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Abstract. Affect plays a vital role in learning. During tutoring, particular 
affective states may benefit or detract from student learning. A key cognitive-
affective state is confusion, which has been positively associated with effective 
learning. Although identifying episodes of confusion presents significant 
challenges, recent investigations have identified correlations between confusion 
and specific facial movements. This paper builds on those findings to create a 
predictive model of learner confusion during task-oriented human-human 
tutorial dialogue. The model leverages textual dialogue, task, and facial 
expression history to predict upcoming confusion within a hidden Markov 
modeling framework. Analysis of the model structure also reveals meaningful 
modes of interaction within the tutoring sessions. The results demonstrate that 
because of its predictive power and rich qualitative representation, the model 
holds promise for informing the design of affective-sensitive tutoring systems.  

Keywords: Affect prediction, hidden Markov models, intelligent tutoring 

systems, tutorial dialogue.  

 

1 Introduction 

One-on-one human tutoring is highly effective for student learning [1]. Intelligent 

tutoring systems (ITSs) hold great promise for achieving this level of effectiveness, 

with many such systems producing significant learning gains [2,3]. Recent advances 

in ITS research such as modeling the strategies of expert human tutors [4] and 

examining learner emotions during tutoring [5] continue to enhance the effectiveness 

of ITSs. To date, a number of ITSs and tutorial dialogue systems have begun to 

address learner affect [6-8]. The emerging results highlight the importance of 

incorporating models of learner emotions into ITSs to provide students with more 

effective learning experiences.  

Predicting student affect is an essential step toward identifying optimally effective 

behavior within affectively aware intelligent systems. A promising means for 

predicting student affect is through analyzing learners’ facial expressions. Recent 

investigations have identified facial expression configurations that relate to learner 

emotions [5,9,10]. These results build on advances in human emotion modeling that 

are tied to particular cross-cultural facial expressions [11]. Compared to other 

modalities of affect detection, facial expressions may be a richer, more informative 

channel during learning [2,6]. Yet, the field is far from assembling a comprehensive 



catalogue of learner emotions and the facial expressions with which they correlate 

[5,12].  
Although no comprehensive catalogue of learner emotions currently exists, there is 

widespread agreement that occurrences of confusion are highly relevant during 

learning [5,9,13]. While identifying episodes of confusion presents significant 

challenges, a promising approach leverages student facial expression. Numerous 

studies of the correlations between facial expressions and learner emotions have 

identified a link between confusion and the facial action unit 4, which is the “Brow 

Lowerer” movement, referred to as AU4 [5,9,10,14]. The present work utilizes these 

findings to predict student confusion as evidenced by student AU4 during computer-

mediated human-human tutoring.  

The modeling approach presented in this paper represents the tutoring session 

(consisting of dialogue, task actions, and facial expressions) as a sequential set of 

observations. The goal is to predict unseen observations based on the prior 

observations. While a number of sequential modeling techniques may be appropriate 

for this task, a particularly promising framework is the hidden Markov model 

(HMM), which has been successfully used to model tutorial strategies within a 

tutorial dialogue corpus [15,16]. The present findings demonstrate that HMMs can 

learn a predictive model of confusion, as indicated by student AU4, from a corpus of 

human tutoring.  

2 Related Work 

Recent tutoring research has identified a set of cognitive-affective states that are 

particularly relevant to learning: anxiety, boredom, confusion, curiosity, delight, 

eureka, flow, and frustration [9,17]. These learner emotions appear to have different 

effects on learning and motivation [5,18]. For example, frustration seems to be a 

problematic cognitive-affective state, which promotes a negative “state of stuck” [7]. 
While frustration may have negative consequences, an even more detrimental state is 

boredom, which severely inhibits student learning [18]. In both cases, a paramount 

concern is the persistence of negative affective states, which can lead to a “vicious 

cycle” [5,8]. 
While the cognitive-affective state of confusion may at first glance appear to be 

negative, it has increasingly been shown to coincide with moments of learning [5,8]. 
The positive impact of confusion may be due to the associated concept of cognitive 

disequilibrium, which involves a moment of uncertain knowledge that is (ideally) 

subsequently revised to reach correct understanding [13]. Thus, confusion may 

function as an essential intermediary state on the path of deep learning [2,13]. This 

notion has been supported in studies across multiple learning environments [2,8,18]. 
Effectively incorporating affect in intelligent systems requires the capability to 

diagnose instances of learner emotion [19]. This diagnosis involves both detecting 

and understanding emotions, and recent years have seen increased research into both 

problems [2,5,20]. Facial expressions are a particularly meaningful channel for both 

learner affect detection and understanding [5,6,12]. With respect to affect detection, 

manual and automated recognition of facial expressions have been shown to improve 

predictive models [6,21,22]. With respect to affect understanding, specific facial 

configurations are known to be associated with learner affect. Confusion has been 



correlated with facial action unit 4 (AU4, “Brow Lowerer”) in multiple studies, based 

on self, peer, and FACS-certified expert judgments of affective events [5,9,10]. 
A common thread in work on affect detection and understanding is the importance 

of identifying how learner affect follows from context. For this reason, a predictive 

model of affect holds great promise, not only for influencing the behavior of 

affectively aware ITSs, but also for informing a fundamental understanding of 

emotions during learning. This paper presents a predictive model of student confusion 

created using hidden Markov models (HMMs). The findings indicate that by 

leveraging dialogue, task, and facial expression history, HMMs can predict the 

presence of student AU4. These results have implications both for fundamental 

investigations of learner emotions, and for predicting affect during tutoring. 

3 Corpus and Manual Annotations 

A corpus of human-human tutorial dialogue was collected during a tutorial dialogue 

study [15]. Students solved an introductory computer programming problem and 

engaged in computer-mediated textual dialogue with a human tutor. The corpus 

consists of 48 dialogues annotated with dialogue acts (Table 1). Annotations also 

include information about student progress on the programming task [16].  

Table 1. Dialogue act tags and frequency in corpus (S = student, T = tutor) 

Act Description S T 

ASSESSING QUESTION Task-specific query or feedback request  44 83 

EXTRA DOMAIN Unrelated to task  37 42 

GROUNDING Acknowledgement, thanks, greetings, etc. 57 38 

LUKEWARM CONTENT FDBK Partly positive/negative elaborated feedback 2 23 

LUKEWARM FEEDBACK Partly positive/negative task feedback 3 21 

NEGATIVE CONTENT FDBK Negative elaborated feedback 5 77 

NEGATIVE FEEDBACK  Negative task feedback 10 10 

POSITIVE CONTENT FDBK Positive elaborated feedback 10 21 

POSITIVE FEEDBACK  Positive task feedback 23 119 

QUESTION Conceptual or other query 31 24 

STATEMENT Declaration of factual information 55 320 

Student facial video was collected during the tutoring sessions, but the videos were 

not shown to tutors. Fourteen of these videos were annotated with student displays of 

AU4 (Figure 1) using the Facial Action Coding System (FACS) 1  [14,23]. One 

certified FACS coder annotated all fourteen videos from start to finish, pausing at all 

observed instances of AU4. A second certified FACS coder annotated a subset of six 

videos. The continuous intervals of time were discretized into one-second intervals, 

on which intercoder agreement was κ=0.86 (Cohen’s kappa). Annotated excerpts of 

the corpus are shown in Figure 2, which also displays the best-fit sequence of hidden 

states as identified by the HMM (Section 5.1). 

 

                                                      
1 Manual annotation of facial action units is very labor intensive. Comprehensive FACS coding 

typically requires at least sixty hours per hour of video. Annotating a subset of AUs is faster, 

requiring approximately ten hours per hour of video. 



Figure 1. Student displays of AU4  

 

Excerpt 1  
13:16:03 Tutor: no, it's easier than that, you just have to make 

the middle if into an "else if"  

[NEGATIVE CONTENT FEEDBACK] 

STATE 10 

 Student: CORRECT TASK ACTION AU4 STATE 6 

13:16:31 Tutor: does that make sense?  

[ASSESSING QUESTION AU4] 

STATE 10 

13:16:41 Tutor: that way it only checks the 2nd conditional if 

the first one failed [STATEMENT] 

STATE 8 

13:17:20 Student: it makes sense now that you explained it […]   

[POSITIVE CONTENT FEEDBACK] 

STATE 4 

Excerpt 2 

14:52:18 Tutor: no, before we start sorting [NEGATIVE 

CONTENT FEEDBACK AU4] 

STATE 10 

 Student: CORRECT TASK ACTION AU4 STATE 6 

14:52:27 Tutor: so, before the first loop 

you can use i for this loop counter 

if you want to [STATEMENT AU4] 

STATE 10 

 Student: MIXED PROGRESS TASK ACTION AU4 STATE 6 

14:53:52 Student: i try to keep them different so i don't confuse 

myself [STATEMENT] 

STATE 7 

Figure 2. Excerpts from annotated tutoring session corpus, with most probable sequences of 

HMM hidden states (Section 5) 

Figure 3 shows the frequencies of AU4 corresponding to tutor and student dialogue 

acts. For tutor dialogue acts, an instance of AU4 is considered “corresponding” if it 

occurs within ten seconds after the tutor move; for student acts, ten seconds before the 

student move. These durations were empirically determined to account for student 

preparation of an utterance and reception of a tutor utterance. Of student utterances, 

LUKEWARM CONTENT FEEDBACK corresponds to the highest probability of student 

AU4. In this dialogue move students articulate partially correct knowledge. Of tutor 

utterances, the most likely to correspond to student AU4 is NEGATIVE FEEDBACK, in 

which the tutor states that the student has made a mistake but does not provide an 

explanation. Another dialogue move that has a relatively high probability of AU4 is 

student ASSESSING QUESTION, which constitutes a direct request for task-based 

feedback. Students generally make these requests when their confidence in a recent 

task action is low.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task actions were labeled based on progress toward a correct solution to the 

programming problem at hand, at a between-dialogue-moves granularity. Each task 

action cluster was characterized as CORRECT, INCOMPLETE, INCORRECT, or MIXED 

PROGRESS (a mixture of correct, incomplete, and/or incorrect task actions). As shown 

in Figure 4, students most frequently displayed AU4 during episodes of MIXED 

PROGRESS (37% of the time). Students were less likely (24%) to display AU4 during 

episodes of INCORRECT task action. As novices, these students were likely unaware of 

their mistakes when undertaking a completely incorrect task action. On the other 

hand, partially correct and partially incorrect task episodes indicate the student had 

sufficient knowledge to recognize that errors were present, and may have been 

experiencing constructive confusion toward reaching increased understanding. 

 

 

 

 

 

 

 

 

4 HMM Learning and Prediction of Student AU4 

A hidden Markov model (HMM) is defined by an initial probability distribution 

across hidden states, transition probabilities among hidden states, and emission 

probabilities for each hidden state and observation symbol pair [24]. The hidden 

states represent the underlying probabilistic system that generates a given sequence of 

observed events. The initial state probability gives the possibility of beginning in any 

Figure 3. Relative frequency of student and tutor dialogue moves with AU4 

Figure 4. Frequency of student task actions with AU4 present or absent 



hidden state. Transition probabilities encode the likelihood of entering one hidden 

state from another. Emission probabilities encode the likelihood of producing a given 

observation from a particular hidden state. HMMs learn statistical dependencies 

between hidden states and the corresponding observations. The hidden state structure 

can then be analyzed to identify underlying trends. Using HMMs, it is possible to 

uncover a rich interplay between learner affect, tutorial dialogue and task context. 

4.1 Model Learning 

The observation sequences consist of annotated observations from the corpus, 

including dialogue moves by tutor or student, or student task action segments. Each of 

these observations also includes a tag for whether student AU4 was associated with 

that event. For example, the observation symbol sequence that corresponds to 

Excerpt 1 in Figure 2 is, [STUDENT NEGATIVE CONTENT FEEDBACK NOAU4, 

CORRECT TASK ACTION AU4, TUTOR ASSESSING QUESTION AU4, TUTOR STATEMENT 

NOAU4, STUDENT POSITIVE CONTENT FEEDBACK NOAU4].  

The HMMs were learned within a leave-one-out framework. Within each fold, five 

random restarts of model parameters were performed to reduce the potential of model 

convergence at a local optimum. An additional outer training loop, ranging from two 

to twenty, was performed to identify the optimal number of hidden states. The best-fit 

model has eighteen hidden states, and its structure is discussed in detail in Section 5.  

4.2 Prediction of AU4 

The leave-one-out design resulted in fourteen training/testing folds, one for each 

tutoring session. Four of these sessions contained an observation symbol 

(combination of dialogue move and AU4 presence/absence) that occurred nowhere 

else in the data, so the learned model was not used to predict on these sessions. 

Predictive findings from the remaining ten test sessions are presented here, though an 

online predictive model used during tutoring could address this by learning across all 

possible symbols in the state space, regardless of absence in a particular session. The 

predictive accuracies of the HMMs are compared against a majority class baseline as 

well as a first-order observed Markov model (OMM) (Table 2).  

Table 2. Comparison of predictive accuracy of classifiers; accuracies that are statistically 

significantly better than baseline are in bold (paired t-test, p < 0.005) 

Classifier 

Accuracy  

(across sessions) 

Std. Dev. of 

Accuracy 

HMM Train 0.868 0.021 

HMM Test 0.907 0.059 

OMM Train 0.186 0.013 

OMM Test 0.557 0.284 

Baseline 0.845 - 

 

OMMs do not include hidden states, and thus condition the present state purely on the 

transition probability distribution from the previous state. The training set predictive 

accuracies indicate that HMMs fit the training data better than the other models. The 

predictive accuracy of the learned HMMs on the test set was higher on average than 



predictions on the training set, but not surprisingly, the standard deviation was also 

greater. Both the training and test predictions greatly outperformed the predictive 

accuracy of the OMMs, which were below baseline. This below-baseline performance 

of OMMs indicates that the presence or absence of AU4 at time t is not highly 

predictive of the presence or absence of AU4 at time t+1, which is an interesting 

discovery in this corpus. However, the additional stochastic structure provided by the 

HMM is able to predict AU4 significantly above baseline. 

5 Discussion 

The predictive accuracies of the HMMs suggest that these models hold great promise 

for learner affect prediction. On unseen test data, the HMMs predicted significantly 

better than an OMM and a (very high) majority class baseline. To gain more insight 

into how the HMM structure facilitates prediction of student AU4, this section 

examines and interprets the structure of the learned (best-fit) HMM.  

5.1 Hidden State Structure 

HMMs’ predictive power is gained in part by the way these models can learn higher-

order structure (in the form of hidden states) based on observation sequences. The 

model structure shown in Figure 5 illustrates this, with emission probability 

distributions displayed as bar graphs and transitions as edges. To facilitate discussion, 

the states were named after model learning through qualitative analysis. STATE 6, 

Student Work with Confusion, is dominated by student task actions with AU4 present. 

STATE 10, Tutor Help, emits a combination of tutor dialogue moves with AU4 

present, and tutor feedback with no AU4. STATE 4, Overcoming Confusion, is 

dominated by tutor statements with AU4 present and student positive feedback. This 

state corresponds to tutor statements that are not consistent with students’ prior 

knowledge. Interestingly, the state also generates student positive feedback, which 

may indicate that students moved past cognitive disequilibrium and into a state of 

understanding. STATE 16, Conversational Grounding, primarily encompasses non-

task-oriented student and tutor dialogue moves, but also generates with small 

probability student negative feedback without AU4.  

These emission probability distributions indicate ways in which the HMM 

abstracts from observation sequences to meaningful higher-order structure. Of equal 

importance are the transition probabilities between the hidden states. STATE 6 and 

STATE 10 are more likely to transition to each other than any other hidden states. This 

transition is illustrated in one sequence of events (Figure 2 Excerpt 1) in which the 

tutor provides negative content feedback followed by a student correct task action 

with confusion present (as evidenced by AU4). The tutor then asks an assessing 

question to gauge the student’s understanding, which also coincides with a moment of 

confusion. The tutor further explains the computer programming concept with an 

instructional statement clarifying prior feedback. The student then takes a moment to 

reflect on the material and informs the tutor that the explanation was helpful. This 

example demonstrates the strong connection between Student Work with Confusion, 

STATE 6, and Tutor Help, STATE 10. Meaningful tutor feedback and instruction that 

induce confusion are produced in STATE 10, while STATE 6 corresponds with student 

tasks actions accompanied by confusion. Both states are highly relevant to learning. 



Figure 5. Learned HMM structure: a subset of four hidden states is shown, with transition 

(arrow) and emission (bar chart) probabilities ≥ 0.05 indicated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second example (Figure 2 Excerpt 2) further characterizes the interplay of STATE 

6 and STATE 10, with the student progressing on the programming task (with AU4 

present) while receiving tutor feedback and instruction. The excerpt begins with tutor 

negative content feedback on the student’s current task progress, with student 

confusion indicated by AU4. The student then immediately completes the subtask, 

still showing AU4. The tutor continues instructing the student with a comment on a 

relevant programming concept (AU4 still present). The student then continues 

programming, with mixed progress (AU4 continues). After approximately a minute of 

working on the task, the student responds to the tutor statement with an explanation of 

the work performed. Thus, the student displays confusion until after the tutor 

completes instruction. Both excerpts seem to show effortful learning, with a 

combination of instruction during Tutor Help and task progress in Student Work with 

Confusion. Therefore, HMMs represent a promising approach to automatically learn 

semantically meaningful affect-rich models of tutorial interaction. 

5.2 Limitations 

There are two primary limitations that should be noted. First, manual annotation of 

facial expressions is very labor intensive, which constrained the number of sessions 

analyzed for learner affect. Automated techniques for FACS coding [14] are actively 

being investigated, although they are not currently as accurate as manual annotation 

[21,25]. Second, a learned HMM may potentially require large amounts of data to 

produce a predictive model generalizable enough to deploy within a larger population, 

as evidenced by the observation symbol sparsity that was encountered in this analysis. 

Further studies are necessary to evaluate the generalizability of predictive HMM 

models of learner affect and their use in online prediction during tutoring. 



6 Conclusion 

Learner affect plays a vital role in the success or failure of a tutorial interaction. In 

particular, the cognitive-affective state of confusion is highly relevant on the path to 

acquiring knowledge since confusion accompanies learning impasses during which 

students must resolve misconceptions that challenge their conceptual understanding. 

Predicting confusion is an important step toward understanding the effects of various 

ITS interventions and toward designing more effective strategies. 

This paper has presented a novel predictive model of learner confusion that 

incorporates dialogue moves, task performance, and facial expression using hidden 

Markov models (HMMs). Such models may play an important role in the diagnosis of 

learner confusion for future systems. Additionally, analysis of the model structure 

identified meaningful transitions between affect-enriched states of tutor and student 

dialogue moves and student task progress. In future work, affect-predictive HMMs 

need to be further developed by incorporating data regarding a wider set of learner 

affective states. These future predictive models may be instrumental in diagnosing 

learner affect during interactions with intelligent tutoring systems.  
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