
Progression Trajectory-Based Student Modeling for Novice
Block-Based Programming

Fahmid Morshed Fahid

North Carolina State University

ffahid@ncsu.edu

Xiaoyi Tian

University of Florida

tianx@ufl.edu

Andrew Emerson

North Carolina State University

ajemerso@ncsu.edu

Joseph B. Wiggins

University of Florida

jbwiggi3@ufl.edu

Dolly Bounajim

North Carolina State University

dbbounaj@ncsu.edu

Andy Smith

North Carolina State University

pmsmith4@ncsu.edu

Eric Wiebe

North Carolina State University

wiebe@ncsu.edu

Bradford Mott

North Carolina State University

bwmott@ncsu.edu

Kristy Elizabeth Boyer

University of Florida

keboyer@ufl.edu

James Lester

North Carolina State University

lester@ncsu.edu

ABSTRACT
Block-based programming environments are widely used in com-

puter science education. However, these environments pose signifi-

cant challenges for student modeling. Given a series of problem-

solving actions taken by students in block-based programming envi-

ronments, student models need to accurately infer problem-solving

students’ programming abilities in real time to enable adaptive

feedback and hints that are tailored to students’ abilities. While

student models for block-based programming offer the potential

to support student-adaptivity, creating student models for these

environments is challenging because students can develop a broad

range of solutions to a given programming activity. To address

these challenges, we introduce a progression trajectory-based stu-

dent modeling framework for modeling novice student block-based

programming across multiple learning activities. Student trajecto-

ries utilize a time series representation that employs code analysis

to incrementally compare student programs to expert solutions

as students undertake block-based programming activities. This

paper reports on a study in which progression trajectories were

collected from more than 100 undergraduate students engaging in

a series of block-based programming activities in an introductory

computer science course. Using progression trajectory-based stu-

dent modeling, we identified three distinct trajectory classes: Early

Quitting, High Persistence, and Efficient Completion. Analysis of

these trajectories revealed that they exhibit significantly different

characteristics with respect to students’ actions and can be used to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8366-0/21/06. . . $15.00

https://doi.org/10.1145/3450613.3456833

accurately predict students’ programming behaviors on future pro-

gramming activities compared to competing baseline models. The

findings suggest that progression trajectory-based student models

can accurately model students’ block-based programming prob-

lem solving and hold potential for informing adaptive support in

block-based programming environments.

CCS CONCEPTS
• Social and professional topics→ Professional topics; Comput-

ing education; • Applied computing→ Education.

KEYWORDS
Trajectory-based Student Modeling, Block-based Programming,

Time Series Clustering

ACM Reference Format:
Fahmid Morshed Fahid, Xiaoyi Tian, Andrew Emerson, Joseph B. Wiggins,

Dolly Bounajim, Andy Smith, Eric Wiebe, Bradford Mott, Kristy Elizabeth

Boyer, and James Lester. 2021. Progression Trajectory-Based Student Mod-

eling for Novice Block-Based Programming. In Proceedings of the 29th ACM
Conference on User Modeling, Adaptation and Personalization (UMAP ’21),
June 21–25, 2021, Utrecht, Netherlands. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3450613.3456833

1 INTRODUCTION
Introductory computer science courses can be challenging for

novice students who have limited or no prior programming experi-

ence, resulting in high failure and attrition rates [2]. An important

ability that students must develop is computational thinking, a

complex mental process that involves logically formulating and

solving problems [58]. In addition to computational thinking, tradi-

tional text-based programming courses also teach students about

language-specific syntax and structure. Novice students typically

struggle with programming language syntax and structure, which

results in a steep learning curve in their introductory courses [55].

To ease the learning process, block-based programming languages

such as Scratch [46], Snap! [14] and Blockly [13] are frequently

189

https://doi.org/10.1145/3450613.3456833
https://doi.org/10.1145/3450613.3456833

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Fahmid Fahid et al.

used in introductory computer science courses [29], eliminating

many of the common syntactic, language-specific challenges. These

visual, block-based languages can reduce students’ cognitive load

while increasing their engagement in the learning process [41, 56].

However, even with the use of block-based programming languages,

students still struggle in introductory classes [30, 42].

Informing student-adaptive support in the form of tailored ad-

vice, guidance, hints, and feedback for block-based programming

calls for the creation of student models that can accurately ana-

lyze student problem solving in block-based programming environ-

ments. Programming tasks are typically iterative in nature where

programmers progress through the phase of planning, writing, test-

ing, and revising their code. To better understand this iterative

process, researchers have studied programming trajectories, which

represent the incremental code changes in a programming activity.

To understand such programming trajectories, several code analy-

sis methods have been used [9, 34, 53], to provide better support

to students [7, 42, 48, 57], develop automatic grading [8, 54], or

predict learning performance [11, 53, 54]. Some studies also found

patterns in students’ programming trajectories that can be used

to identify learning behaviors [12, 22, 39]. However, limited work

has investigated students’ programming trajectory patterns across

multiple programming activities to enable early prediction of their

learning behavior in future programming activities.

In this work, we introduce progression trajectory-based student
models that utilize a time series representation employing code

analysis to incrementally analyze student programs as students cre-

ate them. We explore progression trajectory-based student models

for the programming trajectories of 149 undergraduate students

in an introductory computer science course using a block-based

programming environment across five programming activities. We

investigate the following three research questions (RQs):

• RQ1: Are there distinct patterns in student’s block-based

progression trajectories?

• RQ2: Are these patterns associated with meaningful differ-

ences in programming behaviors and learning outcomes?

• RQ3: Are these patterns predictive of students’ future pro-

gramming behavior (i.e., progression trajectory)?

To answer RQ1, we analyzed a total of 745 progression trajecto-

ries across five different programming activities using time series-

based clustering. The analyses revealed that there are three distinct

clusters in students’ progression trajectories. To understand how

these clusters differ from one another (RQ2), we used different

response variables across the clusters and found that the clusters

exhibit significantly different characteristics across programming

activity completion, hint requests, and activity restarts. We also

found that students primarily associated with a particular cluster

across multiple programming activities have significantly different

pre- and post-test scores than students associated with other clus-

ters. To answer RQ3, we trained several predictive classifiers using

features collected from student programming trajectories and event

logs. The prediction results showed that the models can accurately

predict whether a student will change their behavior (i.e., transition

to a different cluster) in subsequent programming activities.

2 RELATEDWORK
Recent years have seen increasing adoption of block-based pro-

gramming environments in introductory computer science courses.

However, limited work has investigated student models that infer

student programming competences from student behaviors in block-

based programming environments. Price et al. created iSnap [43], a

block-based programming environment that can generate adaptive

contextual hints using students’ programming behavior. Further

studies showed that such hints can lead to positive learning outcome

in undergraduate-level introductory programming courses [42] and

to better help-seeking behavior as well as reduction of hint abuse

[44]. Specific hint types have also been studied. For example, Zhi et

al., found that worked examples reduce cognitive load but do not

result in significant learning gains [59]. Several other studies with

students in MOOCs showed the efficacy of data-driven approaches

to provide effective feedback to students [19, 28, 31, 36]. Despite

these advances, a recent study comparing machine-generated feed-

back to human-authored feedback showed that students develop

a better conceptual understanding of programming concepts and

perform better in class when assisted by human-authored feedback

[25].

Student modeling can provide insight into students’ future learn-

ing behaviors and performance. For example, Emerson et al. showed

that Bayesian hierarchical student models can account for indi-

vidual student differences and successfully predict students’ post-

test programming performance [9]. Other work has used Bayesian

student models to identify concepts that are difficult for students

[47] and to predict mastery learning [38, 53]. Machine learning

approaches were found to be effective in modeling students’ compe-

tencies and goals in game-based learning environments using game

trace data [23, 32, 33]. Multimodal data streams have also been used

to model students’ performance and affective states [18, 27]. Barria-

Pineda et al. designed open learner-based student modeling to

visually inform students about their conceptual knowledge level on

topics and found that students make more informed decisions when

navigating through the programming activities while increasing

their overall learning performance [1]. Another study by Troiano

et al. clustered the developments of programming concepts among

K-12 students in Scratch using automated metric-based assessments

and found four groups of progressions: quick-then-steady, steady-

all-the-way, slow-and-still-developing, no-improvement-necessary

[52]. In our work, we have modeled students’ progress towards

solutions using their block-based programs to find and predict their

progress patterns in future activities.

Modeling students in open-ended programming activities is crit-

ical as there are often multiple paths to a solution, and program

accuracy alone does not reveal students’ learning behavior [17]. An

empirical study by Hosseini et al. showed that intermediate pro-

gramming steps can be used to effectively induce student models

and can be useful for providing improved feedback to students [20].

The authors analyzed the interaction logs of JavaParser and found

that there is a strong association between conceptual change (i.e.,

start with a small program and gradually add new programming

concepts) and the correctness of the program. A similar association

between programming concepts and performance has been found

by using programming trajectories [4, 40]. In another empirical

190

Progression Trajectory-Based Student Modeling for Novice Block-Based Programming UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

Figure 1: Screenshot of the Prime environment.

study, Blikstein found three patterns of programming behaviors

among students, namely copy-paste, self-sufficient, and a combi-

nation of both [3]. A recent study by Estey et al. found that inter-

mediate programming steps can successfully identify struggling

students [12]. To understand how a student changes their program-

ming pattern in a programming activity, Glassman et al. used a

clustering technique to visualize students’ behaviors [15].

Much prior work has used edit distance-based code embed-

dings to investigate students’ programming behaviors. For exam-

ple, Paaßen et al. generated adaptive hints in student programs

using their edit distance to expert solutions to predict future be-

haviors of students in block-based programming activities [35]. A

similar approach has been used in other work [48] to investigate

programming patterns. Emerson et al. clustered student programs

to identify common misconceptions among students in block-based

programming activities [10]. Another clustering study by Perkins

et al. identified three kinds of novice programmers: stoppers,movers,
and tinkerers. As the cluster names suggest, stoppers give little effort
after they reach a difficult point, whereasmovers gradually work to-
wards a solution, and tinkerers iterate frequently with the program

[39]. Similar types of clusters have also been identified in an analysis

of program syntax errors [21] and learning behaviors in an intelli-

gent logic tutor [30]. Jiang et al. conducted a hierarchical clustering

of programming trajectories in a block-based programming envi-

ronment and found four different clusters for a single programming

activity, namely: quitters, approachers, knowers, and solvers [22].
Their analysis suggests that both quitters and approachers struggled
to solve the given programming activity but have different paths

while failing. A more recent study found five different clusters of

hint usage when looking across several programming activities of

students in a block-based programming environment [57], all of

which have different help-seeking behaviors. For example, students

with prior programming knowledge only requested hints at the

very end of each programming activity, whereas students with no

prior knowledge asked for hints uniformly. However, there has

been limited work on student modeling for students’ programming

trajectories across multiple programming activities to predict their

progress.

In this work, we present a student modeling approach based on

students’ progression trajectories using intermediate block-based

programs on multiple programming activities by iteratively calcu-

lating edit distances between their intermediate code states and

expert solutions. Using time series clustering, we find meaningful

patterns in student progression trajectories that are predictive of

future programming behavior.

3 METHODS
We investigate progression trajectory-based student modeling in

the context of introductory college-level computer science with

a focus on block-based programming for non-majors. We use in-

teraction data collected from undergraduates interacting with a

block-based programming environment during the first few weeks

of an introductory programming course.

3.1 Prime Learning Environment
Prime is an adaptive learning environment that leverages Google’s

block-based programming framework, Blockly [13]. The adaptive

learning environment includes twenty programming activities, each

designed to reinforce the skills learned from previous programming

activities. Students are encouraged to complete activities in increas-

ing order, but they can skip ahead and come back later to attempt

or practice again. The programming activities are organized into

three units with the following computer science competencies: 1)

input/output, numeric data types, expressions, variables, and iter-

ation; 2) abstraction, functions, and parameters; and 3) Boolean

data types, conditionals, indefinite iteration, and debugging. Stu-

dents are encouraged to use the learning environment both during

class, as well as for self-practice, lab, and homework assignments.

The curriculum of Prime was designed based on the introductory

programming courses taught in top-rated undergraduate computer

science programs in the United States [51].

191

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Fahmid Fahid et al.

Table 1: Short descriptions of each programming activity

Programming

Activity

New Concepts Introduced Short Description

3 Variable, Math Expression Print the sum of two numbers using variables

4 Input Take two numbers from user and print the sum

5 Logical Take five numbers from user using two variables only and print the sum

6 Loop Complete Programming Activity 5 using a for loop

7 Logical Create a counter that countdown to 0

To support students during their programming activities, the

primary interface of the environment consists of a Program panel,

a Console panel, a Feedback panel, and an Instruction panel (Figure

1). The Program panel consists of a toolbox of Blockly program

blocks that can be drag-and-dropped to the coding workspace. The

toolbox categorizes the blocks by type. The categories of blocks

are incrementally populated to reduce the cognitive complexity of

tasks [45] and to increase the interface usability [49].

The default workspace contains an unremovable Start block that
serves as an entry point. The Console panel contains a Run button

to run the program connected to the Start block. The output is

printed on the Console panel each time the Run button is pressed.

The input console is also shown in the Console panel when needed.

The Instruction panel contains step-by-step instructions for each

programming activity and is fairly common in intelligent tutoring

systems for computer science education [6]. The Feedback panel

provides a “Get Hint” button that enables students to request textual

hints, which are suggestions to make small changes to the program

towards a solution.

3.2 Study Design
We collected student programming interaction data on block-based

programming activities at a large public university in the United

States during two semesters (fall 2019 and spring 2020). The study

was IRB-approved for an introductory engineering course, in which

students received extra credit for completing the programming ac-

tivities. As the learning environment was accessible online, transi-

tioning to remote learning was straightforward when the pandemic

began in spring 2020. The study focused on five programming activ-

ities from Unit 1 (Programming Activities 3 through 7) that teaches

students the concept of variables, input/output and loops (Table

1). We focused on these programming activities because they are

sufficiently challenging (62% average completion rate) while ensur-

ing maximum participants. We did not use the first two activities

(Programming Activities 1 and 2), as they serve as an introduction

to the programming environment and have a very high completion

rate (99% and 87% respectively). Although Programming Activity 3

also has a significantly high competition rate (83%), we included

this programming activity in the study to facilitate early prediction

of Programming Activity 4.

A total of 407 students participated in the study, of which 156

students attempted all five programming activities in Unit 1 (Pro-

gramming Activities 3 through 7). Among these 156 students, 149

students also completed both pre-test and post-test surveys to as-

sess their computer science competencies. The study focuses on

these 149 participants having an average age of 19.1 (SD=2.2), with
74% reporting as male and 26% as female. Approximately 90% of

the students were non-computer science engineering majors. A

total of 62% of these students reported their race as White, 16%

as Asian, 9% as African American, 6% as Hispanic, 2% as Native

American, and 4% as Other. The 149 students attempted a total of

745 programming activities (one student per activity for Program-

ming Activities 3 through 7) of which 459 (62%) were successfully

completed. Among these five programming activities, the median

value of successful programming activity completion per student is

3 (M=3.08, SD=1.57, min=0, max=5).

3.3 Dataset
The data was collected from student interaction logs with the learn-

ing environment. The data consists of workspace snapshots cap-

tured with an XML representation of student programs of each new

change made in the code and 16 system-level user actions, including

program runs and user input. The workspace snapshots represent

the current block-based program for a particular programming ac-

tivity. The environment automatically takes workspace snapshots

every 30 seconds or if certain actions are taken, such as running or

saving the program. We removed repeated snapshots of the same

workspace to limit redundancy. As this is a browser-based envi-

ronment, the calculation of elapsed time is challenging because

students sometimes leave their browser open for extended periods

of time without making any changes to the workspace. To correct

for such cases, we replaced any time gaps of more than five minutes

between two consecutive workspace snapshots with the median

value (29.96 seconds) of consecutive time gaps between snapshots.

The five-minute threshold was selected based on the third quartile

value of time gap between two consecutive workspace snapshots.

The final dataset contains a total of 745 trajectories, one for each

student-activity pair, having a median length of 10 snapshots per

programming activity (M=19.62, SD=29.95). The time spent on each

programming activity on average is 508.98 seconds (SD=850.38)
with a median value of 216.05 seconds.

The dataset also uses students’ pre-test and post-test survey be-

fore and after interacting with the learning environment to measure

their computer science competencies. These multiple-choice based

assessments were validated by three content area experts, having

0.88 Cronbach’s alpha for pre-test and 0.90 Cronbach’s alpha for

post-test. Among these 149 students, the median value of the pre-

test score was 58.33 (M=57.5, SD=22.6,min=12.5,max=100) and the
median value of their post-test score was 66.7 (M=61.5, SD=23.9,
min=4.2, max=100).

192

Progression Trajectory-Based Student Modeling for Novice Block-Based Programming UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

Figure 2: Ten randomly sampled progression trajectories for each of the three clusters. The x-axis is the time in seconds and
the y-axis is the similarity percentage between an expert solution and the current workspace (higher is better).

4 RESULTS
We describe findings on the time series-based progression trajectory

clustering and early predictions. We first introduce the progres-

sion trajectory-based student modeling and then discusses the time

series-based clusters we have found. We then investigate and char-

acterize each of the clusters based on multiple attributes. Finally,

we evaluate two early prediction-based modeling tasks that can be

used to predict students’ future programming behaviors.

4.1 Progression Trajectory Patterns
To generate the progression trajectory of a programming activity at-

tempt, we calculated the similarity percentage between workspace

snapshots and an expert authored solution for that activity. Each

workspace snapshot represents one block-based programming code

state whereas the expert-authored solution is the final workspace

snapshot of the solution to a particular programming activity. The

expert-authored solutions were based on the block-based program-

ming best practices such as minimizing the number of steps towards

each solution. To calculate the similarity percentage, we first con-

verted the student’s workspace snapshots and the expert solution

into Python code. Then, using the program’s abstract syntax tree

(AST), we calculated the edit distance using Damerau–Levenshtein

[5] distance between the workspace and the expert solution. The

Damerau–Levenshtein distance is calculated by the minimum num-

ber of operations (insert, delete, substitute, transpose) needed to

convert one string to another string. Finally, the edit distance was

converted to a percentage to calculate the similarity between the

current workspace and the expert solution. For converting Python

codes to ASTs and calculating the similarity percentages, we used

the pyastsim package.
1
We used the edit distance to calculate sim-

ilarity because the majority of the programming activities and

their corresponding Python code are relatively simple. Similar ap-

proaches have been effectively utilized in prior studies to observe

students’ progression through individual programming activities

[22].

As there can be many correct solutions to most programming

activities, some students who correctly completed a programming

activity may not have 100% similarity with the expert solution. To

ensure these snapshots were treated as correct, we updated their

final similarity score to 100% for all the programming activities that

were completed successfully. We also removed any change made

in their workspace after reaching 100% similarity to focus on their

first correct solution.

We clustered the progression trajectories using k-means clus-

tering. As the progression trajectories are time series data with

varying lengths and shapes, using generic distance measures will

not reflect the true distance between two trajectories. Thus, we

used the dynamic time warping (DTW) algorithm to calculate the

distance between trajectories. DTW is a dynamic programming

approach where a distance or cost function (typically Euclidean

distance) is minimized by finding an optimal alignment. This can

be done by rearranging and/or repeating sequence points of two

sequential trajectories [50].

The distortion elbow is often used as a data-driven approach for

finding the optimal number of clusters in a dataset [24]. Thus, to

find the optimal value of k, we calculate the distortion elbow using

the average DTW distance from the closest cluster center. Visually

inspecting the "elbow" (the inflection point of the curve), we chose

3 as the optimal number of clusters of progression trajectories. We

name these clusters Early Quitting (EQ), High Persistence (HP), and
Efficient Completion (EC). Ten randomly sampled progression trajec-

tories from each cluster are shown in Figure 2. Note that each line

represents one student-activity pair and one student’s progression

trajectories for different programming activities could be assigned

to different clusters. With regard to the RQ1, we found three distinct

time-series clusters: Early Quitting (EQ), High Persistence (HP), and
Efficient Completion (EC) in students’ progression trajectories.

As show in Figure 2, all three clusters have distinct progression

trajectories. For example, progression trajectories in the HP cluster
spend a large amount of time (M=1756.69 seconds, SD=1514.82)
and change their similarity percentage frequently, whereas progres-

sion trajectories in the EQ cluster do not make as much progress

within their shorter period of time in the programming activity

(M=195.56 seconds, SD=358.59), and progression trajectories in

the EC cluster quickly make progress towards the solution like an

1
https://pypi.org/project/pyastsim/

193

https://pypi.org/project/pyastsim/

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Fahmid Fahid et al.

Figure 3: Number of progression trajectories that completed and did not complete each programming activity for cluster EQ,
HP, and EC (from left to right)

expert (M=319.53 seconds, SD=371.10). The EC cluster has almost

twice as many student-activity pairs (473) than the HP cluster and
the EQ cluster combined (108 and 164 respectively). This is reason-

able, as the programming activities (e.g., Programming Activities 3

and 4) are introductory and short, and many students were able to

make progress through them quickly (as seen by the EC cluster).

4.2 Analyzing Clusters
The three clusters that separate students’ progression trajectories

into different groups have distinct properties. For example, the

EQ cluster could be characterized as lack of persistence/quick-to-

dropout, which might indicate the student is stuck or unsure how to

begin solving the programming activity, while the EC cluster might

indicate high prior knowledge. A deeper analysis of the impact of

different characteristics on each individual cluster is detailed below.

First, we investigated the overall performance of each cluster

based on successfully completing each programming activity. Figure

3 shows that the EQ cluster has a higher number of programming

activities with incomplete count; thus, a progression trajectory that

belongs to the EQ cluster is most likely to leave the programming

activity unfinished. The HP cluster has an almost equal number of

completed vs. incomplete programming activity counts (52 vs. 56),

indicating that it is uncertain that a student will successfully com-

plete the programming activity or not. The EC cluster has a higher
number of completions. Thus, progression trajectories assigned

to the EC cluster are more likely to finish successfully for a given

programming activity. Even though there are a small number of

incomplete programming activities in the EC cluster, these students
progressed through the programming activities fairly quickly and

were close to the expert solutions.

Next, we compared how these clusters are distributed across

programming activities. Figure 4 shows that early programming

activities have a higher number of progression trajectories that

belong to the EC cluster whereas the later programming activities

have an increased number of progression trajectories in the EQ
cluster. This is expected, as many students will make quick progress

through earlier programming activities due to their low difficulty

and the later programming activities have a higher rate of incom-

pletion. Programming Activity 5 has the highest occurrences of the

HP cluster, suggesting that students spend a significantly long time

in Programming Activity 5.

To examine the differences in student actions across clusters, we

investigated the frequency of requesting hints and restarting the

current programming activity from scratch. We also performed a

pairwise Tukey honestly significant difference test to verify statis-

tically significant results. As shown in Figure 5, progression trajec-

tories in the HP cluster requests significantly more hints (M=7.18,
SD=8.37, min=0, max=49) than those in the EQ cluster (M=0.81,
SD=1.78, min=0, max=10, p<0.001) and the EC cluster (M=1.11,
SD=2.63, min=0, max=22, p<0.001). This can be explained as pro-

gression trajectories in the HP cluster spend a significantly longer

time progressing through the programming activities (Figure 2).

Trajectories in the EQ cluster and the EC cluster either completes the

programming activity shortly or leaves the programming activity

unfinished without sufficient effort, so their low number of hint

requests are expected as well. It is also interesting to observe that

there is no significant difference between hint requests in the EQ
cluster and the EC cluster (p=0.650).

When progressing through a programming activity, students

sometimes remove all blocks from the workspace to start fresh.

We describe this behavior as a restart. To count the number of

restarts, we selected a threshold of 10%, meaning whenever similar-

ity percentage falls below 10% and is then followed by an increase,

we categorize this as a single restart. Considering the number of

restarts in progression trajectories across clusters, the HP cluster
has the highest number of restarts (M=3.42, SD=2.86), whereas the
EQ cluster (M=0.37, SD=1.41) and the EC cluster (M=0.33, SD=0.67)
have significantly low numbers of restarts (p<0.001 for both). This
is also expected as trajectories in the HP cluster show significant

effort to finish a programming activity and thus restarts more fre-

quently than other clusters. Progression trajectories that belong

to the EQ cluster tend to restart less frequently. This suggests that

students following these projection trajectories are less willing to

start again, leaving the programming activity unfinished. Moderate

numbers of restarts are seen in trajectories that belong to the EC
cluster, implying the tendency to start fresh when stuck.

To understand how these clusters are associated with prior

knowledge (i.e., pre-test) and overall performance (i.e., post-test) of

194

Progression Trajectory-Based Student Modeling for Novice Block-Based Programming UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

Figure 4: Number of progression trajectories in each cluster for Programming Activity 3, 4, 5, 6, and 7 (from left to right)

each student, we assigned each student to a student group based on

their majority association with a particular cluster across all five

programming activities. Students assigned to the same cluster in

three or more programming activities (out of five) are tagged as

having that cluster as a majority. Among 149 students, 98 belong

to Early Completion major (EC Major), 25 belong to Early Quitting
major (EQ Major), 6 belong to High Persistence major (HP Major),

and the remaining 20 have mixed clusters (Mixed) in their progres-

sion through the programming activities. Analysis of the pre-test

scores using Tukey honestly significant difference test (Figure 5)

shows no significant differences between HP Major, EQ Major,

and Mixed student groups. But EC Major groups have significantly

higher (p<0.001) pre-test scores (M=66.26, SD=18.81) than EQMajor

(M=33.05, SD=14.83) and Mixed (M=47.58, SD=23) student groups.

This is expected as students with higher prior knowledge should

progress through the programming activities more easily (early

completion) than others.

For the post-test scores, there is a significant difference between

HP Major and EQ Major (p=0.014), between EC Major and Mixed

(p=0.009), between EQ Major and EC Major (p<0.001), and between
EQ Major and Mixed (p=0.028) student groups. From this, it is

evident that students progressing through programming activi-

ties using specific progression trajectories have strong associations

with their post-test performance. The ECMajor student group has a

higher post-test score (M=69.53, SD=21.46) than EQ Major student

groups (M=35.97, SD=16.08) and Mixed student groups (M=53.33,
SD=23.08) but have no significant difference with the HP Major

student group (M=64.58, SD=6.7). In other words, students whose

majority of the progression trajectories belong to the HP clusters
or the EC clusters have the highest post-test performance, suggest-

ing significant learning outcomes for these two groups, whereas

the EQ Major student group has the lowest post-test performance

compared to the other groups. The Mixed student group, having

no major association with any particular progression trajectory

cluster, demonstrates moderate post-test performance with high

standard deviation.

A notable observation here is that ECMajor students have almost

identical pre-test scores (M=66.26, SD=18.81) and post-test scores

(M=69.53, SD=21.46), suggesting no significant learning (paired t
test p=0.051) was observed. Same is also true for EQ Major students

(mean pre-test score of 33.05, mean post-test score of 35.97, paired
t test p=0.172). But the Mixed student group and the HP Major

student group have noteworthy differences (paired t test p=0.042
and p=0.029 respectively) between their pre-test and post-test score.

With regard to the second research question (RQ2), the analysis

shows that these three clusters have significantly different char-

acteristics in programming activity completion, number of hint

requests, and number of restarts. Students majorly associated with

these clusters also show significantly different pre-test and post-test

scores.

4.3 Early Prediction of Next-Activity Cluster
Investigating the behavior of individual students across program-

ming activities, we found that 34 (23%) students did not change

clusters across all five programming activities. Among 596 program-

ming activity transitions (no transition going into Programming

Activity 3), 65% of transitions remained in the same cluster in con-

secutive programming activities. More granular details can be found

in Table 2

To understand how students transition between clusters across

all five programming activities, we conducted sequential pattern

mining using the prefixspan
2
Python package on the clusters [16].

Table 3 depicts the five most frequent patterns when progress-

ing through the programming activities. As we can see, 33 (22%)

students remained in the EC cluster across all five programming

2
https://pypi.org/project/prefixspan/

195

https://pypi.org/project/prefixspan/

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Fahmid Fahid et al.

Figure 5: The top row shows the number ofHint Requests (top-left) and the number of Restarts (top-right) across three clusters.
The bottom row shows the Pre-test (bottom-left) and Post-test (bottom-right) scores across all four student groups.

Table 2: Students remaining in the same cluster in consecu-
tive programming activity

Programming Activity Transition Students with Same Cluster

3 to 4 107 (71.81%)

4 to 5 84 (56.38%)

5 to 6 97 (61.1%)

6 to 7 100 (67.11%)

Total 388 (65.1%)

activities. Another 12 students started their progression trajectories

in the EC cluster and changed to EQ cluster after Programming Ac-

tivity 4, implying that these students might have lost interest or lack

the prior knowledge to complete more challenging programming

activities. A total of 12 other students remain in the EC cluster and
only transitioned to the HP cluster once in Programming Activity

5. These students appeared to expend significant effort when first

faced with a difficult programming activity and learned to quickly

progress through the rest.

On average, two-thirds (65%) of the students do not change their

progression trajectory patterns (i.e., remain in the same cluster) in

consecutive programming activities. This is noteworthy and can

Table 3: Top five patterns of cluster change across all five
programming activities

Number of Students Cluster Change from Activity 3 to 7

33 (22.15%) EC -> EC -> EC -> EC -> EC

12 (8.05%) EC -> EC -> HP -> EC -> EC

12 (8.05%) EC -> EC -> EQ -> EQ -> EQ

8 (5.37%) EC -> EC -> EC -> EC -> EQ

6 (4.03%) EC -> EC -> HP -> EQ -> EQ

be used to accurately predict the behavior of students in consec-

utive programming activities. To demonstrate this, we designed

two evaluations to do early prediction of students’ future behavior.

The first evaluation (TASK Cluster Change) was a binary classifi-

cation task to predict if a student would change her progression

trajectory pattern in the next programming activity or not (binary

class). The second evaluation (TASK Next Cluster) was a multi-

class classification task to predict the progression trajectory (i.e.,

cluster) of a student in the next programming activity. For both

of these evaluations, we trained four commonly used off-the-shelf

classifiers using scikit-learn [37]: random forests (RF), decision

196

Progression Trajectory-Based Student Modeling for Novice Block-Based Programming UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

Table 4: (TASK Cluster Change) F1 weighted macro score for predicting if a student will change their current progression
trajectory cluster (binary) in the next programming activity

Programming Activity Base Prev Base Major RF DT LR SVC

3 to 4 60% 60% 81% 79% 84% 87%
4 to 5 44% 41% 61% 60% 56% 61%
5 to 6 65% 51% 74% 60% 70% 78%
6 to 7 55% 54% 67% 65% 62% 70%
All 58% 51% 71% 67% 69% 72%

trees (DT), logistic regression (LR), and support vector classifica-

tion (SVC). We used a total of 30 features to train the models, which

included three sets of features: system log, prior performance, and

current activity progress. The system log features contain 16 event

logs, which are counts of the following actions: hint request, total
number of interactions with the environment, load last save, load
previous exercise code, next instruction, previous instruction, run code,
save workspace, change block, create block, delete block, move block,
number of toolbox interactions, create variable, delete variable, and
rename variable. The prior performance features group includes

9 features: total time spent up to the current moment, total pro-

gramming activities completed so far, total number of restarts so

far (as defined in 4.2), total number of trajectories belonged to each

cluster, total workspace cleared per restart so far, total number

of clusters changed so far, total cumulative final similarity so far.

These features are calculated using the cumulative sum of previous

programming activities for a particular student. Lastly, the current

activity progress features group includes 5 features: the number of

restarts in the current programming activity, current cluster, time

spent in current programming activity, is the current programming

activity successfully completed, and the final similarity percentage

of the current progression trajectory. We standardized all the fea-

tures to remain consistent across different feature scales. As the

distribution of clusters is imbalanced (see 4.1), the only parameter

manually tuned was the class_weight balanced (where applicable).

The remainder of the hyperparameters were set to the default val-

ues.

In the evaluations, we used two baselines. The first baseline,

BASE Major, predicts the majority class in both of the classification

tasks. The second baseline, BASE Prev, predicts the same class in

consecutive programming activities. For TASK Cluster Change, this

means carrying over the current cluster changing behavior in the

next programming activity, and for TASK Next Cluster, this means

carrying over the current cluster in the next programming activity.

For TASK Cluster Change, as both of the classes (students who will

remain in the same cluster, and students who will not) are equally

important to predict, and for TASK Next Cluster, as all three clusters

(EQ, HP, and EC) are equally important, we have reported the F1

scores, instead of precision or recall. We calculated F1 weighted

macro (average F1 score based on support on each class) to account

for class imbalance. For all evaluations, we performed 10-fold cross-

validation, repeated 10 times (total of 100 runs for each classifier),

and reported the median F1 scores (mean values are affected by

outliers [26]).

TASK Cluster Change: As shown in Table 4, when training

on All programming activity transitions, all classifiers outperform

(9 to 14% higher) the best baseline (BASE Prev). Examining each

programming activity transitions, we can see that it is easier to

predict the cluster change in Programming Activity 3 to 4 (19 to

27% higher than both baselines) and in Programming Activity 4 to

5 (12 to 17% higher than the best baseline), but it is more difficult to

predict cluster changes in later programming activity transitions,

specifically from Programming Activity 5 to 6 (-5 to 13% higher than

best baseline) and from ProgrammingActivity 6 to 7 (7 to 15% higher

than best baseline). In all cases, almost all the classifiers significantly

outperform the baselines. Also, note that SVC outperforms every

other classifier in all cases.

The fact that predicting cluster changes from Programming Ac-

tivity 5 to 6 is difficult is noteworthy. Looking into the programming

activity description (Table 1), Programming Activity 6 introduces

loops for the first time. It might be the case that students find this

concept hard to learn and struggle. As such, classification based on

prior knowledge is not sufficient.

TASK Next Cluster: As shown in Table 5, predicting specific

clusters (EQ, HP, and EC) is a challenging task because the three

classes are highly imbalanced. For All programming activity tran-

sitions, the F1 scores of the classifiers are ranging between 62%

(DT) to 68% (RF) whereas the Base Prev, which is the best baseline,

has a score of 64%. Improvements can be seen when predicting

clusters for Programming Activity 5 using data from Programming

Activity 4 (3 to 11% improvement over best baseline). Apart from

DT predicting clusters in Programming Activity 7, all the classifiers

perform somewhat similarly to the best baselines, if not better, in

all cases. Investigating further, we found that most of the time the

clusters are wrongly predicted as EC clusters. For example, for ran-

dom forest classifiers, the HP cluster gets misclassified as EC cluster
76% of the time and EQ cluster gets misclassified as EC cluster 25%
of the time. Similar results are seen across other classifiers. This

can be explained by the fact that the classes are mostly imbalanced,

having 60% of the progression trajectories belong to the EC cluster
and only 16% belong to HP cluster. This makes the prediction of the

classifiers biased towards the EC cluster. Also note that HP cluster,
being the uncertain cluster (Figure 3), can go either way and is

predicted towards the majority class (EC cluster).
With regard to the final research question (RQ3), the two eval-

uations suggest that we can accurately predict students’ cluster

changing behaviors in consecutive programming activities, but pre-

dicting the exact cluster is somewhat difficult due to imbalanced

data.

197

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Fahmid Fahid et al.

Table 5: (TASK Next Cluster) F1 weighted macro score for predicting the progression trajectory cluster (EQ, HP, or EC) of a
student in the next programming activity

Programming Activity Base Prev Base Major RF DT LR SVC

3 to 4 74% 75% 77% 72% 80% 76%

4 to 5 50% 34% 59% 53% 61% 59%

5 to 6 67% 41% 65% 65% 63% 67%
6 to 7 69% 32% 68% 54% 62% 61%

All 64% 45% 68% 62% 66% 65%

5 DISCUSSION
Understanding students’ progression trajectories can provide in-

sight to guide the design of more effective adaptive learning envi-

ronments. Our analysis found three generic progression trajectory

patterns when students progress through individual programming

activities in block-based programming environments. Similar pat-

terns have also been seen in earlier studies across different pro-

gramming environments [22, 23, 39], but unlike this work, these

studies found student-specific patterns, rather than their behav-

ior in individual programming activities. However, our findings

echo the findings of previous studies. For example, students who

primarily belong to the EQ cluster (giving up early without spend-

ing much time or effort) across multiple programming activities

would likely be identified as stoppers or quitters whereas students
who primarily belong to the HP cluster (spent significantly more

time to trying to solve a programming activity) across multiple

programming activities would likely be identified as tinkerers or ap-
proachers. Similarly, student progression trajectories that primarily

belong to the EC cluster could be identified as movers, knowers, or
solvers. Overall, these student progression trajectory clusters offer

a fine-grained understanding of student behaviors in individual

programming activities and have significant potential to improve

learning environments in future.

The analysis in this paper also shows these clusters to have

significantly different characteristics across multiple dimensions.

Their distributions across programming activities show that earlier

programming activities with lower difficulties have lower number

of progression trajectories in EQ cluster whereas later programming

activities with higher difficulties have increasingly higher number

of progression trajectories in EQ clusters. This implies that students

tend to early-quit more often as difficulty increases. Similarly, stu-

dent progression trajectories in the HP cluster show significantly

more hint requests and restarts. Thus, students primarily belonging

to the HP cluster across multiple programming activities (HP Major)

are more persistent in the learning process and their outcomes are

reflected by their positive changes in distributions for pre-test and

post-test scores. As such, it can be seen that difficult activities need

better support or timely motivation to reduce early quitting while

ensuring higher persistence for better learning outcomes.

Thus, predicting these clusters early for individual students can

inform the design of adaptive support in learning environments.

For example, by identifying a student who will change their current

behavior in the upcoming activity, the environment can adapt its

support system to provide more or less student-adaptive hints or

feedback accordingly. Environments can also utilize these predictive

future behavior patterns to motivate students to increase their

engagement or to discourage early quitting.

6 CONCLUSION
Student modeling for block-based programming environments can

inform student-adaptive learning experiences with feedback and

guidance that is tailored to individual students to help them mas-

ter programming concepts. However, devising student models for

block-based programming poses significant challenges because stu-

dents can pursue a multiplicity of paths to solutions. To address

these issues, we have introduced progression trajectory-based stu-

dent models for novice block-based programming environments.

Progression trajectory-based student models utilize a time-series

representation that employs code analysis to incrementally compare

the intermediate programming steps of students’ evolving programs

to expert programs. We investigated progression trajectory-based

student models with student programming interactions in an in-

troductory college-level computer science course. Analysis of the

models found that 1) there are three distinct patterns among such

trajectories, Early Quitting (EQ), High Persistence (HP), and Efficient
Completion (EC), which exhibit significantly different characteris-

tics across multiple dimensions, and 2) the models can be used to

accurately predict learning behaviors.

The results suggest several promising directions for future work.

First, it will be important to consider different embeddings tech-

niques of intermediate code states. For example, vector-based em-

beddings of the intermediate code states can reflect more granu-

lar and structured understanding of students’ program evolution.

Second, future work should investigate approaches to further im-

proving the predictability of next programming activity patterns

by considering different feature sets including incoming knowl-

edge, perceived skills, and program code. To this end, devising

feature extraction techniques appears promising. Third, it will be

instructive to investigate integrating trajectory-based student mod-

els into adaptive learning environments to understand how they

can most effectively contribute to student-adaptivity to improve

student learning.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation through

grants DUE-1626235 and DUE-1625908. Any opinions, findings,

and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the National Science Foundation.

198

Progression Trajectory-Based Student Modeling for Novice Block-Based Programming UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

REFERENCES
[1] Jordan Barria-Pineda, Julio Guerra-Hollstein, and Peter Brusilovsky. 2018. A

fine-grained open learner model for an introductory programming course. In Pro-
ceedings of the 26th Conference on User Modeling, Adaptation and Personalization,
53–61.

[2] Jens Bennedsen and Michael E Caspersen. 2019. Failure rates in introductory

programming: 12 years later. ACM Inroads 10, 2 (2019), 30–36.
[3] Paulo Blikstein. 2011. Using learning analytics to assess students’ behavior in

open-ended programming tasks. In Proceedings of the 1st International Conference
on Learning Analytics and Knowledge, 110–116.

[4] Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami, Steven Cooper,

and Daphne Koller. 2014. Programming pluralism: Using learning analytics to

detect patterns in the learning of computer programming. Journal of Learning
Science 23, 4 (2014), 561–599.

[5] Eric Brill and Robert C Moore. 2000. An improved error model for noisy channel

spelling correction. In Proceedings of the 38th Annual Meeting of the Association
for Computational Linguistics, 286–293.

[6] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent

tutoring systems for programming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Conference, 53–62.

[7] Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski,

and Satabdi Basu. 2017. An instructor dashboard for real-time analytics in in-

teractive programming assignments. In Proceedings of the Seventh International
Learning Analytics & Knowledge Conference, 272–279.

[8] Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski,

and Satabdi Basu. 2018. Data-driven generation of rubric criteria from an ed-

ucational programming environment. In Proceedings of the 8th International
Conference on Learning Analytics and Knowledge, 16–20.

[9] Andrew Emerson, Michael Geden, Andy Smith, Eric Wiebe, Bradford Mott,

Kristy Elizabeth Boyer, and James Lester. 2020. Predictive Student Modeling

in Block-Based Programming Environments with Bayesian Hierarchical Models.

In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and
Personalization, 62–70.

[10] Andrew Emerson, Andy Smith, Fernando J. Rodriguez, Eric N. Wiebe, BradfordW.

Mott, Kristy Elizabeth Boyer, and James C. Lester. 2020. Cluster-based analysis of

novice coding misconceptions in block-based programming. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education (2020), 825–831.

DOI:https://doi.org/10.1145/3328778.3366924

[11] Andrew Emerson, Andy Smith, Cody Smith, Fernando Rodríguez, Eric Wiebe,

Bradford Mott, Kristy Boyer, and James Lester. 2019. Predicting Early and Often:

Predictive Student Modeling for Block-Based Programming Environments. In

Proceedings of the 12th International Conferece on Educational Data Mining (2019),

39–48.

[12] Anthony Estey, Hieke Keuning, and Yvonne Coady. 2017. Automatically classify-

ing students in need of support by detecting changes in programming behaviour.

In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, 189–194.

[13] Neil Fraser. 2013. Blockly: A visual programming editor. URL https//code. google.
com/p/blockly 42, (2013).

[14] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of

computing. ACM Inroads 6, 4 (2015), 71–79.
[15] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.

2015. OverCode: Visualizing variation in student solutions to programming

problems at scale. ACM Transactions on Computer-Human Interactions (TOCHI)
22, 2 (2015), 1–35.

[16] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-

war Dayal, and Meichun Hsu. 2001. Prefixspan: Mining sequential patterns effi-

ciently by prefix-projected pattern growth. In Proceedings of the 17th International
Conference on Data Engineering, IEEE Washington, DC, USA, 215–224.

[17] Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. 2012. How

do students solve parsons programming problems? an analysis of interaction

traces. In Proceedings of the Ninth Annual International Conference on International
Computing Education Research, 119–126.

[18] Nathan Henderson, Vikram Kumaran, Wookhee Min, Bradford Mott, Ziwei Wu,

Danielle Boulden, Trudi Lord, Frieda Reichsman, Chad Dorsey, and Eric Wiebe.

2020. Enhancing Student Competency Models for Game-Based Learning with a

Hybrid Stealth Assessment Framework. In Proceedings of the 13th International
Conference on Educational Data Mining (2020), 93-103.

[19] RoyaHosseini, Peter Brusilovsky, Michael Yudelson, and Arto Hellas. 2017. Stereo-

type modeling for Problem-Solving performance predictions in MOOCs and tradi-

tional courses. In Proceedings of the 25th Conference on User Modeling, Adaptation
and Personalization, 76–84.

[20] Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. 2014. Exploring problem

solving paths in a Java programming course. In Psychology of Programming
Interest Group Annual Conference 2014, University of Pittsburgh, 65.

[21] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation

behaviour. In Proceedings of the Second International Workshop on Computing

Education Research, 73–84.
[22] Bo Jiang, Wei Zhao, Nuan Zhang, and Feiyue Qiu. 2019. Programming trajectories

analytics in block-based programming language learning. Interactive Learning En-
vironments 4820, (2019), 1–14. DOI:https://doi.org/10.1080/10494820.2019.1643741

[23] Shamya Karumbaiah, Ryan S Baker, and Valerie Shute. 2018. Predicting Quitting

in Students Playing a Learning Game. In Proceedings of the 11th International
Conference on Educational Data Mining (2018).

[24] Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining

number of Cluster in K-Means Clustering. International Journal 1, 6 (2013), 90–95.
[25] Abe Leite and Saúl A Blanco. 2020. Effects of Human vs. Automatic Feedback on

Students’ Understanding of AI Concepts and Programming Style. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education, 44–50.

[26] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent Li-

cata. 2013. Detecting outliers: Do not use standard deviation around the mean, use

absolute deviation around the median. Journal of Experimental Social Psychology
49, 4 (2013), 764–766.

[27] Zitao Liu, Songfan Yang, Jiliang Tang, Neil Heffernan, and Rose Luckin. 2020.

Recent advances in multimodal educational data mining in k-12 education. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 3549–3550.

[28] Yuetian Luo and Zachary A. Pardos. 2018. Diagnosing University student sub-

ject proficiency and predicting degree completion in vector space. 32nd AAAI
Conference on Artificial Intelligence 32, 1, (2018), 7920–7927.

[29] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-

ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and

Claudia Szabo. 2018. Introductory programming: a systematic literature review.

In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, 55–106.

[30] Mehak Maniktala, Christa Cody, Amy Isvik, Nicholas Lytle, Min Chi, and Tiffany

Barnes. 2020. Extending the Hint Factory for the assistance dilemma: A novel,

data-driven HelpNeed Predictor for proactive problem-solving help. arXiv Prepr.
arXiv2010.04124 (2020).

[31] Victor J Marin, Tobin Pereira, Srinivas Sridharan, and Carlos R Rivero. 2017.

Automated personalized feedback in introductory Java programming MOOCs.

In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), IEEE,
1259–1270.

[32] Wookhee Min, Megan H Frankosky, Bradford W Mott, Jonathan P Rowe, Eric

Wiebe, Kristy Elizabeth Boyer, and James C Lester. 2015. DeepStealth: leveraging

deep learning models for stealth assessment in game-based learning environ-

ments. In Proceedings of the 17th International Conference on Artificial Intelligence
in Education, Springer, 277–286.

[33] Wookhee Min, Bradford Mott, Jonathan Rowe, Barry Liu, and James Lester.

2016. Player goal recognition in open-world digital games with long short-term

memory networks. In Porceedings of the 25th International Joint Conference on
Artificial Intelligence (2016), 2590–2596.

[34] Benjamin Paaßen, Claudio Gallicchio, Alessio Micheli, and Barbara Hammer.

2018. Tree edit distance learning via adaptive symbol embeddings. In Proceeding
of the 35th International Conference on Machine Learning, PMLR, 3976–3985.

[35] Benjamin Paaßen, Barbara Hammer, ThomasWilliam Price, Tiffany Barnes, Sebas-

tian Gross, and Niels Pinkwart. 2017. The continuous hint factory-providing hints

in vast and sparsely populated edit distance spaces. arXiv Prepr. arXiv1708.06564
(2017).

[36] Zachary A Pardos, Steven Tang, Daniel Davis, and Christopher Vu Le. 2017.

Enabling real-time adaptivity in MOOCs with a personalized next-step recom-

mendation framework. In Proceedings of the Fourth (2017) ACM Conference on
Learning@ Scale, 23–32.

[37] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

and Vincent Dubourg. 2011. Scikit-learn: Machine learning in Python. The Journal
of Machine Learning Research 12, (2011), 2825–2830.

[38] Radek Pelánek and Jiří Řihák. 2017. Experimental analysis of mastery learning

criteria. In Proceedings of the 25th Conference on User Modeling, Adaptation and
Personalization, 156–163.

[39] D N Perkins and Fay Martin. 1986. Fragile knowledge and neglected strategies

in novice programmers. In at Empirical Studies of Programmers, 1st Workshop,
Washington, DC, 213–229.

[40] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.

2012. Modeling how students learn to program. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education, 153–160.

[41] ThomasWPrice and Tiffany Barnes. 2015. Comparing textual and block interfaces

in a novice programming environment. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research, 91–99.

[42] Thomas W Price, Yihuan Dong, and Tiffany Barnes. 2016. Generating Data-

DrivenHints for Open-Ended Programming. In Proceedings of the 9th International
Conference on Educational Data Mining (2016), 191-198.

[43] Thomas W Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: towards intelli-

gent tutoring in novice programming environments. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education, 483–488.

199

https://doi.org/10.1145/3328778.3366924
https://doi.org/10.1080/10494820.2019.1643741

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Fahmid Fahid et al.

[44] Thomas W Price, Rui Zhi, and Tiffany Barnes. 2017. Hint generation under

uncertainty: The effect of hint quality on help-seeking behavior. In Proceedings of
the 18th International Conference on Artificial Intelligence in Education, Springer,
311–322.

[45] Alexander Renkl and Robert K Atkinson. 2003. Structuring the transition from

example study to problem solving in cognitive skill acquisition: A cognitive load

perspective. Educational Psychologist 38, 1 (2003), 15–22.
[46] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, and Brian

Silverman. 2009. Scratch: programming for all. Communication of the ACM 52, 11

(2009), 60–67.

[47] Kelly Rivers, Erik Harpstead, and Kenneth R Koedinger. 2016. Learning curve

analysis for programming: Which concepts do students struggle with? In Proceed-
ings of the 2016 ACM Conference on International Computing Education Research,
143–151.

[48] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in

vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37–64.

[49] Fernando J Rodríguez, Kimberly Michelle Price, Joseph Isaac, Kristy Elizabeth

Boyer, and Christina Gardner-McCune. 2017. How block categories affect learner

satisfaction with a block-based programming interface. In 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), IEEE, 201–205.

[50] Pavel Senin. 2008. Dynamic time warping algorithm review. Information and
Computer Science Department University of Hawaii at Manoa Honolulu, USA 855,

1–23 (2008), 40.

[51] Melissa Stanger and Emmie Martin. 2016. The 50 Best Computer-Science and

Engineering Schools in America, 2015.

[52] Giovanni Maria Troiano, Sam Snodgrass, Erinç Argımak, Gregorio Robles,

Gillian Smith, Michael Cassidy, Eli Tucker-Raymond, Gillian Puttick, and Casper

Harteveld. 2019. Is my game OK Dr. Scratch? Exploring programming and com-

putational thinking development via metrics in student-designed serious games

for STEM. In Proceedings of the 18th ACM International Conference on Interaction
Design and Children, 208–219.

[53] Lisa Wang, Angela Sy, Larry Liu, and Chris Piech. 2017. Learning to represent

student knowledge on programming exercises using deep learning. In Proceedings
of the 10th International Conference on Educational Data Mining, EDM 2017 (2017),

324–329.

[54] Christiane Gresse VonWangenheim, Jean C RHauck, Matheus Faustino Demetrio,

Rafael Pelle, Nathalia da Cruz Alves, Heliziane Barbosa, and Luiz Felipe Azevedo.

2018. CodeMaster–Automatic Assessment and Grading of App Inventor and

Snap! Programs. Informatics in Education. 17, 1 (2018), 117–150.
[55] Christopher Watson and Frederick W B Li. 2014. Failure rates in introductory

programming revisited. In Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education, 39–44.

[56] David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based

programming in high school computer science classrooms. ACM Transactions on
Computer Education 18, 1 (2017), 1–25.

[57] Joseph B Wiggins, Fahmid M Fahid, Andrew Emerson, Madeline Hinckle, Andy

Smith, Kristy Elizabeth Boyer, Bradford Mott, Eric Wiebe, and James Lester. 2021.

Exploring Novice Programmers’ Hint Requests in an Intelligent Block-Based

Coding Environment. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (2021), 52-58.

[58] Jeannette M Wing. 2014. Computational thinking benefits society. 40th Anniver-
sary Blog on Social Issues in Computing (2014), 26.

[59] Rui Zhi, Thomas W Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,

and Min Chi. 2019. Exploring the impact of worked examples in a novice pro-

gramming environment. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 98–104.

200

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 METHODS
	3.1 Prime Learning Environment
	3.2 Study Design
	3.3 Dataset

	4 RESULTS
	4.1 Progression Trajectory Patterns
	4.2 Analyzing Clusters
	4.3 Early Prediction of Next-Activity Cluster

	5 DISCUSSION
	6 CONCLUSION
	Acknowledgments
	References

