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ABSTRACT 

Computer-mediated textual communication has become 

ubiquitous in recent years. Compared to face-to-face interactions, 

there is decreased bandwidth in affective information, yet studies 

show that interactions in this medium still produce rich and 

fulfilling affective outcomes. While overt communication (e.g., 

emoticons or explicit discussion of emotion) can explain some 

aspects of affect conveyed through textual dialogue, there may 

also be an underlying implicit affective channel through which 

participants perceive additional emotional information. To 

investigate this phenomenon, computer-mediated tutoring sessions 

were recorded with Kinect video and depth images and processed 

with novel tracking techniques for posture and hand-to-face 

gestures. Analyses demonstrated that tutors implicitly perceived 

students’ focused attention, physical demand, and frustration. 

Additionally, bodily expressions of posture and gesture correlated 

with student cognitive-affective states that were perceived by 

tutors through the implicit affective channel. Finally, posture and 

gesture complement each other in multimodal predictive models 

of student cognitive-affective states, explaining greater variance 

than either modality alone. This approach of empirically studying 

the implicit affective channel may identify details of human 

behavior that can inform the design of future textual dialogue 

systems modeled on naturalistic interaction. 

Categories and Subject Descriptors 

I.5.4 [Vision and Scene Understanding]: 3D/stereo scene 

analysis; H.1.2 [User/Machine Systems]: Human factors, human 

information processing; J.4 [Social and Behavioral Sciences]: 

Psychology 

General Terms 

Algorithms, Experimentation, Human Factors, Measurement. 

Keywords 

Affect, computer-mediated communication, depth images, Kinect, 

gesture, posture, textual dialogue. 

1. INTRODUCTION 
Computer-mediated textual communication has become 

ubiquitous in recent years with pervasive use of numerous online 

communication channels [4]. Textual communication also plays 

an important role in the development of intelligent systems, 

mitigating challenges associated with automatic speech 

recognition [25] and providing a record of the interactions, which 

is particularly useful for tasks such as tutoring [6]. Textual 

communication is characterized by a limited bandwidth through 

which multimodal expressions of affect (e.g., facial expressions, 

posture, and gesture) cannot be carried. Despite this limited 

bandwidth, it is known that users experience a similar variety of 

emotional states when interacting in a textual medium [4]. 

Underlying the overt textual channel may be an implicit affective 

channel, through which participants interpret each other’s 

cognitive-affective states [4, 14, 22]. 

This implicit affective channel has received little attention in 

affective computing, but may be the most “human” component of 

computer-mediated communication [21]. Understanding the 

implicit affective channel for computer-based systems is therefore 

key to providing naturalistic interaction. Achieving this goal 

requires empirically investigating the implicit communication of 

affect in a textual medium. These empirical investigations will 

complement affective research that focuses on the explicit 

affective content of textual communication [4, 10], such as work 

that includes emoticons, common Internet phrasing, or textual 

style [17, 19].  

While affective content can be communicated by overt textual 

dialogue components, many aspects of social, cognitive, and 

affective information are implicitly conveyed. For example, the 

ways in which individuals pause or edit their messages may serve 

as implicit affective signals in social information processing [27]. 

Due in part to such affective signals, some evidence suggests that 

computer-mediated textual dialogue can lead to equally fulfilling 

interpersonal interactions as face-to-face communication [4, 22, 

26]. In fact, textual communication has demonstrated utility in 

emotionally intensive interactions such as couples therapy [22], 

instant messaging chat [14], and textual communication via 

websites [4, 10, 26].  

Although studies of the implicit affective channel in computer-

mediated textual communication have identified some underlying 

implicit cues, nonverbal phenomena that occur beyond the 

computer screen have been the subject of limited study [14]. 

Nonverbal displays, such as facial expression [2, 15, 29], posture 

[2, 9, 24], and gesture [1, 12, 13] have been empirically studied in 

other domains and may represent an element of ground truth for 

cognitive-affective states. However, their roles in computer-

mediated textual communication have yet to be investigated. The 

study of these nonverbal displays is key to empirically 

understanding the implicit affective channel.  
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This paper investigates the extent to which some dimensions of 

affect are implicitly expressed through computer-mediated textual 

dialogue, and further, how the perceptions of one participant 

correspond to the posture and gesture expressed by the other 

participant, even when those multimodal features were not 

observable through the textual dialogue channel. The focus is on 

two empirical questions within computer-mediated textual 

dialogue: 1) Does the affective interpretation by one participant 

coincide with reported affective states of the other participant?, 

and 2) Do one participant’s bodily expressions coincide with 

reported affect of either participant?  

The investigation was conducted with depth video recordings of 

human body position from a tutoring study carried out through 

computer-mediated textual dialogue. To extract posture and 

gesture automatically from the depth images, novel tracking 

techniques were designed and applied to the data set. In addition 

to the extracted posture and gesture data, information regarding 

cognitive and affective experience was collected from both tutors 

and students through surveys. The findings suggest that focused 

attention, physical demand, and frustration were communicated 

through the hypothesized implicit affective channel that 

accompanies textual dialogue. Moreover, postural and gestural 

behaviors were found to co-occur with these cognitive-affective 

reports, even when posture and gesture were not explicitly 

communicated to the other participant. These results present 

empirical evidence to support the notion that an implicit affective 

channel is at work within computer-mediated textual dialogue, 

and that bodily displays of posture and gesture correspond to 

components of this implicit affective communication. This 

approach yields empirical evidence of human behavior that may 

be used to aid in developing future naturalistic systems that 

engage in textual dialogue. 

2. RELATED WORK 
Over the past three decades, computer-mediated communication 

has been increasingly studied [4, 10]. Most studies of computer-

mediated communication have focused on the explicit act of 

communication itself [4, 26]. An example of this line of 

investigation is a system that automatically detects emotional 

expression from computer-mediated textual dialogue [17]. This 

system analyzes affective content of messages at the level of both 

words and statements, and interprets emoticons and common 

expressions used in internet-based communication.  

While studying textual communication of affect is useful, there 

also appears to be an implicit affective channel in computer-

mediated communication. It may be necessary to investigate 

nonverbal affective phenomena in order to understand the human 

processes behind implicit affective interpretation. However, 

research into the relationship between nonverbal behavior and 

implicit interpretation of affect is scarce. A recent study examined 

instant messaging interactions while also recording the nonverbal 

behaviors unseen by the participants [14]. The participants 

exhibited nonverbal behaviors indicative of cognitive and 

affective states (postural leaning, facial expressions, gestures), 

even though these bodily movements were not transmitted to the 

recipient of the textual dialogue. A limitation of that study is that 

it did not use surveys or self-reports to gauge affective experience 

of either participant. The present study builds on that prior work 

by investigating posture and gesture of participants in computer-

mediated textual dialogue through post-interaction surveys to gain 

a better understanding of specific nonverbal behaviors and 

participants’ implicit communication of affect through a textual 

medium.  

Both posture and gesture have been investigated in recent years 

for their relationship to cognitive and affective states. The relation 

of posture has been vigorously studied, with initial investigations 

utilizing pressure-sensitive chairs to identify shifting of weight [5, 

9, 28]. For instance, in two studies involving intelligent tutoring 

systems [5, 28], boredom was associated with increased postural 

movement, while inconsistent postural patterns were reported 

across the two studies for high-arousal positive and negative 

affective events. In more recent posture analysis work, computer 

vision-based techniques have been introduced, instead of 

pressure-sensitive seats. In chess-playing interactions with a 

robot, computer vision techniques were used to identify quantity 

of motion, body lean angle, slouch factor, and contraction index 

as measurements of a child’s posture as seen from a side view 

[24]. Quantity of motion was found to be most informative in 

diagnosing a child’s level of engagement. In the present study, a 

tracking algorithm was designed to estimate posture from depth 

images in a frontal view, and quantity of motion was associated 

with cognitive-affective states such as reduced attention.  

In addition to posture, gesture has long been investigated as a 

medium of communication [16]. Some studies have tracked 

gestural movements in order to visualize their co-occurrence with 

speech in face-to-face communication [23]. However, some 

gestures do not co-occur with explicit communication behavior; 

instead, they may coincide with cognitive and affective 

phenomena that occur outside the context of communication. 

Gesture as a cognitive-affective display was briefly touched upon 

in a study of nonverbal behavior during interactions with an 

intelligent tutoring system [28]. In that study, the gesture of a 

student leaning on one hand coincided with positive affective 

states such as joy. More recently, a broad investigation of hand-

over-face gestures suggests that these gestures co-occur with 

cognitive-affective states such as thinking, confusion, or boredom 

[12, 13]. In the current study, an algorithm was developed to 

detect one-hand-to-face and two-hands-to-face gestures, which 

were found to coincide with reduced frustration or focus, 

respectively.  

From a theoretical perspective, the functions of nonverbal 

expression in computer-mediated textual dialogue differ 

significantly from those in face-to-face interaction. Nonverbal 

signals in general may express affective/attitudinal states (what a 

person feels), manipulators (interaction with objects in the 

environment, including self or others), emblems (culture-specific 

signals), illustrators (accompanying or depicting spoken 

concepts) or regulators (signals to control flow of 

conversation) [21]. In textual dialogue, the bodily expressions of 

emblems, illustrators, and regulators are rare or absent [4, 10, 14, 

26]. However, textual substitutes for these bodily expressions may 

be present (e.g., emoticons) [18]. The rarity of emblems, 

illustrators and regulators aside, nonverbal behavior of 

participants in computer-mediated textual dialogue contains 

expressions of affective/attitudinal states and manipulators [14]. 

In the case of the present study, bodily expressions of posture 

display affective/attitudinal states and hand-to-face gestures are 

manipulators. 

3. DATA COLLECTION 
The data consist of computer-mediated textual interactions in the 

domain of introductory computer science tutoring. Students 

(N=42) and tutors interacted through a web-based interface that 

provided learning tasks, an interface for computer programming, 

and textual dialogue. Each interaction was limited to forty minutes 

in duration. Each student interacted with a specific tutor across six 



 

 

sessions on different days. Depth images (approximately 8 frames 

per second from a Kinect depth camera) were collected. Webcam 

video and skin conductance response were also recorded, but were 

not used in the present analyses. The student workstation 

configuration is shown in Figure 1 and the tutoring interface is 

shown in Figure 2. 

Before each session, students completed a content-based pretest. 

After each session, students answered a post-session survey and 

posttest (identical to the pretest). The post-session survey items 

were designed to measure several aspects of engagement and 

cognitive load. The survey was composed of a modified User 

Engagement Survey [20] with Focused Attention, Endurability, 

and Involvement subscales, and the NASA-TLX scale for 

cognitive load [8], which consisted of response items for Mental 

Demand, Physical Demand, Temporal Demand, Performance, 

Effort, and Frustration Level. Students were intentionally not 

asked about a wider set of emotions in order to avoid biasing their 

future interactions. Selected student survey items are shown in 

Figure 3. Additionally, tutors also reported on cognitive and 

affective phenomena at the end of each session. The tutor post-

session survey items are shown in Figure 4. 

 

Figure 1. Student workstation with depth camera, skin 

conductance bracelet, and computer with webcam 

 

Figure 2. Screenshot of the tutoring interface  

 

 

Student Post-Session Survey (from UES and NASA-TLX)  

 
Focused Attention:  

   I lost myself in this learning experience. 

   I was so involved in my learning task that I lost track of time. 

   I blocked out things around me when I was working. 

   When I was working, I lost track of the world around me. 

   The time I spent working just slipped away. 

   I was absorbed in my task. 

   During this learning experience I let myself go. 

Physical Demand:  

   How physically demanding was the task? 

Frustration Level:  

   How insecure, discouraged, irritated, stressed, and annoyed  

     were you? 
 

Figure 3. Selected student post-session survey items 

 

Tutor Post-Session Survey (reported using a 5-point scale) 

 
Rate your agreement with the following statements: 

1:    Overall, the session was successful. 

2:    I felt like I provided cognitive support this session. 

3:    I helped the student finish the programming exercises more  

         quickly than they would have on their own. 

4:    I helped the student master the most important concepts     

         better than they would have on their own. 

5:    I was able to help the student finish the session with less  

         effort than they would have on their own. 

6:    I felt like I provided emotional support this session. 

7:    I felt like my student was in the flow of the task. 

8:    I felt like my student thought the task was worthwhile. 

9:    I felt like my student found the task fun. 

10: The student understood the computational thinking concepts. 

11: The student understood the written task instructions. 

12: The student understood my directions. 

 

The student experienced the following during the lesson: 

13: Anxiety (worried or uneasy about the lesson) 

14: Boredom (not interested in the lesson or learning  

        programming concepts) 

15: Confusion (uncertain about some aspect of the lesson) 

16: Contempt (scornful of the tutor, the lesson, or him/herself) 

17: Excitement (enthusiastic or eager about the lesson) 

18: Frustration (annoyed at difficulties with the tutor, the lesson,  

         or him/herself) 

19: Joy (happy about the tutor, the lesson, or him/herself) 

 

I experienced the following during the lesson: 

20-26:  [tutor experience of emotion terms from items 13-19] 

27: Open-ended response. 
 

Figure 4. Tutor post-session survey of student performance 

and student and tutor affective experiences 

4. TRACKING POSTURE AND GESTURE 
In order to automatically recognize posture and gesture from the 

recorded interactions, tracking algorithms were designed to 

estimate posture and detect certain gestures from depth images. 

These algorithms were designed to leverage regularities in the 

depth recordings (e.g., student in center, frontal view). This 

section describes the algorithms, their output, and evaluation.  



 

 

4.1 Posture Estimation  
A posture estimation algorithm was designed to compute posture 

for a given frame as a triple, (headDepth, midTorsoDepth, 

lowerTorsoDepth), as shown in Figure 5. Prior to applying the 

algorithm, extraneous background pixels were discarded using a 

distance threshold. An overview of the posture estimation 

algorithm is given in Algorithm 1 below. The algorithm computes 

bounding regions for head, mid torso and lower torso based on the 

height of the top depth pixel. Then, a single point is selected from 

each bounding region to estimate posture. For the head, the 

nearest pixel is selected. For the torso points, the farthest pixel in 

the bounding regions is selected, as the torso was often behind the 

desk and arms. Distances for each posture estimation point were 

normalized using standard deviations from the median position for 

each student workstation in order to account for different camera 

angles. This overall approach is robust to seated postures that are 

occluded by a desk, a distinct advantage over the alternative of 

Kinect skeletal tracking.  

The output of the posture estimation algorithm was evaluated 

manually. The performance metric was the percent of the frames 

in which the detected points (headDepth, midTorsoDepth, 

lowerTorsoDepth) coincided with the head, mid torso,  

and lower torso/waist. Two human judges individually examined 

images corresponding to one frame per minute of recorded video. 

The judges had moderate agreement on error instances with 

Cohen’s K=0.57. To provide a conservative measure of accuracy, 

the algorithm output was classified as erroneous if either judge 

found that any of the posture tracking points did not coincide with 

the target region (i.e., union of errors). Thus, the resulting 

accuracy was 92.4% over 1,175 depth images. Error conditions 

occurred primarily when students shifted their head or torso out of 

frame or covered their torso or waist with their arms and hands.  

 

Figure 5. Detected posture points (H = headDepth, M = 

midTorsoDepth, L = lowerTorsoDepth). Bounding regions for 

posture point selection are also shown. 

4.2 Hand-to-Face Gesture Detection 
A second algorithm was developed to detect hand-to-face 

gestures, which have been shown to co-occur with cognitive-

affective states [13]. The algorithm uses surface propagation to 

avoid issues of occlusion and hand deformation that pose 

problems for standard hand tracking techniques. Two variants of 

hand-to-face gestures were detected: one hand to the student’s 

face and two hands to the student’s face. Examples of detected 

hand-to-face gestures are shown in Figure 6. An overview of the 

hand-to-face gesture detection algorithm is shown in Algorithm 2.  

 
Algorithm 1: POSTUREESTIMATION(I) 

 
   input    : a depth image I  

   output  : a triple of posture estimation points  

1   width  width of depth image I; 

2   height  height of depth image I; 

3   bottomRow  height – 1; 

4   center  width / 2; 

5   headRow  row of first depth pixel in center column; 

6   midRow  (bottomRow + headRow) / 2; 

7   lowRow  midRow + (bottomRow – headRow) / 2; 

8   sideBound  columns at ± (5% of width) from center; 

9   headBound  rows at ± (5% of height) from headRow; 

10 midBound  rows at ± (5% of height) from midRow; 

11 lowBottom  lowRow + (bottomRow – headRow) / 4; 

12 lowTop  lowRow – (5% of height); 

13 headDepth  closest pixel in [sideBound, headBound]; 

14 midTorsoDepth  farthest pixel in [sideBound, midBound]; 

15 lowerTorsoDepth  farthest pixel in [sideBound, lowTop  

                           and lowBottom]; 

16 return (headDepth, midTorsoDepth, lowerTorsoDepth); 
 

 

 

Figure 6. Detected hand-to-face gestures: one-hand-to-face 

(top left) and two-hands-to-face (top right). Color image 

frames for the detected gestures are also shown (bottom row). 

The breadth-first surface propagation mentioned on line 5 of 

Algorithm 2 adds pixels to the set of “surface pixels” through a 

between-neighbors comparison of an empirically-determined 

surface gradient threshold. Thus, the “head surface” propagates 

outward from the headPixel (the pixel from which propagation 

began). If a hand-to-face gesture was detected during surface 

propagation (as determined by difference between mean and 

median distances of surface pixels from headPixel on line 10), 

then the later-propagated surface pixels were considered “hand 

pixels.” 

To evaluate the algorithm, two human judges individually 

examined images corresponding to one-minute snapshots of the 

interactions and identified one-hand-to-face and two-hands-to-

face gestures. The algorithm output was compared against all 

instances where the judges agreed (Cohen’s K=0.96 for one-hand-

to-face and K=0.87 for two-hands-to-face). For those agreed-on 

instances, the accuracy of the algorithm was 92.6% across 1,170 
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depth images. Error cases typically involved such things as the 

surface propagation algorithm misidentifying clothing or hair as a 

hand. 

 
Algorithm 2: HANDTOFACEGESTUREDETECTOR(I) 

 

   input    : a depth image I  

   output  : a value indicating gesture presence or absence 

1   headCenter  median center column selected from top 10%  

of rows containing non-zero depth values; 

2   headRow  lowest row in top 10% of rows containing non- 

zero depth values; 

3   headPixel  pixel location at (headCenter, headRow); 

4   gestureDetected  false; 

5   while performing breadth-first surface propagation do 

6        medianXDistance  median of horizontal distances of  

   surface pixels from headPixel; 

7        meanXDistance  mean of horizontal distances of  

   surface pixels from headPixel; 

8        medianYDistance  median of vertical distances of  

   surface pixels from headPixel; 

9        meanYDistance  mean of vertical distances of surface  

   pixels from headPixel; 

10      if |mean – median| ≥ 2.5% of mean or median do 

11      gestureDetected  true; 

12  if gestureDetected do 

13   handPixels  surface pixels propagated after hand-to- 

                        face gesture was detected; 

14      if  ≥33% of handPixels to upper right of headPixel do 

15            return NOGESTURE; 

16      else if  ≥33% of handPixels to upper left of headPixel do 

17            return NOGESTURE; 

18      else if  ≥33% of handPixels to lower left of headPixel and 

                      ≥33% of handPixels to lower right of headPixel do 

19            return TWOHANDSTOFACE; 

20       else if  ≥33% of handPixels to lower left of headPixel or 

                      ≥33% of handPixels to lower right of headPixel do 

21            return ONEHANDTOFACE; 

22       else return NOGESTURE; 

23  else return NOGESTURE; 
 

5. SURVEY-BASED ANALYSES 
An underlying notion of the implicit affective channel hypothesis 

is that tutors may have been able to identify student cognitive-

affective states to some extent even when bodily movements 

associated with those affective states were not communicated to 

the tutor. To examine this, tutor perceptions of student affect were 

compared against student self-reports using correlational analyses 

in a two-step process designed to mitigate the potential for false 

positives (Type I error). In the first step, significant correlations 

were identified on a test data set drawn from the second of six 

tutoring sessions in which each tutor/student pair engaged (N=42). 

Tutor perceptions of student affect were compared against 

learning outcomes (posttest minus pretest) and student affect self-

reports. Student affect self-reports were in turn compared against 

tutor reports of cognitive variables, tutor reports of student affect, 

and learning outcomes. Forty-three significant correlations were 

identified in this first step, and in the second step analyses were 

conducted to identify which of these significant correlations also 

held in a different data set, the first tutoring session, which is the 

main focus of the present study (N=42).1 The two-phase analysis 

identified eight statistically reliable correlations, shown in Table 1. 

Table 1. Significant correlations  

(T=tutor report; S=student report) 

First Variable Second Variable r p 

Focused AttentionS 

 

Helped SpeedT 

(Figure 4, item 3) 

-0.42 0.019 

Helped MasteryT 

(Figure 4, item 4) 

-0.48 <0.01 

Student ConfusionT 

(Figure 4, item 15) 

-0.39 0.029 

Physical DemandS 

 

Student FrustrationT 

(Figure 4, item 18) 

0.44 0.014 

Tutor FrustrationT 

(Figure 4, item 25) 

0.42 0.019 

Frustration LevelS Student ConfusionT 0.53 <0.01 

Student ConfusionT Student FrustrationT 0.59 <0.01 

Posttest Score Student ConfusionT -0.38 0.038 

 

The significant correlations highlight three student cognitive-

affective states: focused attention, physical demand, and 

frustration. Students’ report of focused attention correlated with 

tutors’ belief that they were less helpful, and tutors’ belief that 

students were less confused. Tutors may have perceived that 

students who focused on the programming tasks did not need as 

much help to complete the tasks within the time allotted or to 

understand the related concepts. This result is compatible with the 

theory of optimal experience [3], which posits an optimally 

productive state of flow in which a student is learning well and it 

is often desirable not to interrupt his or her progress. Additionally, 

tutors may have perceived focused students as having less 

confusion throughout the session.  

In addition to negatively correlating with students’ reports of 

focused attention, tutor reports of student confusion were 

positively correlated with student self-reports of frustration. The 

relationship between frustration and confusion during learning 

may be a complex one. Specifically, frustration is typically 

considered to be a negative affective state, with persistent 

frustration referred to as a state of stuck [9], in which performance 

on the task at hand is negatively impacted. However, confusion 

has been theorized to be a cognitive-affective state with either 

positive or negative outcomes, depending on its resolution. In the 

theory of cognitive disequilibrium [7], confusion occurs with 

partial understanding of new knowledge, which may lead to 

learning when new knowledge is understood. However, it may 

lead to frustration when the confusion is not resolved. In the 

current study, positive resolutions of confusion may not have been 

as memorable for tutors, which could leave the tutor to report 

lingering confusion that may have led to student frustration. The 

                                                                 

1 This two-step process was used to identify correlations within 

one data set that generalize to another. The goal is analogous to 

that of statistical corrections for multiple tests (e.g., Bonferroni) 

but the two-step approach can be conceived of as confirming the 

significance of correlations that emerged under an exploratory 

analysis. 

 



 

 

negative correlation between tutor reports of student confusion 

and posttest scores supports this interpretation, as frustration is 

known to negatively impact learning [11]. 

Tutor reports of their own frustration, and of student frustration, 

correlated with student-reported physical demand. That is, the 

more physically demanding the student felt the task was, the more 

frustrated the tutor felt and believed the student felt as well. The 

student rating of physical demand was measured with an item 

phrased, “How physically demanding was the task?” At first 

glance, it is unclear whether the students were rating discomfort 

related to movement/sitting or physiological stress, since (as will 

be described in Section 6) student report of physical demand did 

not correlate with measures of posture and gesture. The significant 

correlation with this report of physical demand may indicate a co-

occurring pattern of negative interaction in which the tutor was 

frustrated and the student was stressed.  

It is also worth exploring the cognitive dimensions of the tutors’ 

reporting. The tutors’ reports of helping the student complete the 

task more swiftly and helping the student better master the subject 

material were both negatively correlated with focused attention, as 

described above. However, none of the other tutor cognitive 

reports noted in Figure 4 correlated across the two-phase analysis. 

Additionally, student performance, as measured by test 

performance and learning gains, yielded a single correlation 

between posttest score and tutor report of student confusion. This 

may indicate that the phenomena evidenced here are related more 

to implicit perception of cognitive-affective phenomena than to 

purely cognitive or task-related phenomena. However, the 

interplay of cognition and affect in task-oriented domains merits 

further study. 

6. MULTIMODAL ANALYSES 
The results in the previous section suggest that cognitive-affective 

states are implicitly communicated in textual dialogue. Examining 

bodily expressions such as posture and gesture may reveal aspects 

of affective ground truth related to the implicit affective channel.  

Two aspects of posture were used as features in the models 

reported here. First, variance of the tracked posture points was 

used as a measure of quantity of motion. Second, the average 

postural position across a session was used to capture the 

predominant body position of the student. In addition to these, 

gesture features include relative frequencies of one-hand-to-face 

and two-hands-to-face gestures. The set of posture and gesture 

features is shown in Table 2. The H, M, and L prefixes correspond 

to the three posture estimation points (Figure 5), while the All 

prefix indicates the sum of all three points. After removing 

sessions with errorful depth recordings, thirty-one sessions were 

included in the multimodal analyses.2  

                                                                 

2 Four sessions did not have depth recordings due to human error, 

as recordings were manually initiated. Three sessions were 

discarded due to extreme postural positions, such as a student 

leaning far to the side for the majority of the session. Four 

sessions were discarded due to dark and/or wavy hair that 

produced persistent noise in the infrared signal, or wearing a 

baseball cap.  

Table 2. Posture and gesture features used in analyses 

Feature Set Feature Names 

Averages of posture points HAvg, MAvg, LAvg, AllAvg 

Variances of posture points HVar, MVar, LVar, AllVar 

Relative frequencies of  

  hand-to-face gestures 

NoGestRFreq, OneHandRFreq, 

TwoHandsRFreq 

 

6.1 Correlational Analyses 
The first analysis goal was to determine whether the cognitive-

affective dimensions investigated earlier also correspond to bodily 

movements. To accomplish this, correlational analyses were 

performed between posture/gesture and variables that were 

involved in significant correlations reported in Section 5. The 

posture and gesture features in Table 2 were paired with the 

survey variables in Table 1, and the resulting statistically 

significant correlations are shown in Table 3 (N=31).  

Posture and gesture primarily correlate with survey variables for 

three cognitive-affective phenomena: student self-report of 

focused attention, tutor report of student confusion, and tutor 

report of both student and tutor frustration. Students’ report of 

increased focused attention corresponded to less movement in the 

lower torso (LVar), and to a lower frequency of two-hands-to-face 

gestures (TwoHandsRFreq). These correlations may highlight 

instances of students leaning forward onto both hands while also 

moving about the lower torso. Additionally, LVar negatively 

correlated with posttest score, which may illustrate a trend related 

to lower focused attention. 

Table 3. Posture and gesture correlations  

with survey variables  

(T=tutor report; S=student report) 

First Variable Second Variable r p 

Focused AttentionS 
LVar -0.37 0.040 

TwoHandsRFreq -0.39 0.031 

Student ConfusionT 

(Figure 4, item 15) 

HAvg -0.44 0.012 

MAvg -0.47 <0.01 

LAvg -0.40 0.026 

AllAvg -0.48 <0.01 

Student FrustrationT 

(Figure 4, item 18) 

MAvg -0.38 0.035 

LVar -0.37 0.043 

OneHandRFreq -0.43 0.017 

Tutor FrustrationT 

(Figure 4, item 25) 

HVar 0.44 0.013 

NoGestRFreq 0.37 0.043 

OneHandRFreq -0.39 0.029 

Posttest Score LVar -0.40 0.026 

 

Tutor reports of student confusion negatively correlated with 

average student postural distance. Thus, higher tutor reports of 

student confusion co-occurred with a more forward student body 

position. Conversely, farther postural distances co-occurred with 

lesser tutor reports of student confusion. Similarly, farther mid 

torso distances co-occurred with tutor reports of student 

frustration. Taken as a whole, these correlations appear to suggest 

that forward-leaning postures occur with negative cognitive-

affective experience (as perceived by the tutor). Conversely, 

average postural configurations closer to a straight sitting posture 

co-occurred with more positive cognitive-affective experience. 



 

 

Tutor reports of student and tutor frustration both negatively 

correlated with relative frequency of one-hand-to-face gestures. 

This is in contrast with the two-hands-to-face gesture, which co-

occurred with lower student focused attention. It may be that one-

hand-to-face gestures tend to express a positive or thoughtful 

state, as noted in related literature [13].  

6.2 Predictive Models 
The correlations presented in Section 6.1 suggest ways in which 

posture and gesture are associated with student and tutor 

perceptions of cognitive-affective experience. To further elucidate 

these relationships, multivariate regression models were built with 

the significantly correlated variables as predictors. The three 

survey variables for student focused attention, confusion, and 

frustration were modeled as outcome variables. Each stepwise 

linear regression used a conservative 0.05 significance threshold 

for addition of features.  

The regression model for focused attention, shown in Table 4, 

incorporates two-hands-to-face gestures with variance and 

average postural position of the lower torso. The model R2 shows 

that a moderate amount of the variance in focused attention is 

explained. Both two-hands-to-face gestures and lower torso 

variance were negative predictors of focused attention. However, 

lower torso average distance explains further variance of focused 

attention as a positive predictor. This model augments the results 

of the correlational analyses by showing that posture and gesture 

together combine to predict student focused attention. 

Table 4. Stepwise linear regression model for student-reported 

Focused Attention. Partial R2 shows the contribution of each 

feature, while model R2 shows cumulative model effect.  

Focused Attention = Partial R2 Model R2 p 

-40.90 * TwoHandsRF 0.150 0.150 0.031 

-2.90 * LVar 0.143 0.293 0.025 

0.99 * LAvg 0.103 0.396 0.041 

23.66 (intercept) RMSE = 10% of variable’s range 

 

The stepwise linear regression model for tutor-reported student 

confusion, displayed in Table 5, contains a single posture feature 

that explains a small amount of variance. The absence of 

additional features shows that the other posture features correlated 

with student confusion in Table 3 were redundant. 

Table 5. Stepwise linear regression model for  

tutor-reported student confusion.  

Confusion = Partial R2 Model R2 p 

-0.16 * AllAvg 0.231 0.231 <0.01 

4.24 (intercept) RMSE = 20.4% of variable’s range 

 

The stepwise linear regression model for tutor-reported student 

frustration, shown in Table 6, includes relative frequency of one-

hand-to-face gestures and lower torso variance as negative 

predictors. Contrary to the correlational analyses in Table 3, head 

variance and absence of hand-to-face gestures did not meet the 

threshold of significance. This model underscores the interplay of 

posture and gesture, as the addition of lower torso nearly doubles 

the explained variance. 

The regression analyses revealed cumulative effects when posture 

and gesture were integrated into linear regression models. The 

model for focused attention incorporated two-hands-to-face 

gestures and lower torso variance and average distance. Either 

posture or gesture alone would have explained a small amount of 

variance, so this demonstrates that the combination of multimodal 

features such as posture and gesture can improve a predictive 

model. 

Table 6. Stepwise linear regression model for  

tutor-reported student frustration.  

Frustration = Partial R2 Model R2 p 

-2.96 * OneHandRF 0.182 0.182 0.017 

-0.16 * LVar 0.155 0.337 0.016 

2.86 (intercept) RMSE = 16.2% of variable’s range 

 

The regression model for student confusion did not include 

gesture, with a small amount of variance explained. However, the 

regression model built for student frustration included one-hand-

to-face gestures and lower torso variance features, resulting in 

greater explained variance.  The root mean squared error of the 

model for student frustration was less than that of the model for 

student confusion, as would be expected of the model that 

explains more variance. 

7. CONCLUSION 
Although textual communication has limited bandwidth, 

interactions through the medium still retain high cognitive and 

affective complexity. If the textual content itself is emotionally 

sparse, the participants may rely on implicit interpretation of 

affect. The information relevant to this interpretation may be 

conceived of as being transmitted through an implicit affective 

channel. Understanding this implicit affective channel may hold 

great benefit for systems that aim to interact in naturalistic ways 

with humans. Toward this end, this paper has presented an 

empirical study to investigate two aspects of implicit affective 

communication in textual dialogue: 1) The extent to which the 

participants converge on shared perceptions of affect, and 2) The 

ways in which affective ground truth, as captured by depth 

recordings of gesture and posture, correlates with those affective 

perceptions even when the bodily movements were not 

transmitted to the other participant.  

This paper has introduced novel posture and gesture recognition 

algorithms that are robust to occlusions such as desks as a first 

step toward developing more sophisticated techniques. The 

automatically recognized posture and gesture features were 

explored within models that indicate focused attention, physical 

demand, and frustration were perceived through the hypothesized 

implicit affective channel accompanying textual dialogue. These 

results support the notion that an implicit affective channel is at 

work within computer-mediated textual communication, and that 

bodily displays of posture and gesture co-occurred with implicit 

affective communication.  

Future investigations of the hypothesized implicit affective 

channel should seek to identify specific processes through which 

individuals are able to interpret affect in computer-mediated 

textual dialogue. For instance, analyses based on fine-grained 

temporal features of computer-mediated textual dialogue may 

reveal relationships between perceived affect and how participants 

construct messages. Additionally, bodily expressions that 

correlate with aggregate cognitive-affective measures may be 

explored within discrete time windows to provide a more dynamic 

view of affective phenomena that occur during textual dialogue. 

Machine learning techniques may also be applied to identify 

complex patterns of interaction that may shed light on underlying 



 

 

human processes. Such investigations may lead to future textual 

dialogue systems that leverage the implicit affective channel.  
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