 2001). This 
work builds off foundational cognition research on how 
affective components engagement and motivation are involved 
with cognitive processes like decision-making and memory 
(e.g., Ashbury, & Isen, 1999). Stein & Levine (1991) propose a 
theoretical model that predicts that when there is an emotional 
episode (or affective response) that learning almost always 
occurs. The physiological basis of this model lies in the 
activation of the autonomic nervous system (ANS) in response 
to a mismatch between existing schemas and incoming 
information. When this ANS response occurs in parallel to a 
cognitive appraisal or meta-level analysis of the situation, the 
learner experiences an affective state that may be beneficial to 
learning (Stein & Levine, 1991). 

Research has shown that affective states of engagement (i.e. 
flow) and motivation have had significant influences on 
learning within a training session (Craig et al., 2004; Woolf et 
al., 2009). An optimal state for learning, the flow state, is 
described as an ideal learning state where learners are engaged 

and absorbed in material (Csikszentmihalyi, 1990). To 
maintain or enhance the flow state, learners must be presented 
with tasks that are both achievable and challenging 
(Csikszentmihalyi, 1990). Appropriate amounts of challenge 
can allow the learner to confront points of cognitive 
disequilibrium (contradictions, obstacles, contrasts, or 
surprises), often resulting in a deep comprehension of the 
material during learning (Piaget, 1970). Cognitive 
disequilibrium may occur when the learner experiences 
confusion. Therefore, states of confusion have been pointed to 
as an affective state that is useful to model in adaptive learning 
systems (Craig et al., 2004; Rozin & Cohen, 2003). 
Appropriately assessing the level of engagement (or other state 
based measures) during a task can supplement understanding 
of the learner’s cognitive and affective processes. 

Typically, measures of a learner’s cognitive and affective 
states (i.e., engagement, interest, motivation) are gathered post 
hoc. Previous research questions the ability of these measures 
to accurately portray a learner’s state throughout the 
experience (e.g., Podsakoff, & Organ 1986, Sharek, 2012). 
Besides being potentially disruptive, a major limitation of such 
measurement tools is that they were developed to access the 
psychological state of the learner after the exposure to training. 
This makes it difficult to detect temporal changes in learner 
engagement or other cognitive and affective states – a 
necessary capability for adaptive system development and use. 
While still a useful tool as part of research and development of 
adaptive systems, there is a need to expand the data sources 
used in design and deployment. 

The problem presented to adaptive system developers is 
determining which secondary measures are reliable, valid, 
and useful measures of detecting a learners changing 
affective state in real time. Adaptive systems would benefit 
from a real time, non-disruptive measure of a user’s state. 
Prior research points to the use of facial, postural and 
physiological measures to investigate affective phenomena in 



the context of learning environments (Grafsgaard, Boyer, 
Wiebe, & Lester, 2012; Grafsgaard, Fulton, Boyer, Wiebe, & 
Lester, 2012; Mello, Taylor, & Graesser, 2004). Studies of 
physiological activity during an interaction have linked skin 
conductance to affective responses during learning (Rebelo, 
Noriega, Duarte, & Soares, 2012). Skin conductance reflects 
emotional, or affective, responses (Boucsein, 2012). 
Additionally, skin conductance responses have also been used 
as indicators of emotional learning (Lanzetta & Orr, 1986; 
Ohman & Dimberg, 1978). Skin conductance may provide 
researchers and developers with additional insight into the 
cognitive and affective state of the learner. Yet research is just 
beginning to evaluate skin conductance in training and 
adaptive learning contexts. 

In an adaptive system, real time objective measures of 
psychological processes that monitor learner state may 
supplement and complement post hoc measures of 
engagement, flow or other state based measures. Rebelo et al. 
(2012) point out that in measuring a user’s experience during 
a task, real time measurements have several advantages. They 
are a “cleaner” measure of user state when compared to 
subjective post hoc self-reports. They are less invasive and 
less likely to interrupt the user (less likely to disrupt flow). 
Additionally, skin conductance analyses can be triangulated 
with other data sources (e.g., facial expressions, postural 
position, specified events) to determine valence of the arousal 
event. 

   Skin Conductance 

Electodermal Activity (EDA) is a term that describes any 
electrical phenomena in the skin (Boucsein, 2012). Skin 
conductance, a specific measure of EDA, can be measured 
non-invasively by applying a low constant voltage to the skin 
(Benedek & Kaernbach, 2010). Skin conductance has two 
major components; tonic and phasic. The tonic component, 
also referred to as skin conductance level (SCL), is activity 
that slowly varies over time (Benedek & Kaernbach, 2010). 
The phasic component consists of abrupt increases in the 
conductance of the skin forming a peak that is followed by a 
slower decline back to baseline (Benedek & Kaernbach, 2010). 
When an abrupt increase in phasic activity passes a threshold 
(often set between .01 and .05 µS), it is referred to as a 
significant skin response (SCR). SCRs are arousal responses 
that occur in response to a stimulus or event. 

The sympathetic nervous system (SNS) controls arousal 
responses within the body. When an arousal response is 
triggered, the sudomotor neurons of the SNS send a signal to 
the sweat (eccrine) glands that the sudomotor neurons 
innervate (Dawson, Schell, & Filion, 2000). This process can 
be measured as a change in skin conductance and is a linear 
correlate with arousal (Lang, 1995). Although, only the SNS 
directly innervate the sweat glands, some adrenergic fibers 
(within the autonomic nervous system) exists in close 
proximity to the sudomotor fibers of the SNS (Dawson et al.,  
2000). This might provide a physiological linkage to Stein & 
Levine’s (1991) theory on how affective responses originated 
by the autonomic nervous system aid in the learning process. 

Physiological measures like skin conductance, may move the 
theoretical understanding of the role of affect in learning 
forward, and may prove to be robust enough to be utilized in a 
real time adaptive system. The focus of this paper is centered 
around learning-related behavioral events during a training 
session on introductory Java programming and the skin 
conductance data collected during these sessions. Our goal is 
to examine the efficacy of skin conductance measures to 
inform models of learner states within an adaptive system. We 
integrate observable behavioral events, events that point to 
certain cognitive and affective states, as well as the skin 
conductance responses to these events into a model to predict 
learning within a training intervention. 

In the context of this training session, our hypotheses are: 

(1) Student engagement is positively related to learning. 
(2) Specific behavioral events initiated by a student or 
      tutor may evoke a physiological response. 
(3) Students’ display of specific affective states may evoke 
      a physiological response that relate to learning gain. 

METHOD 
Participants 

Students (N = 38) were recruited to take part in a computer 
mediated training sessions designed to teach introductory Java 
programming concepts. Students were not allowed to 
participate if they reported prior experience that would indicate 
that they knew the material covered in the curriculum. 

Materials 

Students interacted with human tutors via a web-based 
interface that provided a coding interface, a chat pane as well 
as task information to be viewed on one screen. Events 
occurring within the tutoring session were logged and stored in 
a database with a timestamp for syncing the events. Five 
trained coders tagged student dialogue for specific occurrences. 
Logged behavioral events and tagged dialogue events with 
their descriptions can be found in Table 1. Skin conductance 
was measured through a skin conductance bracelet (see Figure 
1). The sensor collected data at 32 Hz for each student per 
lesson. 

Procedure 

Each student was randomly assigned one tutor for a series of 
six lessons across the semester. Lessons consisted of 
programming tasks that mapped to fundamental computational 
concepts. Tutors guided the task progression, and by design, 
previous tasks could not be revisited. Each tutoring session 
covered one lesson and was limited to a maximum of forty 
minutes. 



Prior to beginning a session, students completed a lesson 
content-based pre-test. After the pre-test, tutors and students 
interacted through the web-based interface that provided the 
task content, basic programming functionality with the 
capability to compile and run programs interactively, and a chat 
pane. After each session, students completed a post-test 
consisting of the same lesson based content questions as in the 
pre-test. Students also answered a post survey composed of a 
modified User Engagement Survey (UES), (O’Brien and Toms, 
2010), and the NASA- TLX, (Hart and Staveland, 1988). The 
modified UES included the Focused Attention, Endurability, 
and Involvement subscales. Perceived Usability, Aesthetics, and 
Novelty subscales of the UES were omitted as they primarily 
related to experience with the interface rather than the learning 
task. The NASA-TLX measuring cognitive load, entailed 
response items for Mental Demand, Physical Demand, 
Temporal Demand, Performance, Effort, and Frustration Level. 

  Cognitive Affective Task Analysis 

In order to aid the selection of events occurring within the 
training session that correspond to behavioral events, theorized 
cognitive events, and affective events, a modified cognitive 
task analysis was performed. Cognitive task analysis is a 
technique used to document thought processes underlying 
behavioral events (see Schraagen, Chipman, & Shalin, 2000). 
A trained dialogue coder combined knowledge of existing 
transcripts and a top down approach to implement an adapted 
method of cognitive task analysis to include behavioral events, 
theorized cognitive events and theorized affective events of 
students during interactions of a tutoring task. A training task 
was divided into five subtasks, summarized below. 

Subtask 1. Processing Phase. Cognitively, students 
process the requirements of the task and evaluate the current or 
existing state of their knowledge in comparison to what is 
required to complete the task. Students reach a decision point on 
whether or not they possess the knowledge and skills to complete 
the objective of the task and proceed with planning. 

Subtask 2. Planning Phase. If students do not possess 
the knowledge required to complete the task, the planning phase 
might include segments of questions and answers between the 
student and the tutor, or statements made by the tutor with 
acknowledgements from the student. Affectively, students 
might display uncertainty during this phase. Dialogue with the 
tutor may be to gain specific information to implement the task 
or it may be meta-level information as to how to pose 
questions that allow them to go about acquiring the 
information they need. When students understand the plan, 
they may make a statement to the tutor, affectively indicating 
a positive emotion or excitement, or they might skip straight to 
the implementation phase. 

Subtask 3. Implementation Phase. The implementation 
phase begins with typing code within the task window. Here 
an iterative process of code creation (typing) and code 
evaluation takes place. This process could be supplemented 
with feedback provided by the tutor and/or by segments of 
questions and answers between the student and tutor. 
Affectively, students could have some affective response to the 
type of feedback given by the tutor, or display uncertainty 
within the question and answer events. This iterative process 
continues until the student feels the code is ready to test. 

Subtask 4. Testing Phase. Testing the code begins with a 
compile begin event. Depending on the level of involvement 
with the task, students may internally exhibit an affective 
display of anticipation or excitement at the compile begin 
event. In instances of compile errors students may have an 
affective response. When there is a compile success, students 
likely receive feedback from the tutor aimed to affectively 
support their accomplishment. 

Subtask 5. Evaluation & Reflection Phase. Students are 
solidifying the programming elements and concepts used 
within the task. This cognitive process is supported through a 
combination of statements made by the student, tutor-led 
tests of knowledge, and/or tutor-led demonstrations. 
Within each of these subtasks, the events of display of 
uncertainty, negative feedback, and minimizations of failure 
may be indicators that cognitive disequilibrium has occurred. 



Students would only display uncertainty if they were unsure 
if what they had coded or a statement they had made was 
correct. The tutor would only give negative feedback or 
minimize failure when a student had made a coding error or 
stated something incorrectly. Each of these events suggests a 
gap between existing knowledge of the student and correct 
knowledge required to complete the task. These events, as 
well as behavioral events occurring during the testing phase 
are points of interest in investigating skin conductance 
phenomena within the training session. 

Data Analysis 

Skin Conductance Analysis.  For the purposes of this paper, 
data from a single lesson (Lesson 1) were analyzed. Log events 
as well as dialogue events were time synced with each students 
EDA data. Within this data, events occurred in close proximity 
to each other. Skin conductance responses to events that overlap 
can be difficult to analyze because the SCRs can be superposed 
on one another. To mitigate this problem, we chose a method of 
analysis recommended by Benedek & Kaernbach (2010). This 
method, Continuous Decomposition Analysis (CDA), 
decomposes skin conductance data into its tonic and phasic 
components. This decomposition allows for the extraction of 
overlapping SCRs. CDA was performed using Matlab software, 
Ledalab. The software allows for event related data analysis using 
SCRs. The threshold for detecting a SCR was set to a minimum 
change in amplitude of .02µS occurring within 1 – 5 seconds of 
the onset of the specified event. 

RESULTS 

To address hypothesis 1, Pearson product-moment correlations 
were run to assess the relationship between engagement 
subscales and normalized learning gains. Preliminary analyses 
showed the relationships to be linear, normally distributed as 
assessed by Shapiro-Wilk (p > .05), and there were no outliers. 
There were significant positive correlations between each 
engagement subscale, as well as the average of the three 
subscales, to learning gains (see Table 3). As engagement 
ratings increased on the focused attention, felt involvement and 
endurability subscales, overall learning gains increased. 

To investigate hypotheses 2 and 3, a series of independentsamples 
t-tests were conducted. First, analyses looked at SCR’s 
for the behavioral events of compile begin, compile error and 
compile success. 

For compile begin, an independent-samples t-test determined 
that there were differences in learning gains between students 

who exhibited a SCR to compile begin events and students 
who did not exhibit a SCR to compile begin events. Learning 
gains for each group were normally distributed, (Shapiro- 
Wilks, p > .05), and homogeneity of variances was not violated 
(Levene’s test p > .05). Results showed that learning gains 
were significantly greater for students who exhibited a SCR to 
compile begin events (M = .59, SD = .34) than students who 
did not exhibit a SCR (M =.32, SD = .30), t(36) = 2.58 , p = 
.014. Students who displayed a SCR to compile begin events 
answered, on average, 59% of the questions missed on their 
pre-test correctly on their post-test, whereas students who did 
not display a SCR only answered 32% of the questions missed 
on their pre-test correctly on their post-test. This finding is also 
mirrored in post-test scores. Post-test scores were significantly 
greater for students who exhibited a SCR to compile begin 
events (M = .80, SD = .15) than those who did not (M = .68, 
SD = .16), t(36) = 2.82 , p = .029. Students displaying a SCR 
scored, on average, 80%, while students who did not display a 
SCR scored, on average, 68%. 

No significant differences in learning gains were found 
between students who exhibited a SCR to compile success 
events and those who did not exhibit a SCR. Similarly, no 
significant differences in learning gains were found between 
students who did or did not exhibit a SCR to compile error 
events. However, an independent samples t-test revealed that 
students who displayed a SCR (M = 21.75 SD = 19.95) to 
compile error events reported higher levels of frustration on 
the NASA-TLX than students who did not display a SCR to 
compile error events (M = 9.15 SD = 14.92), t(36)= , p = .037). 
Although frustration was not normally distributed, (Shapiro- 
Wilks p > .05), there were no outliers, and the assumption of 
homogeneity of variance was not violated. 

Independent samples t-tests were run to examine SCRs after 
affective events pointing to the existence of a cognitive 
disequilibrium (uncertainty, negative feedback, and 
minimization of failure). Results showed that students who 
exhibited a SCR (M = .78, SD = .15) after any of these 
affective events had significantly higher learning gains (t(25) = 
4.34 , p < .001, equal variances not assumed) than students 
who did not exhibit a SCR (M = .35, SD = .36). Additionally, 
students who exhibited a SCR (M = . .88, SD = .09) had 
significantly higher post-test scores (t(36) = 2.58 , p = .014), 
than students who did not exhibit a SCR (M = .70, SD = .17) to 
these affective events. 

DISCUSSION 

The purpose of our analyses were to investigate the role of 
both post hoc measures of engagement and real time measures 
of skin conductance within a training session. This was done 
with the goal of better understanding how these measures 
might inform the research and development of adaptive 
systems. We found that the post hoc measure of engagement 
was positively correlated with learning gains. This finding is in 
line with theory and prior empirical findings with similar 
training systems. A modified version of cognitive task analysis  
successfully identified both behavioral events and affective 
events which preceded physiological responses (i.e., SCR’s) 



related to learning. Results from event analyses show that 
students who respond to the compile begin event have higher 
learning gains and score higher on the post-test. The amount of 
arousal could point to the level of investment that students 
have in the training session. That is, occurrence of SCR’s may 
point to an emotional commitment to the result of the code 
compilation that emerges from an increased level of 
engagement towards learning. For affective events analyses, 
we found that students that displayed a physiological response 
to a display of uncertainty, negative feedback, or minimizations 
of failure given by the tutor, have higher learning gains and 
score higher on the post-test than those who did not exhibit a 
response. Again, emotional response to uncertainty or mistakes 
may be linked to high engagement towards learning. Similar 
patterns in SCR’s did not occur with the compilation results 
(compile success or compile error). However, appropriately, a 
self-report measure of frustration did seem to be related to high 
SCR’s occurring with compile errors. 

CONCLUSION 

Physiological responses to behavioral, cognitive and affective 
states are important to investigate in order develop effective 
implementations of augmented training systems. Cognitive 
task analysis proved to be a useful tool in identifying events 
that might be of interest in a training intervention. Examining 
events identified by this analysis during a lesson within a tutor 
mediated training intervention, resulted in finding significant 
differences in learning between students who exhibited skin 
responses and those who didn’t, supporting prior theory 
building around the role of the autonomic nervous system in 
the learning process. These event types can be readily identified 
in similar training systems and used in conjunction with real-time 
physiological data to provide adaptive support for trainees. 
Although there were limitations, our findings supports the 
research literature on learner affective states in the context of 
training interventions, as well as provide a step forward in 
assessing the usefulness of skin conductance measures in future 
design of adaptive systems.  

A limitation of our analyses was the small data set. The next 
phase of work will focus on the compilation of more data 
points to allow for regression analyses and in-depth consideration 
of other variables computed by CDA, such as response latency 
and amplitude of response. Future analyses could involve a time 
series analysis of events to inform a bottom up version of a 
cognitive task analyses.
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