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ABSTRACT 

Learners experience a wide array of cognitive and affective 

states during tutoring. Detecting and responding to these states is 

a core problem of adaptive learning environments that aim to 

foster motivation and increase learning. Recognizing learner 

affect through nonverbal behavior is particularly challenging, as 

students display affect across numerous modalities. This study 

utilizes an automatically extracted set of multimodal nonverbal 

behaviors and task actions to predict learning and affect in a data 

set of sixty-three computer-mediated human tutoring sessions. 

Predictive models of post-session self-reported engagement, 

frustration, and learning were evaluated with leave-one-out 

cross-validation. Nonverbal behaviors conditioned on task 

events and typing were found to be more predictive than 

incoming student self-efficacy and pretest score. Face and 

gesture were predictive of engagement and frustration, while 

face and posture was predictive of learning. The nonverbal 

model features captured moments when students were most 

active on the task, such as writing and testing the Java program. 

These results provide initial evidence linking affect, moment-by-

moment multimodal nonverbal behavior, and task performance 

during tutoring. They improve understanding of learner affect 

and enable automated tutorial interventions that adapt to student 

states as a highly effective human tutor would. 
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1. INTRODUCTION 
Mastery-oriented one-to-one human tutoring may provide two 

sigma learning gains [3]. In order to match this high bar of 

expert human tutoring effectiveness, automated tutorial 

interventions may need to be designed with both learner 

knowledge and motivation in mind [5, 9, 12, 31]. Highly 

effective human tutors simultaneously address cognitive and 

affective states of learners, adapting to the appropriate level of 

content difficulty and improving learner motivation through 

personalized instruction [25]. Just as human tutors consider 

more than task performance of the student, it may be necessary 

to bolster automated tutorial interventions with additional 

information regarding learner affect from nonverbal behavior 

[32]. 

Early studies of nonverbal behavior in tutoring relied on manual 

observations of affect and nonverbal behavior [2, 8, 14, 38]. 

More recently, automated techniques have been leveraged to 

track nonverbal behaviors [1, 11, 15, 17, 22]. Most studies have 

examined individual modalities in detail, such as facial 

expression [17, 35], posture [10, 18], or gesture [18, 28]. 

However, a much smaller set of studies has examined multiple 

modalities of nonverbal behavior [1, 11, 22]. It is likely that a 

multimodal combination of automatically tracked affective data 

streams would need to be considered to best adapt to learner 

affect during tutoring [9]. 

Facial expression is a particularly informative modality for 

analysis of affect, as indicated by decades of prior research. 

Many studies have utilized the Facial Action Coding System 

(FACS), a coding manual that describes the fine-grained 

movements of the human face as facial action units (AUs) [13]. 

Recent automated techniques have enabled FACS-based facial 

expression recognition. In particular, the Computer Expression 

Recognition Toolbox (CERT), used in this study, provides a 

state-of-the-art facial expression recognition tool that identifies 

facial action units [27]. CERT was trained using databases of 

spontaneous and posed expressions and has been validated on 

naturalistic video datasets [16, 26, 27]. Thus, frame-by-frame 

facial action unit tracking provides detailed affective 

information that is readily synchronized with additional 

modalities. 

Gestures have been tangentially reported on in the intelligent 

tutoring systems community, but other phenomena were the 

primary focus of those studies [14, 38]. Recent work has begun 

to describe and track cognitive-affective gestures [15, 18, 21, 

28]. This study uses an algorithm that processes three-

dimensional Kinect™ depth images to identify when one or two 

hands contact the lower face [15].  

Posture has been used as an affective feature in multiple 

systems, but interpretation of postural movements is very 

complex [10, 22, 23]. One result replicated across multiple 

studies is that increases in postural movement are linked with 

negative affect or disengagement [10, 15, 33, 38]. Early work 

used expensive pressure-sensitive chairs [22, 38]. Newer 

techniques rely on computer vision to interpret posture from 

video [10, 15, 33]. This study uses an algorithm that processes 

Kinect depth images to identify how far away the student is 

seated [15]. 



The analysis reported in this paper combines an automatically 

extracted set of multimodal nonverbal behaviors and task actions 

to predict learning and affect in a data set of sixty-three 

computer-mediated human tutoring sessions. Relative 

frequencies of nonverbal behaviors contingent on task events 

and typing statuses were used as predictive features. Model 

averaging identified the top twenty predictive features per 

model. Three models were built using stepwise forward linear 

regression with the Bayesian Information Criterion (BIC) to 

predict retrospective self-reports of engagement and frustration, 

as well as normalized learning gains. The models were evaluated 

with leave-one-out cross-validation. Nonverbal features were 

found to be more predictive than incoming student self-efficacy 

and pretest scores. Face and gesture were predictive of 

engagement and frustration, while face and posture were 

predictive of learning. Additionally, the majority of nonverbal 

predictive features occurred when the student was writing and 

testing the Java program, which shows that these moments may 

be most salient to affect. Further studies in this vein can inform 

the design of automated tutorial interventions in order to adapt 

to student affect as a highly effective human tutor would. 

2. RELATED WORK 
Few studies have examined multimodal nonverbal behavior 

features in a tutoring context. An initial study by Kapoor and 

Picard considered prediction of experienced teacher judgments 

of affect in young student (8-11 years of age) interactions with a 

game, Fripple Place [22]. Face, posture, and task features were 

used in a mixture of Gaussian processes. These models 

performed well at predicting teacher judgments of affect, which 

was an important initial step toward detecting cognitive-

affective states involved in cognitively demanding tasks. 

In research on the AutoTutor intelligent tutoring system, 

multimodal features were used to predict affect labels by expert 

judges [11]. Emotion labels were manually selected using six 

affective states (boredom, confusion, engagement/flow, 

frustration, delight, surprise) and a non-emotional/neutral 

choice at fixed time intervals and spontaneously across thirty-

eight approximately half-hour tutoring sessions. These labels 

were then predicted using a multimodal feature set including 

manually annotated Facial Action Coding System facial 

movements, automatically extracted dialogue features from 

fifteen seconds prior to an emotion label, and automatically 

extracted posture features using a pressure-sensitive chair. The 

fully-featured models of face, dialogue, and posture produced 

the best levels of agreement, with Cohen’s K of 0.33 for fixed 

emotion judgments and 0.39 for spontaneous ones.  

Another line of research has investigated the use of multiple 

sensor technologies with the Wayang Outpost intelligent 

tutoring system [1]. A real-time facial expression analysis tool 

trained on posed cognitive-affective displays, MindReader, was 

used to estimate levels of agreeing, concentration, interest, 

thinking, and unsureness. Additionally, a pressure-sensitive 

mouse, skin conductance bracelet, and pressure-sensitive chair 

were also used. Student cognitive-affective self-reports were 

given during the tutoring session for states of confidence, 

excitement, frustration, and interest. Stepwise regression models 

were constructed across combinations of modalities (including 

tutorial context). The results found that best fit models were 

achieved through combinations of facial expression and tutoring 

context (for confidence, excitement, and interest) and posture 

and tutoring context (for frustration). The corresponding model 

effect sizes for the best fit models ranged from r = 0.54 to 0.83. 

A follow-up validation study was also conducted with a new set 

of students from a different school and a lower age group [7]. 

The results found that the previously used features were only 

partially generalizable to the validation population, with reduced 

accuracies for most features. This underscores the necessity of 

identifying generalizable affective features. 

In contrast with prior studies, this paper presents models 

predicting affective and learning outcomes from moment-to-

moment nonverbal behavior and task performance. This line of 

investigation seeks to identify nonverbal behavioral correlates of 

both affect and learning. The present results indicate that facial 

expression, gesture, and posture may have differing affective 

interpretations based on the tutoring context in which they 

occur. The nonverbal features were found to be more predictive 

than incoming student self-efficacy and pretest score. 

Additionally, the nonverbal features were largely contingent 

upon student work on the programming task, illustrating that 

these moments of student task activity may be most salient to 

affect. Further studies in this vein may produce affect 

recognition that enables detecting and responding to learner 

affect as a highly effective human tutor would. 

3. TUTORING STUDY 
The corpus consists of computer-mediated tutorial dialogue for 

introductory computer science collected during the 2011-2012 

academic year. Students (N=67) and tutors interacted through a 

web-based interface that provided learning tasks, an interface for 

computer programming, and textual dialogue. The participants 

were university students in the United States, with average age 

of 18.5 years (stdev=1.5). The students voluntarily participated 

for course credit in an introductory engineering course, but no 

prior computer science knowledge was assumed or required. 

Each student was paired with a tutor for a total of six sessions on 

different days, limited to forty minutes each session. Recordings 

of the sessions included database logs, webcam video, skin 

conductance, and Kinect depth video. This study analyzes the 

database logs, webcam video, and Kinect depth video from the 

first lesson as a multimodal tutoring corpus, described further in 

Section 4. The JAVATUTOR interface is shown in Figure 1. 

 

Figure 1. The JAVATUTOR interface  

 



    

Figure 2. Facial action units recognized by CERT (left to right): AU1 (Inner Brow Raiser) & AU2 (Outer Brow Raiser),  

AU4 (Brow Lowerer), AU7 (Lid Tightener), AU14 (Mouth Dimpler)

On a day prior to the first tutoring session, students completed a 

set of surveys to measure incoming student characteristics. Two 

of these pre-session survey instruments are analyzed in this 

paper: computer science domain-specific self-efficacy and 

general self-efficacy. The computer science self-efficacy 

measure is comprised of the confidence items from the 

Computer Science Attitude Survey [37]. General self-efficacy 

was measured using the New General Self-Efficacy instrument 

[6]. Before each session, students completed a content-based 

pretest. After each session, students answered a post-session 

survey and posttest (identical to the pretest). The post-session 

survey items included the User Engagement Survey (UES) [30] 

and the NASA-TLX workload survey [20], which included an 

item for Frustration Level. There is a recent validation of the 

UES measure with further information [36]. 

4. MULTIMODAL TUTORING CORPUS 
The tutoring session database logs were combined with 

automated facial action unit tracking on webcam videos and 

gesture and posture tracking across Kinect depth image frames. 

The automated tracking techniques are described in the 

following subsections. The resulting multimodal features are 

described in Section 4.3. 

4.1 Facial Expression Recognition 
A state-of-the-art facial expression recognition tool, the 

Computer Expression Recognition Toolbox (CERT) [19], was 

used for frame-by-frame tracking of a wide variety of facial 

action units. CERT finds faces in a video frame, locates facial 

features for the nearest face, and outputs weights for each 

tracked facial action unit using support vector machines. For a 

detailed description of the technology used in CERT, see [25]. 

The tutoring video corpus is comprised of approximately four 

million video frames totaling thirty-seven hours across the first 

tutoring session. Two session recordings were missing due to 

human error (N=65).  

We previously validated an adjustment to CERT output that 

produced excellent aggregate agreement with manual FACS 

annotations across a subset of five action units [16]. The 

adjustment involves subtraction of the average value for each 

facial action unit as a baseline in order to reduce systematic 

tracking error. While any positive output value indicates that 

CERT recognizes an action unit, we empirically found that a 

higher threshold may reduce false positives. Thus, we consider 

an action unit to be present when the baseline-adjusted CERT 

output is at least 0.25. Examples of the five selected facial action 

units and their FACS codes (e.g., AU1) are shown in Figure 2.  

4.2 Gesture and Posture Detection 
Previously developed posture and gesture tracking techniques 

were applied to the recorded Kinect depth images. The posture 

tracking algorithm was previously evaluated to be 92.4% 

accurate, while gesture tracking was found to be 92.6% accurate 

[15]. The tracking algorithms were run on all sessions, but four 

sessions had no Kinect recordings due to human error (N=63). 

Examples of one-hand-to-face and two-hands-to-face gestures 

are shown in Figure 3. 

  

Figure 3. Examples of hand-to-face gestures 

The median head distance of students at each workstation was 

selected as the “mid” postural position. Distances at one 

standard deviation (or more) closer or farther than “center” were 

labeled as “near” or “far,” respectively. Additionally, postural 

movements were identified based on acceleration of the head 

tracking point. The absolute sum of frame-to-frame acceleration 

was accumulated in a rolling one-second window at each frame. 

The average amount of acceleration in a one-second interval was 

computed across all students. If acceleration in the present 

interval was above average, it was marked as a postural 

movement (POSMOVE). Average frequencies of gesture and 

posture features are shown in Table 1. Students tended to spend 

more time in a MID postural position and most frequently did 

not display a hand-to-face gesture. Additionally, students moved 

less than average during each interval, indicating that there were 

short moments of high movement that raised the average.  



Table 1. Average frequency of gesture and posture features 

Feature Avg. Freq. Feature Avg. Freq. 

NEAR 15% ONEHAND 16% 

MID 68% TWOHANDS 5% 

FAR 17% NOGESTURE 79% 

POSMOVE 29%   

NOMOVE 71%   

4.3 Multimodal Features 
The automatically recognized nonverbal behaviors were 

combined with task-related features in order to form the 

multimodal tutoring corpus. As students worked on 

programming tasks, the database logged dialogue messages, 

typing, and task progress. Tutorial dialogue occurred at any time 

during the sessions, with student and tutor messages sent 

asynchronously (STUDENTMSG and TUTORMSG, respectively). 

As a student completed the programming task, he or she would 

also press a compile button to convert the Java program code 

into a format that is ready to run. These compile attempts may 

be successful (COMPILESUCCESS) or fail due to an error in the 

program code (COMPILEERROR). The student would also run his 

or her program (RUNPROGRAM) in order to test the output and 

interact with it. In parallel with the task events described above, 

the database logged whether the student was typing at any given 

moment. The student may not be typing anything (NOTTYPING), 

working on the program code (CODING), or typing a message to 

the tutor (TYPINGMSG) at each moment. Additionally, the 

student was considered to have paused on the task if he or she 

had made changes to the program and then stopped. This sort of 

break may be due to the student having resolved the current task, 

taking a moment to think, or going off-task; therefore, it was 

introduced as a task event (TASKPAUSE). The average frequency 

of each task event and typing status is shown in Table 2. The 

majority of time intervals occurred after tutor messages and 

when students were not typing. These majority events represent 

moments when the student may have been reading the task 

description or reflecting on tutor messages. Tutors were also 

more active in the dialogue than students, resulting in more time 

following tutor messages. 

Table 2. Average frequency of task events and typing status 

Task Event 
Avg. 

Freq. 

Typing 

Status 

Avg. 

Freq. 

COMPILEERROR 1.7% CODING 15% 

COMPILESUCCESS 2.1% TYPINGMSG 12% 

RUNPROGRAM 7.9% NOTTYPING 73% 

STUDENTMSG 26.4%   

TUTORMSG 53.1%   

TASKPAUSE 8.8%   

Task events and typing statuses were combined with nonverbal 

behaviors at one-second intervals across each tutoring session. 

The most recent event of a given type (nonverbal, task, typing) 

was counted as the current value at each interval. For instance, if 

a student had been typing but stopped after half a second into the 

current interval, the typing status would be assigned to 

NOTTYPING.  

A tutoring session excerpt is shown in Figure 4. The excerpt 

shows a rich set of nonverbal behaviors occurring around 

student work on the programming task. This student produced a 

variety of facial expressions, particularly when examining and 

testing the Java program. Additionally, the student performed a 

one-hand-to-face gesture prior to compiling the program. The 

corresponding multimodal features for a segment of the excerpt 

are shown in Figure 5 (top of next page). The multimodal 

feature vectors cover a twelve-second segment from the excerpt. 

26:54 Tutor: ready? 

26:59 Student: yes!  [Student starts coding] 

28:02 Student: TASKPAUSE  [Student stops coding] 

28:03 Student: GESTURE: ONEHANDTOFACE;  

FACE: AU2 & AU14 

28:12 Student: TASK: COMPILESUCCESS; FACE: AU2 

28:14 Student: FACE: AU14 

28:17 Student: TASK: RUNPROGRAM; FACE: AU1 

28:19 Student: FACE: AU7 

28:21 Tutor: excellent 

Figure 4. Tutoring session excerpt 

Relative frequencies of nonverbal behavior were calculated 

separately for task events and typing status. For instance, at each 

one-second time interval, AU1 was marked as present or absent. 

Each interval was associated with a task event, with frequency 

counts tabulated across all task events. The relative frequency of 

AU1 presence and absence was computed across these task-

contingent counts. Thus, the percentages of time intervals 

occurring with specific task events and particular values of AU1 

presence or absence sum to one hundred percent. For instance, 

one student may have AU1 after RUNPROGRAM 2.12% of the 

time and NOAU1 after RUNPROGRAM 3.24% of the time. These 

relative frequencies sum to one hundred percent when combined 

with the remainder of task-contingent relative frequencies of 

AU1. Relative frequencies were similarly computed across 

typing statuses for each nonverbal behavior. Thus, the relative 

frequencies account for the percent of time in which a student 

displayed a nonverbal behavior after a specific task event or 

during a particular typing status (i.e., a student with a 5% 

relative frequency of ONEHAND after TUTORMSG in a thirty 

minute session would have displayed a one-hand-to-face gesture 

for a total of ninety seconds after tutor messages). This resulted 

in a set of one hundred and sixty-two nonverbal features 

contingent upon task events and typing statuses. The distribution 

of these multimodal features across nonverbal behaviors, task 

events, and typing statuses is shown in Table 3. 

Table 3. Counts of multimodal features across nonverbal 

behaviors, task events, and typing statuses 

 Task Event Typing Status 

AU1 12 6 

AU2 12 6 

AU4 12 6 

AU7 12 6 

AU14 12 6 

GESTURE 18 9 

POSTURE 18 9 

POSMOVE 12 6 

 



 28:08 28:09 28:10 28:11 28:12 28:13 28:14 28:15 28:16 28:17 28:18 28:19 

AU1          AU1 

AU2 AU2   AU2 

AU4             

AU7            AU7 

AU14 AU14  AU14   

ONEHAND ONEHAND  

TWOHAND             

POSTURE FARPOSTURE 

POSMOVE             

TASK TASKPAUSE COMPILESUCCESS RUNPROGRAM 

TYPING             

Figure 5. Multimodal feature vectors for a twelve-second segment of tutoring: gray shading indicates presence of a nonverbal 

behavior, task event, or typing. Time is shown in minutes and seconds from the beginning of the tutoring session. 

 

5. PREDICTIVE MODELS 
Fine-grained analyses of multimodal affective expressions are 

enabled by automated tracking of nonverbal behavior. Such 

analyses have the potential to reveal previously undiscovered 

ways in which affective displays relate to task performance, 

learning, and affective outcomes within a tutoring context. For 

instance, the same affective expression may have different 

causes depending on the tutoring context. As a first step toward 

examining the fine-grained tutoring context of learner affective 

displays, predictive models of affective and learning outcomes 

were constructed using the multimodal tutoring corpus, in which 

facial expression, gesture, and posture are combined with task 

actions. 

Initial feature selection was performed using model averaging in 

JMP statistical software, which created regression models for all 

possible combinations of predictive variables [34]. Model 

averaging is used to identify and remove weakly predictive 

variables across all models. Specifically, the twenty most 

predictive variables were selected using the average coefficient 

estimate from models with one, two, or three predictive 

variables. The predictive models were then constructed using 

minimum Bayesian Information Criterion (BIC) in forward 

stepwise linear regression. These models are conservative in 

how they select predictive features because the explanatory 

value of added parameters must offset the BIC penalty for model 

complexity. Thus, model averaging was used to identify the 

most generally predictive variables, while minimum BIC was 

used to constrain model complexity. Tutoring outcomes 

(engagement, frustration and learning) were the dependent 

variables. All variables were standardized (i.e., centered on the 

mean and scaled to unit standard deviation) to enable 

comparison. The predictive models shown in the following sub-

sections have been constructed using the entire corpus, with 

associated regression coefficients and R2 values. Additionally, 

leave-one-out cross-validated R2 values were computed using 

the same predictive variables (but different coefficients in each 

fold) to examine generalizability of the predictive models. 

5.1 Predicting Engagement 
Each student’s Engagement score was the sum of the Focused 

Attention, Felt Involvement, and Endurability sub-scales in the 

User Engagement Survey [30] administered following the 

tutoring session. This model only uses self-reports of 

engagement from students who fully completed the User 

Engagement Survey (N=61). The predictive model of 

engagement was composed of three features, including students’ 

incoming computer science self-efficacy, one-hand-to-face 

gestures after successful compile, and brow lowering (AU4) 

after sending a student dialogue message. Each of the nonverbal 

features explains more variance than the trait-based feature of 

computer science self-efficacy. This seems to indicate that state-

based nonverbal features are more indicative of engagement. 

The cross-validated model effect size was r = 0.39. The model is 

shown in Table 4. 

Table 4. Stepwise linear regression model for Engagement 

Engagement = Partial R2 Model R2 p 

0.31 * ONEHAND after 

COMPILESUCCESS 
0.10 0.10 0.009 

-0.31 * AU4 after 

STUDENTMSG 
0.09 0.19 0.008 

0.27 * Computer 

Science Self-Efficacy 
0.07 0.26 0.020 

~0 (intercept) 0.959 

RMSE = 0.88 standard deviations in Engagement 

Leave-One-Out Cross-Validated R2 = 0.15 

5.2 Predicting Frustration 
The Frustration Level scale from NASA-TLX [20] was the 

student’s retrospective self-report of how insecure, agitated or 

upset he or she was during the tutoring session. The predictive 

model of frustration included students’ incoming general self-

efficacy and two features that accounted for the absence of 

nonverbal behavior. The sole feature predictive of higher 

frustration corresponded with compile errors, which intuitively 

may be frustrating. The absence of brow lowering (AU4) after 

running the Java program reinforces a prior result that indicated 

AU4 as a marker of frustration [17]. Also, students with higher 

general self-efficacy tended to have less frustration, as 

represented in the model. The cross-validated model effect size 

was r = 0.41. The model is shown in Table 5. 



Table 5. Stepwise linear regression model  

for Frustration 

Frustration = Partial R2 Model R2 p 

-0.42 * General Self-

Efficacy 
0.14 0.14 0.004 

-0.56 * NOAU4 after 

RUNPROGRAM 
0.08 0.22 0.004 

0.42 * NOGESTURE after 

COMPILEERROR 
0.08 0.30 0.011 

~0 (intercept) 1.000 

RMSE = 0.85 standard deviation in Frustration Level 

Leave-One-Out Cross-Validated R2 = 0.17 

5.3 Predicting Learning Gain 
Normalized learning gain measures how much a student learned 

relative to what he or she could have learned [29]. This accounts 

for relative differences in learning between students who scored 

high or low on the pretest. Normalized learning gain was 

computed using the following formula if posttest score was 

greater than pretest score: 

NLG = Posttest - Pretest  

         1 – Pretest 

Otherwise, normalized learning gain was computed as follows: 

NLG = Posttest – Pretest 

      Pretest 

The predictive model of normalized learning gain is the only one 

of the three to include postural features. These features indicate 

that MID and FAR postural positions are predictive of learning, 

though whether they are positive or negative predictors is 

dependent upon the tutoring context. Mouth dimpling (AU14) 

after running the Java program was predictive of learning. This 

supports a prior result that AU14 is positively associated with 

learning [17]. Finally, general self-efficacy predicted higher 

learning gains. The cross-validated model effect size was r = 

0.62. The model is shown in Table 6. 

Table 6. Stepwise linear regression model for Normalized 

Learning Gain 

Norm. Learning Gain = Partial R2 Model R2 p 

0.10 * AU14 after 

RUNPROGRAM 
0.11 0.11 0.004 

0.10 * General Self-

Efficacy 
0.08 0.19 0.002 

-0.12 * MIDPOSTURE 

after COMPILEERROR 
0.08 0.27 <0.001 

-0.21 * FARPOSTURE 

during CODING 
0.04 0.31 <0.001 

0.20 * FARPOSTURE after 

COMPILESUCCESS 
0.18 0.49 <0.001 

0.43 (intercept) <0.001 

RMSE = 0.24 std. dev. in Normalized Learning Gain 

Leave-One-Out Cross-Validated R2 = 0.38 

6. DISCUSSION 
The results demonstrate that nonverbal behaviors at specific 

moments in the tutoring session are predictive of engagement, 

frustration, and learning. The combination of task events, 

typing, and nonverbal behaviors in multimodal features is 

predictive beyond incoming student characteristics, such as 

pretest score and self-efficacy. Additionally, the affective 

valence (positive or negative) of the nonverbal behaviors 

depended upon the tutoring context in which they occurred. 

The predictive model of engagement was composed of three 

features, including students’ incoming computer science self-

efficacy, one-hand-to-face gestures after successful compile, and 

brow lowering (AU4) after sending a student dialogue message. 

One-hand-to-face gestures may have different affective valence 

depending on the physical position of the hand. A student may 

rest his/her head on the hand as a sign of boredom [2], or touch 

his/her chin in a moment of contemplation [28]. Here, one-hand-

to-face gestures after compile success were predictive of higher 

post-session self-report of engagement. This may coincide with 

student focus on the programming task. In the moments after 

updating the program code and compiling it, the student is no 

longer typing and may then reflect on current progress. Brow 

lowering (AU4) after the student sends a dialogue message, on 

the other hand, was a predictor of lower engagement. This may 

indicate that a student is having difficulty with the subject 

matter, most likely responding to a tutor message (in this corpus, 

tutor messages were predominant and students rarely took 

initiative in the dialogue). Both of the nonverbal features were 

more predictive than computer science domain-specific self-

efficacy, which was associated with greater engagement. 

Frustration was significantly predicted by general self-efficacy. 

Higher levels of general self-efficacy coincided with lower post-

session reports of frustration. Students with higher general self-

efficacy are more confident in their ability to complete difficult 

tasks and therefore may be less intimidated by a novel learning 

task. However, inclusion of two nonverbal features doubled the 

explanatory power of the model. Each of the nonverbal features 

captured absence of nonverbal behaviors after specific task 

events. Absence of brow lowering (AU4) after running the Java 

program was predictive of lower frustration. At this point, the 

student is testing the program to see whether it matches his/her 

expectation. A prior result on this tutoring corpus found that 

AU4 was an indicator of frustration. Therefore, the present 

result supports that finding, but also provides a specific tutoring 

context (running the program) that is particularly meaningful for 

frustration. The sole feature predictive of higher frustration 

corresponded with compile errors (which occur when the 

program is incorrect). This correspondence between compiling 

the program and frustration is similar to results of prior analyses 

of student emotions during computer programming [4, 24]. Not 

all students had compile errors, so this feature represents those 

students who may have found the task to be more difficult. The 

absence of gestures after compile errors may be due to swift 

tutor interventions to remediate problems with the program. In 

this case, a student may feel frustrated due to overly active 

tutoring strategies. 

Normalized learning gain was predicted by a combination of 

students’ incoming general self-efficacy, mouth dimpling 

(AU14) after running the program, and three posture-related 

features. The model shows that students with more general 

confidence in their ability to complete novel and difficult tasks 



tended to learn more than their peers. Displays of AU14 after 

running the program also were predictive of higher learning 

gain. Two aspects of AU14 discovered in prior results may shed 

light on this. First, occurrence of AU14 in general was 

associated with greater learning gain [16]. Second, AU14 in the 

first five minutes of tutoring was correlated with higher 

frustration, while AU14 in the last five minutes of tutoring was 

correlated with greater learning gain [17]. Running the program 

occurs most frequently during the later portion of the session. 

So, AU14 displays after running the program may also occur 

toward the end. With this timing-related interpretation, it may be 

that continued mental effort throughout the tutoring session is 

reflected in displays of AU14. Further study of AU14 may 

confirm whether it is generally an indicator of mental effort. 

The posture-related features included both MID and FAR 

distances. These postural positions may encode information 

beyond whether a student is sitting at a certain distance from the 

computer. For instance, when a student is sitting at MID 

distance, the shoulders may be hunched or the student may have 

a straight back. FAR postural position was both predictive of 

higher learning gain (when occurring after compile success) and 

lower learning gain (when present during coding). It may be that 

bored students slouched in a FAR position during coding, while 

relaxed (but active) students were similarly farther back. New 

tracking methods may be developed to disambiguate these 

subtleties of posture. Interestingly, postural position was 

predictive of learning, but moment-to-moment postural 

movement was not. Discretization across one-second intervals 

may not have adequately captured brief postural movements. 

The predictive models largely include nonverbal features that 

occur around moments of student work on the programming 

task. These may be pivotal moments on a student’s path to 

learning, as students are actively working on the task and 

confirming whether the program works as intended. Prior results 

in analysis of skin conductance on this tutoring corpus showed 

that students’ physiological responses to compile attempts and 

failures were associated with learning and frustration [19]. The 

predictive models presented in this paper further underscore the 

importance of tutoring context in interpretation of nonverbal 

behavior. 

7. CONCLUSION 
This paper presented a multimodal analysis of automatically 

recognized nonverbal behaviors and task events. State-of-the-art 

facial expression recognition was leveraged, along with depth 

video-based gesture detection and posture tracking algorithms, 

in order to automatically annotate nonverbal behaviors across a 

corpus of sixty-three tutoring sessions. Multimodal feature 

vectors were constructed at one-second intervals, including 

facial expression, gesture, posture, the most recent task event, 

and whether the student was typing. These features were then 

used to predict post-session engagement, frustration, and 

learning outcomes. The results show that multimodal nonverbal 

behavior features are predictive of affect and learning beyond 

student incoming characteristics, such as self-efficacy and 

pretest scores. 

These results are a first step toward understanding the 

relationship between affect, moment-by-moment nonverbal 

behavior, and task performance during tutoring. The multimodal 

data streams included nonverbal behavior (facial expression, 

gesture, posture) and task logs (discrete task events, typing 

status) across time intervals. This approach provides a basis for 

triangulating learner affect from multimodal time sequence data. 

The fine-grained data collected on task performance and 

nonverbal behavior provides an estimation of learners’ 

underlying real-time cognitive and affective processes.  

Further research may identify how facial expressions co-occur 

and provide further validation of fine-grained tracking of facial 

movements. Additionally, spatiotemporal features of gesture and 

posture have only just begun to be explored. Future work may 

disambiguate between different types of one-hand-to-face and 

two-hands-to-face gesture, as well as tracking more detailed 

postural information, such as slouching and leaning. Human 

tutors innately employ knowledge of nonverbal behavior, thus 

research in this vein brings the capabilities of automated tutorial 

intervention closer to those of human tutors. This line of 

investigation informs our understanding of learner affect and 

enables affective interventions that intelligently model 

nonverbal behavior and task actions, as a highly effective human 

tutor would. 

ACKNOWLEDGMENTS 
This work is supported in part by the North Carolina State 

University Department of Computer Science and the National 

Science Foundation through Grant DRL-1007962 and Grant 

CNS-1042468 (STARS Alliance). Any opinions, findings, 

conclusions, or recommendations expressed in this report are 

those of the participants, and do not necessarily represent the 

official views, opinions, or policy of the National Science 

Foundation. 

REFERENCES 
[1] Arroyo, I., Cooper, D.G., Burleson, W., Woolf, B.P., Muldner, 

K. and Christopherson, R.M. 2009. Emotion Sensors Go To 

School. 14th International Conference on Artificial Intelligence 

in Education (2009), 17–24. 

[2] Baker, R.S.J. d., D’Mello, S.K., Rodrigo, M.M.T. and Graesser, 

A.C. 2010. Better to Be Frustrated than Bored: The Incidence, 

Persistence, and Impact of Learners’ Cognitive-Affective States 

during Interactions with Three Different Computer-Based 

Learning Environments. International Journal of Human-

Computer Studies. 68, 4 (Apr. 2010), 223–241. 

[3] Bloom, B.S. 1984. The 2 Sigma Problem: The Search for 

Methods of Group Instruction as Effective as One-to-One 

Tutoring. Educational Researcher. 13, 6 (1984), pp. 4–16. 

[4] Bosch, N., D’Mello, S.K. and Mills, C. 2013. What Emotions 

Do Novices Experience during Their First Computer 

Programming Learning Session? Proceedings of the 16th 

International Conference on Artificial Intelligence in Education 

(2013), 11–20. 

[5] du Boulay, B., Avramides, K., Luckin, R., Martinez-Miron, E., 

Mendez, G.R. and Carr, A. 2010. Towards Systems That Care: A 

Conceptual Framework based on Motivation, Metacognition and 

Affect. International Journal of Artificial Intelligence in 

Education. 20, 3 (2010). 

[6] Chen, G., Gully, S.M. and Eden, D. 2001. Validation of a New 

General Self-Efficacy Scale. Organizational Research Methods. 

4, 1 (2001), 62–83. 

[7] Cooper, D.G., Muldner, K., Arroyo, I., Woolf, B.P. and 

Burleson, W. 2010. Ranking Feature Sets for Emotion Models 

used in Classroom Based Intelligent Tutoring Systems. 

Proceedings of the 18th International Conference on User 

Modeling, Adaptation, and Personalization (2010), 135–146. 

[8] Craig, S.D., D’Mello, S.K., Witherspoon, A. and Graesser, A.C. 

2008. Emote Aloud during Learning with AutoTutor: Applying 



the Facial Action Coding System to Cognitive-Affective States 

during Learning. Cognition & Emotion. 22, 5 (2008), 777–788. 

[9] D’Mello, S.K. and Calvo, R.A. 2011. Significant 

Accomplishments, New Challenges, and New Perspectives. New 

Perspectives on Affect and Learning Technologies. R.A. Calvo 

and S.K. D’Mello, eds. Springer. 255–271. 

[10] D’Mello, S.K., Dale, R. and Graesser, A.C. 2012. 

Disequilibrium in the Mind, Disharmony in the Body. Cognition 

& Emotion. 26, 2 (2012), 362–374. 

[11] D’Mello, S.K. and Graesser, A.C. 2010. Multimodal Semi-

automated Affect Detection From Conversational Cues, Gross 

Body Language, and Facial Features. User Modeling and User-

Adapted Interaction. 20, 2 (May 2010), 147–187. 

[12] D’Mello, S.K., Lehman, B., Pekrun, R. and Graesser, A.C. 

2012. Confusion Can Be Beneficial for Learning. Learning & 

Instruction. (2012). 

[13] Ekman, P., Friesen, W. V. and Hager, J.C. 2002. Facial Action 

Coding System. A Human Face. 

[14] Grafsgaard, J.F., Boyer, K.E., Phillips, R. and Lester, J.C. 

2011. Modeling Confusion: Facial Expression, Task, and 

Discourse in Task-Oriented Tutorial Dialogue. Proceedings of 

the 15th International Conference on Artificial Intelligence in 

Education (2011), 98–105. 

[15] Grafsgaard, J.F., Fulton, R.M., Boyer, K.E., Wiebe, E.N. and 

Lester, J.C. 2012. Multimodal Analysis of the Implicit Affective 

Channel in Computer-Mediated Textual Communication. 

Proceedings of the 14th ACM International Conference on 

Multimodal Interaction (2012), 145–152. 

[16] Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N. and 

Lester, J.C. 2013. Automatically Recognizing Facial Expression: 

Predicting Engagement and Frustration. Proceedings of the 6th 

International Conference on Educational Data Mining 

(Memphis, Tennessee, 2013). 

[17] Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N. and 

Lester, J.C. 2013. Automatically Recognizing Facial Indicators 

of Frustration: A Learning-Centric Analysis. Proceedings of the 

5th International Conference on Affective Computing and 

Intelligent Interaction (2013), 159–165. 

[18] Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N. and 

Lester, J.C. 2013. Embodied Affect in Tutorial Dialogue: Student 

Gesture and Posture. Proceedings of the 16th International 

Conference on Artificial Intelligence in Education (Memphis, 

Tennessee, 2013). 

[19] Hardy, M., Wiebe, E.N., Grafsgaard, J.F., Boyer, K.E. and 

Lester, J.C. 2013. Physiological Responses to Events During 

Training: Use of Skin Conductance to Inform Future Adaptive 

Learning Systems. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting (2013), 2101–2105. 

[20] Hart, S.G. and Staveland, L.E. 1988. Development of NASA-

TLX (Task Load Index): Results of Empirical and Theoretical 

Research. Human Mental Workload. P.A. Hancock and N. 

Meshkati, eds. Elsevier Science. 139–183. 

[21] El Kaliouby, R. and Robinson, P. 2005. The Emotional Hearing 

Aid: an Assistive Tool for Children with Asperger Syndrome. 

Universal Access in the Information Society. 4, 2 (Aug. 2005), 

121–134. 

[22] Kapoor, A. and Picard, R.W. 2005. Multimodal Affect 

Recognition in Learning Environments. Proceedings of the 13th 

Annual ACM International Conference on Multimedia (2005), 

677–682. 

[23] Kleinsmith, A. and Bianchi-Berthouze, N. 2012. Affective 

Body Expression Perception and Recognition: A Survey. IEEE 

Transactions on Affective Computing. (2012). 

[24] Lee, D.M., Rodrigo, M.M.T., Baker, R.S.J. d., Sugay, J. and 

Coronel, A. 2011. Exploring the Relationship Between Novice 

Programmer Confusion and Achievement. Proceedings of the 4th 

International Conference on Affective Computing and Intelligent 

Interaction (2011), 175–184. 

[25] Lepper, M.R. and Woolverton, M. 2002. The Wisdom of 

Practice: Lessons Learned from the Study of Highly Effective 

Tutors. Improving Academic Achievement. J. Aronson, ed. 

Elsevier. 135–158. 

[26] Littlewort, G., Bartlett, M.S., Salamanca, L.P. and Reilly, J. 

2011. Automated Measurement of Children’s Facial Expressions 

during Problem Solving Tasks. Proceedings of the IEEE 

International Conference on Automatic Face and Gesture 

Recognition (2011), 30–35. 

[27] Littlewort, G., Whitehill, J., Wu, T., Fasel, I., Frank, M., 

Movellan, J.R. and Bartlett, M.S. 2011. The Computer 

Expression Recognition Toolbox (CERT). Proceedings of the 

IEEE International Conference on Automatic Face and Gesture 

Recognition (2011), 298–305. 

[28] Mahmoud, M. and Robinson, P. 2011. Interpreting Hand-Over-

Face Gestures. Proceedings of the International Conference on 

Affective Computing and Intelligent Interaction (2011), 248–255. 

[29] Marx, J.D. and Cummings, K. 2007. Normalized Change. 

American Journal of Physics. 75, 1 (2007), 87–91. 

[30] O’Brien, H.L. and Toms, E.G. 2010. The Development and 

Evaluation of a Survey to Measure User Engagement. Journal of 

the American Society for Information Science and Technology. 

61, 1 (2010), 50–69. 

[31] Pekrun, R. 2006. The Control-Value Theory of Achievement 

Emotions: Assumptions, Corollaries, and Implications for 

Educational Research and Practice. Educational Psychology 

Review. 18, 4 (2006), 315–341. 

[32] Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, 

C., Cavallo, D., Machover, T., Resnick, M., Roy, D. and 

Strohecker, C. 2004. Affective Learning — A Manifesto. BT 

Technology Journal. 22, 4 (Oct. 2004), 253–269. 

[33] Sanghvi, J., Castellano, G., Leite, I., Pereira, A., McOwan, 

P.W. and Paiva, A. 2011. Automatic Analysis of Affective 

Postures and Body Motion to Detect Engagement with a Game 

Companion. Proceedings of the ACM/IEEE International 

Conference on Human-Robot Interaction (2011), 305–311. 

[34] Symonds, M.R.E. and Moussalli, A. 2010. A Brief Guide to 

Model Selection, Multimodel Inference and Model Averaging in 

Behavioural Ecology using Akaike’s Information Criterion. 

Behavioral Ecology and Sociobiology. 65, 1 (Aug. 2010), 13–21. 

[35] Whitehill, J., Serpell, Z., Foster, A., Lin, Y.-C., Pearson, B., 

Bartlett, M.S. and Movellan, J.R. 2011. Towards an Optimal 

Affect-Sensitive Instructional System of Cognitive Skills. 

Proceedings of the Computer Vision and Pattern Recognition 

Workshop on Human Communicative Behavior (Jun. 2011), 20–

25. 

[36] Wiebe, E.N., Lamb, A., Hardy, M. and Sharek, D. 2014. 

Measuring Engagement in Video Game-based Environments: 

Investigation of the User Engagement Scale. Computers in 

Human Behavior. 32, (Mar. 2014), 123–132. 

[37] Wiebe, E.N., Williams, L., Yang, K. and Miller, C. 2003. 

Computer Science Attitude Survey. North Carolina State 

University Technical Report TR-2003-1. (2003). 

[38] Woolf, B.P., Burleson, W., Arroyo, I., Dragon, T., Cooper, 

D.G. and Picard, R.W. 2009. Affect-Aware Tutors: Recognising 

and Responding to Student Affect. International Journal of 

Learning Technology. 4, 3-4 (2009), 129–164.  


