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Abstract

Goal recognitionin digital gamescenters onidentifying the concrete objectives that a player is attempting to
achieve given a domain model and a ssgpe of player actions in a virtual environment. Goal recognition madels
openended digital gamemtroduce opportunities for adapting gameplay events based on the choices of individual
players, as well as interpreting player behaviors during postétacntining analysesiowever, gal recognition in
openendedgames posesignificantcomputational challengeicluding inherent uncertaintyexploratoy actions
and ill-defined goalsThis chapter reports on an investigation of Markov logic netw(ivks\s) for recognizing
player goals in operended digitalgame environmestwith exploratory actionsThe goal recognition modetvas
trained on a corpus collected from player interactions with an-epdadgamebased learning environment
CRYSTAL ISLAND. We presenexperimentakesults in which the goal recognitiormodel wascomparedo n-gram
models The findingssuggesthe proposedjoal recognitiormodelyields significant accuracy gains beyotin n-
gram modeldor predicting player goals in an opended digitabame.
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1. Introduction

Goal recognition and its more general form of plan recogniti@ne classic problem in artificial intelligence
(Carberry, 2001; Kautz, 19865chnidt, Sridharan,and Goodson, 1978 Goal recognitionis the process of
identifying the higHevel objective that an agent is trying to achieve based on an observed sequence of actions
performed by the agenit. is a restricted form of plan recognition, a task that involdestifying boththe agentOs
goalandthe action segence that will achieve that gobhsed on an observed sequence of actibmssetasks plan
recognition andyoal recognitionare connecteddy their sharedfocuson recognizing patterns iaction sequences

and they are widely regarded as key components of human intelliéreeapacity to interpret patterns in othersO
actions is critical for navigating everyday situations, such as driving a car, holding a conversation, or playing a sport.
Consequently,amputational models of plan recognition are relevant to a broad range of applicatiorendtgoal
recognition models have been devised for story understanding sy€barsiakandGoldman, 1998 productivity
software Horvitz, et al., 1998 intelligent tutoring systemsQonati, Gertnerand VanLehn, 200® and dialogue
systems Blaylock andAllen, 2003. More recentlyrelatedmodels foractivity recognition have been used to create
assistivetechnologiesfor the disabled(Chu, Song, Levinsonand Kautz, 2012 as well as aircraft refueling
recognizers that operate on video data (HaogsPerera, 2008)An emerging, promising application area fwal
recognition systems is digitglames Gold, 2010;Kabanza, et al., 201Q;aviers and Sukthankar, 201; Mott and

Lester, 2006; Orkin, 2007 Digital games vary considerably in genre and gameplay style, giving rise to many
formulations ofgoalrecognition tasks.

Digital gamescontinue to growincreasingly complex in their graphical presentations, interaction designs, and
simulation capabilities. However, digital games rarely demonstrate capabilities for interpreting playdes®l low
actions at higher levelsin other words, recognizing patterrin player behavidt to dynamically adapt game
events. A key example of this missing capabilityg@mesO inability to recogniptayesOgoak. Recognizing a
playerOs goals a digital gamenvolves identifying the concrete objectives that a playertesrgiting to abieve
given a domain model arskbquence of player actions in tietual environmentln theory, games havell access
to fine-grainedinformation aboutplayesQactions, andhis data could betilized by goal recognitionmodelsto
drive how game respondto playesO behavior at runtime. Yet digital gameshave traditionally reliedon
comparativelyunsophisticated methods such as scripts, triggers, and state mdictémeapproaches for reacting to
player behavior, leading to rigid and sdimees artificialresults (Yannakakis, 2012).



If adopted, gal recognition models offer several prospective benefits to game creators. Firstxplaey the
potential ofplayeradaptivegames which dynamically adaptgameeventsin response to players@tions(Ried|,
SarettoandYoung, 2003)As an illustrative exampleonsider a game in which player forms a goal to give some
food, an apple, to a hungwlager. Later in the narrative,nbeknownst to the player, ttagoplewill emerge asn
importart elementof the gam& narrative;the playerwill discover that theappleis transmittingan infectious
disease, whiclthe playemustdiagnoseGiving the apple to theillager conflicts with this plannedcharrative.The
playerwill not be able tdater examinethe appleif he haspreviouslyfed it to the hungry villageMWithout a goal
recognition model, the game is unable to interpret the playgatfdssas anythingmore than a sequence of
movements, object manipulatigrend conversationé goal recognition model enalslthe playeradaptive game to
recognize the playerOs goal, and subsequaridly that the goal conflicts with the planned narrative. Using
knowledge about the playerOs gtiad playeradaptive game casynamicaly augment te game experiengsuch as
by directing the villager to refuse the apple.

Second gamebased learning environmenssand to benefit from goal recognition models. InterprefitayersO
goals and planare valuable in assessment, particuldolysubjects whre the player is expected to demonstrate a
problemsolving strategy or complex mukitep skillin the virtual environmentMore generally, gal recognition
models can inform intelligent tutoring systeembeddedvithin gamebased learning environmer{ishnson, 2010
Lee, Mott, and Lester, 2012 Accurately diagnosing studentsO probseining goals is essential for intelligent
tutors toassess whatoncepts and skills a playenderstandsas well as possible misconceptions that the player may
possessThese capabilities enable intelligent tutoring systemmdeide hints or remediatiotailored to individual
learners.

Third, goal recognizers can provide valuable information tidemetry effortsdhy game developersGame
telemetry involves remotelgollecting, storing, and analyzing log data about player behavicetding information
about how players use digital games Oin the wddllér, 2010. Over the past several yearslemetry has been
the subject of growing interest aarge developersed informationto inform future game designsuch as which
items aremostpopularor whichregions ofvirtual mays causegameplayproblems Adding goal recognition models
to developersO suite gametelemetrytools facilitates high-level interpretations of playersO raw interaction data.
Goal recognition models equip analysts with totdsidentify playersGntentions, determinewhich gameplay
strategies are most successful, adjlist parts of the game tratuse frustratioor lead to players quitting.

While goalrecognition modelshow promise for a broad range of games, their potential for enrichamgended
(or OsandboxO) ganisespecially notableOperendedgames, such as the popular Elder Scroll s¢Beshesda,

2011 and Minecraft (Mojang, 2009), featuegpansiveenvironmentsand multiple paths for accomplishing@game
objectives(Squire, 2008) In these immersive 3D games players choose the goals they want to pursue, and they
develop their own plans to achietlee goals. Goals can be formed in several ways in @petedgames: the
software may explicitly present godisr the playerto achieve or the player may implicitly define the goals for
herselfduring gameplay, effectively hiding the goals from the softwémesither of these casespas may be well

defined (e.g., Retrieve the magical staff from the dragonOs cave and return it to the magician) or they may be ill
defined (e.g., Build a castle on the umtain). Players may perform actions in deliberate sequences in order to
accomplish goals, or they may perform actions in an exploratory manner, inadvertently encountering or achieving
goals. Successive goals within a game may be independent of one aoothieey may have complex inter
relationships defined by overarching narrative structiaesh of these variatiorintroduce substantive challenges

for goal recognition.

Goal recognitionmodelsin digital gamesmust cope with several sources inherentuncertainty. A single
sequence of player actions is often explainable by multiple possible player goals, and a given goal can be achieved
through a wide range of possible action sequen@ésile logical representationsnableconciseencoding of
structuréd relations ingoal recognition domainsthey lacksupport for reasoning about uncertainty. Markov logic
networks (MLNSs) provide a formalism that unifies logical and probabilistic representations into a single framework,
preserving the representational pecties of firstorder logic while supporting reasoning about uncertainty as made
possible by probabilisticgraphical models (Richardsoand Domingos, 2006). Thischapter reports on an
investigation of Markov logic networks for recognizing @aygoals inan operendeddigital game environment
with exploratory actionsSpecifically, weevaluate theredictive accuracyf MLN-basedgoal recognition models
for astory-centric gamebased learning environment

In this chapter, we survey prior work on player goal recognition in digital games. We also motivate our decision
to use Markov logic networks for goal recognition, comparing our framework to other computational approaches for
goal recognition in various daains, as well as recent work leveraging MLNs for related tasks. We describe a MLN
goal recognition model that was trained on a corpus collected from player interactions with @mdeggame
based learning environmeaélled CRYSTAL ISLAND. In CRYSTAL ISLAND, players are assigned a single highel



objective: solve a science mystery. Players interleave periods of exploration and deliberate problem solving in order
to identify a spreading illness that is afflicting a research team stationed on the lIslathis setting, goal
recognition involves predicting the next narrative-gall that the player will complete as they solve the interactive
mystery. We present findings that suggest the MLN goal recogmitaztelyields significant accuracy gains beybn
alternative probabilistic approaches for predicting player goals. We discuss the studyOs implications, both in terms of
algorithmic techniques for goal recognition as well as methodologies that leverage digital games for investigating
goal recognition mdels. We conclude with an examination of future directions.

2. Related Work

Recognizing playersO goals and plans offers significant promise for increasing the effectiveness of digital game
environments for education, training, and entertainment. Plan réicognihich seeks to infeagents@oals along

with their plans forachieving them from sequences of observable actions, has been studied for tasks ranging from
traffic monitoring (Pynadath and Wellman 200@) operating system usad8laylock and Allen 2003}o story
understandingCharniak and Goldman 1993Plan recognitionis inherently uncertainand solutions supporting
reasoning under uncertainty such as Bayesian models (Charniak and Goldman 1993), probabilistic grammars
(Pynad#éh and Wellman 2000), and Hidden Markov Models (Bui 2003) hdemmonstrated strong empirical
performance in a range of settindis the restricted form of plan recognition that focuses on inferring users® goals
without concern for identifying their plansg subplans, goal recognition models have been automatically acquired
using statistical corpusased approaches without the need for keautiored plan libraries (Blaylock and Allen

2003).

The classic goal recognition problem assumes that a single agaumsisng a single goal using deterministic
actions, and it assumes that a userOs plan can be identified using a given plan library. A major focus of recent work
on goal and plan recognition has been probabilistic approaches that relax several of timeggoass For example,
Ramirez and Geffner (2010) describe a plan recognition approach that does not require the provision of an explicit
plan library. Hu and Yang (2008) describe a #&weel goal recognition framework that uses conditional random
fields and correlation graphs to support recognition of multiple concurrent and interleaving goals. Geib and
Goldman (2009) have devised the PHATT algorithm, which is a Bayesian approach to plan recognition that focuses
on plan executiorPHATT provides a unifiedframework that supports multiple concurrent goals, multiple
instantiations of a single goal, and principled handling of unobserved acBeils.and Goldman201]) also
proposeda lexical parsingbased approach to plan recognition that supports plansledfs. While probabilistic
approaches have achieved considerable success, the propositional nature of probabilistic graphical models
introduces limitations in formalizing plan recognition models.

Recentefforts havebegun tofocus onstatistical relationalearning frameworks for plan and activity recognition.
Statistical relational learning techniques combite representational strengths tafgical formalisms and
capabilities for reasing under uncertainty, which adten associated with probabilistgraphical modelsOf
particular note, Markov Logic networks ptide a single, unified formalisithat supports structured representations
and probabilistic reasoningadilek and Kautz (2010) uséMarkov logic to investigate activity recognition &
multi-agentCapture the Flag game using GPS dhtaheir model, a Markov logic network combines hard and soft
constraints derived fronCapture the Flagules to denoise and label GPS data in terms of OcaptureO events.
Experiments demonstrated that theLMW model significantly outperforms alternate probabilistic and
nonprobabilistic approaches, correctly identifying 90% of capture ewafitde they are related,un work differs
from Sadilek andKautzOsn several ways(1) our models encode minimal domapecific knowledge (i.e., our
constraints are not firgirder encodings of game rules), (2) we focus only on a single agentOs behavior, and (3) we
focus onmodelng goals with cyclical relationships between goals and actiorasher than modeling playersO
activities

Singla and Mooney2011) devised a method for constructing Mibdsed plan recognition models using
abductive reasoning over planning domaifiseir method is comprised of two parts: a Hidden Cause model, which
augments Markov logic to suppoefficient abduction (inference from observations to explanations), and an
abductive model construction procedure that reduces the number of atomic groundings considered while
constructing ground Markov networks. Experiments found that Singla and Moapgy@ach improved predictive
accuracy over competing techniques. However, by framing the problem in terms of abductive inference, their
approach requires that a formal description of the planning domain be available. In our work, goal recognition is
concepualized as a classification proble@ur approachdoes not directly perform abductive inference over the
planning domain as in Singknd MooneyOs approacand therefore it does not required a planning domain to be
explicitly provided



Therehave been seral studiesof goal and plan recognitiomodelsin digital gamesKabanza and colleagues
(2010) explord challenges with behavior recognition in réiahe strateg(RTS) games which involve opposing
armiesbattling for controlof regiors using complex tactics and unifSher work extendedGeib and GoldmanOs
PHATT algorithm (2009) to perform intent recognitioon the behaviors oRTS opponend. Preliminary
experiments using gaereplays achieved 89% accuracy, although the authors as$ultyeabservable actionfor
the purposes dheir initial evaluationln other work,Laviers and Sukthankar (2011) comhingan recognition and
plan repair models for redilme opponent modeling in a football videogamkeir approach usedpper Confidene
Boundsapplied to TreegUCT) in order to learn plan repair policies in réiahe. The plan repair policies enatble
the offense to adjust its passing plan after recognizing the defenseQs playempirical evaluation, the UCT
approach outperforad baseline and heuristitased plan repair methods in terms of yardage gain metnids
reductions in interceptions throwh.should be noted thathile both of these studies focedon plan recognition
(and related) tasks in digital games, the tasks maapr structural and application differences fraor work
involving exploratory actions in opeended games.

More closely related to the study described in this chapterecht, Zukerman, and Nicholson (1998) conducted
an early examination of Bayesiaetworks for planrecognitionin adventuregames. Thestudy compared several
alternate Bayesianetwork structureor predicting playersquests, actions, and locatioinsa textbasedmulti-user
dungeon adventure gamEehe evaluation founthat network structuregncorporatingboth action and location data
outperformed ablated versions with reduced connectivity and varidBtesever,no comparisons to neDBN
baselines were performelore recentlyGold (2010)investigatednput-Output HidderMarkov Modek (IOHMM)
for recognizinghigh-level player goals in a simpRD actionadventure gameélhe IOHMM model, which utilized
handengineered parameters as opposed to madbamaed parametersyas compared to a hatadithored finite
state machindFSM), a common representational techniqisedin commercial gamesA preliminary evaluation
involving human subjestobserved that the IOHMM model did outperform the F®&bkeline However,the
generalizability of thdindingswas uncleadue to the handuhored nature of the model and baseline, as well as the
relative simplicity of the applicatiorThe work also differed fronour workin that it did not involve exploratory
actions; player goals were directly presented to players in the uppegrakefvf their screensStudies ofThe
Restaurant Gamby Orkin 007 have examinedatadriventechniquedor devisingplan networkdsrom thousands
of user interactions with a simulated restaurant scenahe. plan networks encode common action sequences
as®ciated with customewaiter interactions in a restaurant setting. An evaluation opldenetworks foundhey
achieved high interater reliability with human judges in assessing the OtypicalityO of observed restaurant sequences
in the game environmenhile work on The Restaurant Game is relatedlassicalplan recognitiortasks it has
largelyfocusedon different, and in some ways simplerpdeling tasks

The work presented in this chaptevestigates a Markov logic network goal recognition framéwfor anopen
endededucational gameCRYSTAL ISLAND. CRYSTAL ISLAND shares several characteristics waitiventure games
such as exploring a virtual environment, advancing an emerging narrative, and collecting and manipulating objects
While severaboal recognition studies have been conducted using digital games, furidbditerences among the
game genreand goal recognition tasks suggest that there is no establishedfataert performance level for this
area. For this reason, we will evata the efficacy of our approach by comparing it against techniques employed in
prior goal recognition work with an earlier version of our game environment.

3. Observation Corpus

In order to investigate goal recognition im @perendedgameenvironment involving many possible goals and user
actions, data collected froplayerinteractions with th€RYSTAL ISLAND learning environment were useZkRYSTAL

IsLAND (Figure 1) is agamebased learning environmemor eighth-grade microbiology It is built on Valve
SoftwareOs Soufékengine, the 3D game platform for Halife 2. The environment features a science mystery
whereplayersattempt to discover the identity and source of an infectious disease that is plaguing a research team
stationed oranisland.Players adopthe role of a visitowho recently arrived in order to see her sick fathet they

are promptly drawn into a mission to save the entire research team from the owRtageak explore the research
camp from a firsperson viewpimt and manipulate virtual objects, converse with characters, and use lab equipment
and other resources to solve the mystBigyers choose among multiple paths to investigate the mystery, and they
are free to identify and pursue goals in a range ofrdiffeorders.

CRYSTAL ISLAND has been the subject of extensive empirical investigation, and has been found to provide
substantial learning and motivational benefits (Rowe et al. 2(0Al@yes consistently demonstrate significant
learning gains after usinCRYSTAL ISLAND, and they report experiencing boredom less frequently than in alternative
instructional softwareCRYSTAL ISLAND is also challengindor playess, with fewer than 50% gblayess solving the



Figure 1. CRysTAUSLANDVirtual environment.

mystery in less thaanhour. The current investiation of goal recognition models is part of an overarching research
agenda that is focused @ techniquesfor dynamically shapinglayersOnteractions with gambased learning
environments. Prior work has focused on a range of computational modelksy tasluding probabilistic
representations for user knowledge modeling (Rowe and Lester 2010) and machine learning frameworks for driving
charactersO affective behaviors (Robison, McQuiggan, and Lester D@®@yesent work is most closely related to

two prior investigations of user models willRYSTAL ISLAND. The first, and closest, relation is Mott and LesterOs
investigation of Bayesian networks anejram models for goal recognition (2006). While we adopt and extend
several ideas from that researttte present workises a significantly modified version dZRYSTAL ISLAND, as well

as a version that does not explicitly advise players about which goals to next achieve. The current version of
CRYSTAL ISLAND is substantiallymnore operended, as players are encouraged to identify and follow their own paths

to solve the mystery. The present work also compliments a prior investigation of user knowledge mwitteling
dynamic Bayesian networks (Rowe and Lester, 2010). That woptoged haneengineered dynamic Bayesian
networks to model player beliefs related to the narrative backstory, science curriculum, mystery solution, and
gameplay mechanics. The current work models usersO goals with a Markov logic network, which leverages
pamameters (i.e., weights) induced from user interaction data. The two categories of moddistiace but
complimentary, and in concert they could be used to drive decisions about Hgmataically tailorgame events to
individual players.

Playerinteractions withCRYSTAL ISLAND are comprised of a diverse set of actions occurring throughout the seven
major locations of the islandOs research cammifiamary, a dining hall, alaboratory, aliving quarters the lead
scientistOs quarterawaterfall, and a larg@eutdoors region.Playerscan perform actions that includee following
moving around the campicking upand dropping objectsusing the laboratoryOs testing equipmerinversing
with virtual characters reading microbiologythemedbooks and posters completing a diagnosis worksheet
labeling microscope slidesnd taking notes Playersadvance througiCRYSTAL ISLANDOs notinear narrative by
completing a partially ordered sequence of goal$ tmmnprise the scenarioOs plot. Seven narrative goals are
considered in this workspeaking with the camp nurséout the spreading ilinesspeaking with theampOsirus
expert speaking with theampObacteria expertspeaking with a sick patigrgpesing with the camp@sok about
recently eaten foodiunning laboratory tests on contaminated fo@ohd submitting acompletediagnosisto the
camp nurse.



Clik to take note

Your response:

What i & pathogen?

What is a mutagen?

What s a carcinogen?

Nevermind

S

2. Meeting cook in Dining Hall.

Experimentation Computer Terminal

E HYPOTHESIS TO TEST

3. Reading book about influenza.

Click to take note

Your response:

What are viruses?

How big are viuses?

What shape do viruses have?

Test Results

What structure do viruses have? el s s

Are viuses alive?

Nevermind.

5. Discussing viruses with scientist. 6. Recording findings in worksheet.

Figure 2. Sample events in tBaysTAUSLANDNarrative.

The following scenario illustrates a typical interaction WiySTAL ISLAND (see Figure 2 for a rafed sequence
of screenshots)The scenario begins with tigayeOsarrival at the research cantigure 3) Theplayerapproaches
the first building, an infirmary, where several sick patients and a camp nuiseates The playerapproaches the
nurseand initiates a conversation with hd@he nurse explains that an unidentified illness is spreading through the
camp and asks for thayerObelpin determining a diagnosi¥he conversation witthe nurse takes place through
a combination of multimodal character dialouspoken language, gesture, facial expression, anl dplayer
dialogue menu selections. All character dialogue is provided by voice actors and follows a deterministingranchi
structure.

After speaking with the nurse, tipdayerhas several options for investigating the illness. Inside the infirmary,
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3. Living Quarters 7. Laboratory
4. Waterfall

Figure 3 Map of theCRysTAU sLANDresearch camp.

the player can talk to sick patients lying on medical cots. Clues about the team membersO symptoms and recent
eating habits can be discussed and recorded usiggnirenotetaking featuresAlternatively, theplayercan move

to the campOs dining hall to speak with ¢amp cook. The cook describes the types of food that the team has
recentlyeatenand provides clues about which items warrant closer investigation. In addition to learning about the
sick team members, thglayer has severaloptions for gathering informan about diseaseausing agents. For
example, thelayercan walk to the campOs living quarters where she will encounter a pair of virtual seidmtists
answer questions about viruses and bacteria.pldager can also learn more about pathogens by vigwiosters

hanging inside of the campOs buildings or reading books located in a small library. In this playetican gather
information about relevant microbiology concepts using resources that are presented in multiple formats

Beyond gathering infonation from virtual scientists and other instructional resourtesplayer can conduct
tests on food objects using the laboratoryOs testing equiphheqtiayer encountes food itemsin the dining hall
and laboratoryandshecan test the items fgrathogenicontaminantst any point during the learning interactién
limited number of testare allocated to thplayerat the start of the scenariout additional tests can be earney
answering microbiologghemedmultiple-choice questionposed bythe camp nurse

After running several tests, tipdayerdiscovers that the sick team members have been consuming contaminated
milk. Upon arriving at this finding the playeris instructed to see the lab technician, Elise, for a closer look. The
screen mmentarily fades to black to indicagdapsingtime, and Elise returns with an image of the contaminated
specimen, which she explains was taken using a microscope. At this poiplayheis presented with a labeg
exercise where she mudentity the ontamination as bacterial in natubdter successfully completing this activity,
theplayeruses ingame resources tovestigate bacterial diseases that are associated with symptoms matching those
reported by the sick team membe@nce e has narrowedown a diagnosis ancecommendedreatment she
records them in a diagnosis worksheet aetlirns to the infirmary to inform the camp nurse. If fiayerOs
diagnosiswvorksheetontains errorsthe nurse identifies the ersmnd recommends that tipbayerkeep working. If
theplayercorrectly diagnoses the illness and specifies an appropriate treatment, the mystery is solved.

The data used fanvestigatingMLN goal recognitionmodelswere collected from a study involving the eighth
grade population of a public middle school. There were 153 participants in the study. Data for sixteen of the
participants was removed from the analysis due to incomplete data or prior experien€&RYEAL |SLAND.
Participants whose data was included had no prior experience with the soAWarkayeractionswere logged by
the CRYSTAL ISLAND software and stored for later analysifie log files were generated by a modified version of
the SourcE” engineOstilt-in logging features, and they consist of chronologiftat sequences of timstamped
actions. In the corpus, eastudent is associated with a single log file, except in cases of hardware/softwhes,cras
which occasionally resuilb multiple logs.Examples of actions recorded in the log files include movesfietiveen
locations, pickup object events, drop object events, conversation initiation events, dialog turn events, read book
events, andgoal achievement event@dditionally, the raw logs incide records of playersO positions and
orientations, which are recorded sevdiales per second, although tHetais filtered out inthe presenanalysis.



Arguments for each action (e.g., the object that drapped, the book that was r¢ade includedn eachentry of
the logp.

4. Markov Logic Network s
The goal recognition model described in this chapter utilizes the statistical relational learning framewididdp
by Markov logic network (MLN s) (Richardsonand Domingos,2006. Statistical relational learning framewark
support modelng complex phenomena for domaims which the assumption ofndependent anddenticaly
distributed(i.i.d) datadoes not holdThis section povides a brief overview of MLN

An MLN is a knowledge base that consists of farder logic formulae and a finite set of constants representing
domain objectsln contrast taraditional firstorder logic in which logic formulae have binamalues (i.e.true or
false@ and represent hard wstraints each formula in an MLN is associated with a weight that has a real number
valueand representa soft constrainthatis allowed to be violatedWhen the arguments of every predicate in the
first-order knowledge base are replaced with all possible domain constants and a truth value is assigned to each
ground predicate, it represents a possible world that can be constructed from the given lkndakszigin
traditional firstorder logic, possible worlds have binary values: the value of a possible warlek ishen all the
ground formulae in the knowledge base are;tniberwise,it is false In contrast, aMLN defines a probability
distribution over possible worlds in a continuous raniiéeights of MLN formulae reflect the strength of the
constraint that their associated logic formula imposes on the possible Wi@tds.1 shows an example of a simple
MLN, which consists ofwo first-order logicformulaeandassociated weights

First-Order Logic Clausal Form Weight
vimgg el g Pyl rag i 1.5
If a person has a cold then they cough
PLErmasm& )L tmas () e () P IH$%&0 1)L m#s () 1 ras i 1.1
If two people are familytheybothhavecolds or neither does. | ! I"#$%&(1 1)1 1 1"#$ (1) 1"#$ 11} 1.1

Table 1. Example MLN

Formally, an MLN is defined as a set of tup{€gd! ,), in which!, is a firstorder logic formula in the knowledge

base and | is a real number. Grounded with domain constants!!, 1, ! Ittt I, an MLN defines avarkov
network(MN), also know avlarkov random fieldAn MN is an undirected probabilistic graphical model that defines
a joint distribution of a set of randomnebles! ! (!, !, 11 11, 'l I (Pietra et al., 1997)The MN defined by a

ground MLN has a graph node for each ground predicate in the Mbi. value of the nadis 1 if the
corresponding ground predicatetise and O othenige. Two nodes in the graphr@connected by an edge if and
only if their corresponding ground predicates appear together in at least one ground MLN féhus|¢the MN
has a unique feature (i.e., a clique in the graph) for each ground MLN folfiglae 4 depictsa graphial structure
of aground MLN, which is constructed by applyidgmainconstantA and B to the MLN in Table.IThe value of
the feature i4 if the corresponding ground MLN formulatisie and 0 otherwise-eatures ilMNs areassigned the
same weigld as their correspondingMLN formulae. The probability distribution overpossible worlg! for a
ground MLN is definedy the following equation:

P(X! 1)1 %!"# i, (1)

in which F representshe number oformulae in the MLNand! ,!! ! is the number ofjroundings ofa formula!,
that hadrue valuein the given world . Z is a normalization constagnihich is computed as:

Py !"#(ZE!!!!!!”!)- (2)



Family(B, B)

Fiaure 4. Graphical structure of MLN ifable 1

Cutting Rane Inference (CPI) provides atcurate ancefficient Maximum A Posteriori (MAP) method for
MLNs (Riedel, 2008).CPI is a metalgorithm thatinstantiatesa small fraction of a given complex MLN
incrementally and solves it using a conventional MAP inference method sudbx&¥alkSAT or integer linear
programmingAt eachincrementaktep, the CPI refinescurrent solution bynstantiating only those portisrof the
complete MN for which theurrent solution can be further optimiz&P| has been shown to improve the efficiency
of MAP inference compared to conventional methods alone.

By combining firstorder logic syntax androbabilistic graphical modglMLNs bringtogether the characteristics
of both probabilistic andlogical approaches to modeling complex phenomé&mam a probability perspective,
MLNs can be viewed as templatEs construcing large Markov networks, whicallow an incremental, modular
approach to incorporate knowledge bases into the network. Brimgic perspective, Markov logic provides a
mechanism to handle uncertainty and contradictory data in a knowledgeThaseork presented in this chapter
leverages MLNs asa template laguage to construct Markov netvork for goal recognition in am-ended digital
games.

5. Goal Recognitionwith Markov Logic Networks
Drawing uponpreviousgoal recognition researcfBlaylock and Allen 2003Mott et al 2006, the work presented
in this chapterdefines goal recognition as the task of predicting the most likely goal for a given sequence of
observedow-level playerbehaviorin the game environment.is assumedhat a given sequence pfayer behavior
maps to a single goal, and no interleaving occurs between different Walsttribute all actions leading up to a
goal (and taking place after the previous goal was achieved) as part of the action sequence associated with that goal.
In part, this assumjain is due to the nature of our dathuring the data collectiorwe could not directly observe
studentsO intentions as they pla@essTAL ISLAND. Thereforewe identified studentsO narrative goals during post
hoc analysisDuring the data collectiorstudens did notselfreport their goalsnor did trained human experts
provide judgments about studentsO intentions as they plagedTAL ISLAND. While these techniquBisstudent
think-alouds and expert observational protobbhold promise for yielding dathat enable relaxation of singipal
assumptions, these efforts are reserved for future work.

Under thedescribed conditiongoal recognition is cast as a classification problem, in which a learned classifier
predicts the most likely godibr a currently observeglayer behaviarWith the given task formulatiorthe current
goal recognitiormodelleverages task structuir® CRYSTAL ISLAND both atthe local and global levelthelocal task
structure is encoded as pairwise ordering pattergoals, andhe global task structure is incorporatedebgpecial
attribute that encodes the player@sogress in solving th@roblem within the narrative scenaridrhis section
discusesthe representation of player behavior used in our goal recognitidelfSection 5.1)the motivation to
use MLNsfor goal recognitior{Section5.2), andthe MLN goal recognition moddSection 5.3)

5.1 Representation of Player Behavior
Similar to previous work by Mott, Lee, and Lester (2006), the current work enlovaddsvel player behavior in the
game environment usirtgreeattributes action typelocation, andnarrative state

¥ Action Type: Type ofcurrentaction taken by thelayer, such asnoving to a certain locatiqgropening a
door, andtesting an object usinte laboratoryOs testing equipmedtir data includes 19 distinct types of



playeractions.The current workonly considerghe type(e.g.,OPEN) of the actiorbutdoesnot includethe
associated arguments (e.gboratory-door) becauseaddingaction arguments did nafffer clear benefits
for the learned model, which was likely caudsda data sparsity problenHowever, action argumenis
principle provide richer semanticdor goal recognition modsl In future work, we plan to investigateeth
utility of action argumentsiith a larger data set.

¥ Location: Place in the virtual environment wherec@arrentplayer action is taken. This includes 39 fine
grained and nowverlapping sulocations that decompose the seven major camp locatioB&YBTAL
[SLAND.

¥ Narrative state: Representation of the playerOs progreselving the narrative scenariBeflectingthe
global task structure oERYSTAL ISLAND, narrative state is encoded as a vector of four binary variables,
each of which representsnalestone event within the narrativeEhe four milestone eventonsideredare:
Discuss the illness with the nurs€est the contaminated object, Submit a diagnosis to the namse,
Submit a correct diagnosis to the nur3de first two of these are alsubgoalsthat the player needs to
achieve If a milestone event has been accomplished, the associated variable is assigned a value of 1.
Otherwise the value of the variableOis

5.2 Motivation
The datadescribed in the previous section poses significhatlenges for goal recognition. First, individual goals
are not independent of one another. Goals in our data represent milestone activities players take in the course of
solving the science mystery. Some of thastvities naturally occur isequentialpatterns driven by the gameOs
narrative structurelThe layout of the island caalsoimpose ceoccurrence patterns among godlsus,the previous
goal canimpact the probabilies associated with alternatalues for the current goal To model these assations
among the milestone activities, goals should be inferred in relatione anotherrather than in isolatiarSecond,
the causality betwegplayer behavioand goals is ambiguous. GRYSTAL ISLAND, players are nagiven anexplicit
list of goalsto achieve. Insteadplayers discover goals while interacting with the virtual environment. Thus
causality between play&ehaviorand goals ididirectional: agoal could influence a player@srentbehaviorif she
has a particular goal in mind, aiids also possible that the playerOs cutvehaviomwill revealwhich goalshe next
pursues For instance, alayercan enter a new location without a particular goal in mind, and afterward she can
engage a character in conversatiwhich reveals a new gh

To addresghe first challenge,the current work utilizes statistical relational learning frameworStatistical
relational learning frameworksffer principled method for collective classification, in which multiple objects are
jointly modeled(Getoor and Taska?007. In our case, the goal recognition modahtly classifiessuccessive
goals.To address the second challenties current workparticularly consider MLNs (Richardson and Domingos
2006), because dhe underlying semantics aofindirected graphical mode(Section 4) In contrast to directed
graphical modelswhich encodeexplicit causalityamong the enties, undirected graphical modelspresent mutual
influence amongentities which iswell suited for representingmbiguous aasality betweerplayer behavioland
goals in our datdn addition,the firstorder logic syntax oMLNSs offers intuitive interface for develars towork
with data in order to construct complibarkov networls.

5.3 Markov Logic Network for Goal Recognition

We first defined a set of predicates as the basic building blamcksrm MLN formulae for the proposed goal
recognitionmodel There are two types of predicatebservedandhidden Observed predicates are those that are
fully observable by the game environment whilplayeris performing actionsin contrast, hidden predicates are
those that are not directly observable by the game environment. Instead, the groundings of tiprddittiaas are
predictedusing MAP inferencébasedon a learned modeln other words, hidden predicates represent the target
phenomena that are being modelbéd.our case, there is one hidden predicatsal(t, g) which representghe
player®goal at ime t. Three olserved predicatesere definedgach representing an attribute of player behavior:
action(t, a) loc(t, I), andstate(t, s)Table?2 lists theseobserved and hidden prediea



Predicate Description
Observed |action(t, a) |Playertakes actiora at timet.
loc(t, 1) Playeris at location at timet.
state(t, s) |The narrative state at tinés s.
Hidden |goal(t,g) |Playerpursues goaj at timet.

Table2. Observed and Hidden Predicates

By combining the observed and the hidden predicattslogical operationsatotal of 13MLN formulae wee
constructedAs shown in Figuré, our goal recognition MLNtonsists ofbne hard formula and 12 soft formulae. A
hard formula represents a constraint that needs to be satisfied at alRimestancelFormulaF1 requires that, for
each actiora at each time step there exists a single gogl In MLNs, hard formulae arassignedan arbitrarily
large weight The famulae F2-F13 are soft formulae, which represent constraiinéd are allowed to be violated.
FormulaF2 reflects prior distribution of goals in the corpus. FornfBaF11 predicta playerOs goa at a given
timet based onthe observedplayer behaviarinstead ofiggregatingll three attributes of player behavior in a single
formula, we modeéd the impacts of each individuaktdbute separatelyby defining a MLN formula for each
attribute Combinations of the attributes were alsonsideredin contrast to Brmula 3-11 that predictindividual
goal separately from othefrmulae F12 and F1intly predictseqentially adjacent pasrof goals by exploiting
their ordering patternd.he weighs for the soft costraints were learned by usitigeBeastan offthe-shelf tool for
ML Ns that employshe CPI method for MAP inferencéRiedel 2008) All of these formulae are included in the
current goal recognition moddtigure6 illustratesa partialgraphical representation of the described MLN.

Hard Formula

I t,a:action(t,a)" #g:goal(t,g)‘=l (F1)
Soft Formulae

!'t,g:goal(t,g) (F2)
!'t,a,g:action(t,a)" goal(t,q) (F3)
I'tl,g:loc(t,1) " goal(t,g) (F4)
I't,s,0:state(t,s) " goal(t,g) (F5)
I't,a,5,0:action(t,a)" state(t,s)# goal(t,g) (F6)
I't,a,g:action(t" La)# goal(t,g) (F7)
I't,l,g:loc(t" 1,1) # goal(t,q) (F8)
I't,s,0:state(t" Ls) # goal(t,q) (F9)
! t,a,5,g:action(t" La)#state(t" 1,s) $ goal(t,qg) (F10)
I't,a,a,,0:action(t” La)#action(t,a,)$ goal(t,0) (F11)
!'t,g,,0,:00al(t"1g,)# goal(t,g,) (F12)
l'ta,a,,0,0,:action(t" 1,a)#goal(t" 1,g,)#action(t,a,) (F13)

$ goal(t,g,)

Figure 5. Formulae forMLN goal recognition model
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Figure 6 Graphical Representation of Goal Rgnition MLN

6. Evaluation

To train and test thgoal recognitiorMLN, the data from the observation corpus vaasomaticallypreprocessed in

several stepdrirst, all playeractions that achieve goals were identifiBécausehe goals considereid our work

area set of milestone actions players achiewhile solving the narrative scenarithey areloggedin the same

manner as other actions. Therefoidgntification of goalachieving actionscan beperformed automatically by
scanning the gameplay dateithout needor manually defiring domainspecificknowledge such aswvhich actions
correspond tavhich goals Second, all actions in the observation sequence that precede the current goal but follow
the previous goal were labeled with the current goal. Third, actions that achieve goals were removed from the data.
Removing goahchieving actions was necessary tewe that model training was falrecausét would be trivial to

predict goals from the goalchieving actions. Finally, all actions that were taken after achiewesh¢he last goal

were also removedsince those actiondid not lead to achieving goal Table 3 shows summary statistics of the
resulting corpus, which includes 77,182 player actions and 893 achieved goals, with an average of 86.4 player
actions per goal. Tabkeshows the set of goals considered in this work and filegjuencies in the pcessed corpus

data. The most frequent goal wRsinning laboratory test on contaminated foahich comprised26.6% of the

total goals in the corpus.

Total number ofobservedlayeractions 77182
Total number ofgoalsachieved 893
Averagenumber ofplayeractions pergoal 86.4

Table3. Statistics foobservedactions andgoals.

Running laboratory test on contaminated food | 26.6%

Submitting a diagnosis 17.1%
Speaking with the campOs cook 15.2%
Speaking with the campOs bacteria expert 12.5%
Speaking with the campOs virus expert 11.2%
Speaking with a sick patient 11.0%
Speaking with the camp nurse 6.4%

Table4. Distribution ofgoals

For evaluation, the proposed MLN model was compared to a trivial baseline system and-twaldraselins.
The trivial baseline was the majority baseline, which always predicted the goal that appears most frequently in the
training data. The netrivial baselines were twa-gram modelsadopted from previougoal recognition work
(Blaylock and Allen2003; Mott et al. 2006)Although simplistic,n-gram models have been shown to be effective
for goal recognition in interactive narrative game environs\@¥iptt et al. 2006) and spoken dialogue systems



(Blaylock and Allen 2003). The following sections pide a detailed description of timegram comparison systems
(Section 6.1) and report evaluation results (Sed@i@n

6.1N-gram Models
Previous work by Mott et al. (2006) defined that, given an observation sequéhgé! !!, | the objective ofjoal
recognition for interactive narrative environment is to identify the most likely!gaaich that:

R N TR N T T TN A TR 3)

where! | is an observation of play behaviorat a time step. Applying Bayes@ule followed by the chain rule, the
equation (3) becomes:

R T N R T (N [ T TR N (I IR TR @)

Since estimating these conditional probabilities is impractiodbwing an earlier approach (Blaylock and Allen
2003),Mott et al.(2006)definedtwo n-gram models based on a Markov assumptionahaibservatioh , depends
only on the goal and a limited window of preceding obsereais. The unigram model states that giv the goal ,

I'; is conditionally independent of all other observati¢Eguation 5) Thus, The unigram model predicasgoal

based on the currenbservation of player behavionly. Extending the window size by one time step, the bigram
model assumes that, given the goalnd a preceding observatibp ,, ! , is conditionally independent of all other
observationgdEquation 6) Therefore, ie bigram modetonsiders the previousbservation of player behar as

well. An observatiorl | for the n-gram models is an aggregate variable that combines all the attributes of player
behavior. In spite of the simplistic approach, Mott et al. (2006) fougchm models achieved higher preiio
accuracies thaa more sophisticated Bayesiaaetwork model Similar to the MLN model described in Section 5,
their Bayesian network modeisedfactored repesentation of player behaviomodeling the influence of each
attribute of playebehaviorseparately

LU L) T )
LY 1 argmax! (G) [I0, P(0;'0, 11! (6)

Adopting these ideasithin the MLN frameworkin the work presented in this chaptee constructedh unigram
and abigram goal recognition models MLNs which employed an aggregate representation of player behavior
The unigram and the bigram models wdedinedby a single soft formula F14 and F15, respectivEbyrmulaF14
predicts a goaat timet from the combination of all three attributes of player behaohserved at the same time
step.FormulaF15 combines the attributes of player behavior for timg well as timé-1, in order to predict a goal
at timet. In order to ensure tha&achplayeraction at each time stép assigned a single doshe hard formula F1
(Figure 9 was also added tooth the unigram and the bigrammodels.Without any formula thaéncodegelaions
amongdifferent goalsp-gram models predigach individual goateparately and do not takéo consideration the
sequentiahssociation patterns among them.

eI LTI TES0& )L g (I g (1)L g 11 1 (F14)

PUIL T I I T T T g0t T ) L g (L) b s (1)
o rEeo L T O g i e (0 1 )L 1S T 1 (FAS)

6.2 Results

The twon-gram modelswhich employed an aggregate representation of player behaidrthe proposed MLN
model| which utilized a factoredepresentationwere trained using oAgest MIRA (Crammer and Singer 2003) as
the update rule. The entire data set was partitioned into telovaslapping subsets, ensuring data from the same
player did not appear in both the training and the testing data. Each sutisetlata was used for testing exactly
once. The three models were evaluated with-fodth cross validation on the entire data set. The modelsO



performance was measured uskig which is theharmonic mean ofrecisionandrecall. In the cae of multiclass
classificationsuch as ourghere are multiple approachtescomputing=1. Commonapproacksincludecomputing
eitherthe micro-average or macravera@ of F1. Micro-average computesl by treating allobjects in the testing
data equally regardless thfe classMacroaveaagetakesthe average of1 scoresthat areseparately computed for
each classby treatingmulti-class classification as an aggregatebofary classification A drawback of thse
approaches isntries in the confusion matrarecounted multiple thes.In order to avoidhis, an alternate approach
uses the slightly different formulationsof precision (equation 7) and recall (equation 8) for multi-class
classification in which F1 scoreis computed as a harmonic mean of precis& recallas for the binary
classification(e.g.,Marcu 2000. Our work follows this approacht should be noted that in the current wahie
values ofprecision recall, andF1 are the same, becausach observed player action is associated witingle goal
in our data andhe goarecognition model predicts a singieost likely goal for each player acti¢ire., total number
of predictionsmade by classifiers equal tototal number of objecisThese values again coincide wilecuracy
anothemetricwidely used fomulti-class classification.

"H#SU"#$%E& 11" I"H#ASI1% &N " #S% & U HS% &'
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Table 5 shows the average performance of easmparedmodel over teffold cross validation. Théactored
MLN model scored.484in F1, achievingan 82% improvement over the baseline. The unigram model performed
better than the bigram model. A enay repeatedneasures ANOVA confirmed that the differences among the
three compared models were statistically signific&(2,08) = 71.87p < 0.0001). A psthoc Tukey test revealed
the differences between all pairs of the three models were statistically signifiear@tl).

Baseline | Unigram | Bigram | FactoredVILN
F1 0.266 0.396 0.330 0.484

Improvement
over Baseline N/A 49% 24% 82%

Table5. F1 scoredor MLN and baseline goal recognition models.

7. Discussion

While all three models performed better than the baselindatheredMLN model achieved the best performance,
suggestinghat the proposed MLN goal recognitiapproachs effective in predicting player goals froobserved

player behavioin a complex gamenvironmentThe F1 score of 0.484 achieved by tfectoredMLN model may

appear somewhat lanHowever, this result is encouraging given the challenges posed by the data. The chance
probability of accurately recognizing the seven goals in our data is OI'h3superiority of thdactoredMLN

model compared to the-gram models can be partially @ained by the MLNOs relational learning framework,
which facilitates explicit modeling of associations between gadhls factored MLN model jointly predist
successivegoals while n-gram modelspredicted each individual goal separateRurthermore,the factored
representation of player behavienables MLNs to model richer relations betwgdayer behavioand goals than

the aggregate representation usednigram models. The finding that the unigram model achieved higher
performance than the bigramodel is consistent with the result reported by Motal.(2006). Among the possible
reasons for the unigram modelOs superiority over the bigram model is data sparsity. The bigram model considers two
consecutive previous goals, which would lead to gresgtarsity than in the unigram model.

The current work is a first step towaadgeneral approach for modeling exploratory goal recognition in digital
games usingMLNs. The currentgoal recognitionmodel makes tatively basic use of MLNs, modeling only
sequential relations among succesgjoals, but MLNs provide a principled method to incorporate richer structural
relations present among the goals, such as the relations imposed by the narrative structure of the virt&doyorld.
the currentwork is characterized aa knowvledgelean approacho goal recognitionwhich uses only a minimal
amount ofdomain knowledgen the modelOs specificatiothe only domain knowedge required for the proposed
goal recognitiormodelwas to identifythe milestone events within thERYSTAL ISLAND game environmenfThe



knowledgelean approach offers a cesfficient solution fordevisinggoal recognitiormodelsbecauseadentifying
milestone eventss relatively easy compared toanuallyannotating the data with lEandcraftedgoal schema or
handauthoring the mappings between player behavior and gt¥&salso suspect thahkwledgeleanapproacks
offer a more robussolutionthan competing approachesgoal recognition iropenended gmes, due to challenges
associated witinexpected patterns in playérgxploraty behavior.

Inducing accurate goal recognition models has several prospective benefigarfmbased learning
environments Goal recognizers can be used to inform plag@aptive decisions bwyarrative-centered tutorial
plannerswhich comprise a particular classsifftware agentthat simultaneously reason about interactive narrative
and pedagogical issueto personalize stutOs gambased learning experienceBatadriven approaches to
narrativecentered tutorial planning are the subject of active research WyRY&TAL ISLAND research team. They
offer a method for dynamically tailoring events duriptayesO gambased leming experiences in order to
individualize pedagogical scaffolding and promptayer engagementConsider the following scenario: a player
begins running laboratory tests prematurely, collecting data before he has gathered enough background information
about CRYsTAL IsLaNDOs outbreak scenario to adequately interpret the results. Goal recognition models enable
CRYSTAL ISLAND to predict that the player is attempting to find a contaminated olbjestever, thisprediction
prompts asubsequeninferencethat the playerOs goa suboptimal for the current stage of the narrative. This
realization triggers an event where a virtual character suggests that the playerirsstealdl gospeak withsick
patients to better understand how the disease spread thtmugdsearch camp this manner, a narrativeentered
tutorial planner can dynamically tailor events to improve studentsO learning outcommesratide experience
driven by information from goal recognitionodels.

Similarly, goal recognition modelsan be employed to detect situations where players attempt to selve th
mystery by Ogaming the sys@fBaker, Corbett, Koedingeand Wagner, 2004 In some cases,lgyers may
attempt to solve the mystery by guessagythey fill out thediagnosis worksket. In this exploitative strategy,
playersguess responses on the worksheet, sutbitdtthe camp nurse, receifeedbackaboutincorrectresponses
revise the worksheet, and repdla¢ processn hope of stumbling upon the correct solutigh goal recogition
model could predict thahe player isatempting to solve the mystery.oever, if the player has not yedmpleted
other important narrative milestones, it might be appropriate for the camp nurse to prompt the glaysider an
alternate coumsof action. The nurse might prompt the playesgeak with othescientists on the islandr collect
data in the virtual laboratory, in order to obtain knowledge that will enable the player to complete the diagnosis
worksheet in a more deliberative fash

In addition to using goal recognition models to dynamically shape eve@syisTAL ISLANDOs narrativegoal
recognizers can be used during data mining to inform the analysis and design of future iteratiol@roEthe
ISLAND software. By automatically recognizing playersO goals, and identifying which actions are likely to be
associated with those goatke research team can gamsightsaboutcommon types of problersolving paths and
challenges encountered Ipjayers Furthermore recognizing playersO goalan enrich ingame assessments of
playerlearning and problem solving, which is a critical challenge for the serious games community.

The present worlhasseveral limitéions that we seek to address throwgimtinued invstigation. First, the
available log data did not include pegisting class labels of playersO intentidisinvestigate goal recognition, it
was necessary to add class lalklsing subsequent data analysishich necessitatedinglegoal assumptions tha
preventecconsideratiorof concurrent or interleaving goals. In future data collections GRWSTAL ISLAND, it may
be possible to obtain class labels, or the information necessary to extradabkls, during rutime. A common
method for obtaininguch data in educational research is to ask stsdenthink aloud as they solve theoblem,
often with support from a researcher providing regular prompts. While this approach provides a direct window into
studentsO intentions, in the past we have smesiderable vaaibility in middle grade studestwillingness to
verbalize their thoughts as they pl@RrYSTAL ISLAND. This may be due to cognitive difficulties associated with
simultaneously playing an unfamiliar game and verbalizing oneOs own intentidhsnay be a symptom of
adolescent resistance to verbal communication. In the case of the former, it may be possible to circumvent this
challenge by having students watch video recordings of their own gameplay sessions after solving the mystery,
providing verbal commentary about their own play experiences in a post hoc manner. An alternative approach
training human OexpertsO to provide judgments about player intentions by observing students as they play the game.
This approach depends on humans adelyaecognizingstudents@tentionsin CRYSTAL ISLAND; in this casegoal
datais notdirectly obtainedfrom players.On the one hand, this method bypasses the need for students to verbalize
their own intentions, which is challenging in practice. Ondtfeer handit is resourcentensive to gather human
judgments for a large number of student gameplay sessions, a problem only exacerbated by the need for multiple
judgments to enable inteater reliability calculations.



The above methods, thirddouds ad expert observational protocols, also introduce opportunities for addressing
another limitation of the present work: detecting Htiaditional goals that are not represented in the set of seven
narrativesub goals. For example, students may adogteined goals, such as Oexplore the virtual environmentO, or
non-narrative goals, such as Oclimb on top of the dining hall,O to drive their actoogatély predicting these
goals would substantially extend the capabilities ofatae-centered tutorial plnnersseeking to interpret player
actions and tailor game events to individual studd#tsvever, it is necessary to obtain class labels to model these
goals using the MLMNbased classification approach presented in this work. Furthermore, plan recogwitiods
that rely on inference over planning domains are unlikely to be effective fortihpeseof intentions, as they most
likely exceed the specifications typically included in most planning domain knowledge bases.

8. Conclusionsand Future Work
Effeciive goal recognition holds considerable promise for playiaptive games. Accurately recognizing playersO
goals enables digital games to proactively support gameplay experiences that feature nonlinear scenarios while
preserving cohesion, coherenead bdievability. This chapterhas introduced a goal recognition framework based
on Markov logic networks that accurately recognizes playersO goals. Using model parameters learned from a corpus
of player interactions in a complex, nonlinear game environmenframework supports the automated acquisition
of a goal recognition system that outperforms three baseline models.

There are several promising directions for future work on goal recognition models iermgexh digital games.
First, the MLN model considered in this watkliberatelyleveragedninimal domainspecificknowledge. Devising
systematic methods for encodingndainspecific information (e.g., interactive narrative structure, gameplay
mechanics) is a promising direction for improving the predictive accuracy of the models. Second, investigating the
efficiency and convergence rate of MLN goal recognizers is amriapt step for eventually embedding these
models in runtime settingdecause the redéime performance requirements of digital games demand highly
efficient algorithms. Finally, integrating MLN goal recognition models into @merSTAL ISLAND gamebased
learningenvironment is a key objective of this work. The models would drive naregivesred tutorial planners
that dynamically adapt game events to enhance studentsO learning, problem solving, and engagement outcomes. This
integration will enable empial studies involving human subjects to examine the-weald impacts of goal
recognition models and playadaptive games.
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