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Abstract. Scaffolding student engagement is a central challenge in adaptive 
learning environments. The ICAP framework defines levels of cognitive engage-
ment with a learning activity in terms of four different engagement modes—In-
teractive, Constructive, Active, and Passive—and it predicts that increased cog-
nitive engagement will yield improved learning. However, a key open question 
is how best to translate the ICAP theory into the design of adaptive scaffolding 
in adaptive learning environments. Specifically, should scaffolds be designed to 
require the highest levels of cognitive engagement (i.e., Interactive and Construc-
tive modes) with every instance of feedback or knowledge component? To an-
swer this question, in this paper we investigate a data-driven pedagogical model-
ing framework based on batch-constrained deep Q-networks, a type of deep re-
inforcement learning (RL) method, to induce policies for delivering ICAP-
inspired scaffolding in adaptive learning environments. The policies are trained 
with log data from 487 learners as they interacted with an adaptive learning en-
vironment that provided ICAP-inspired feedback and remediation. Results sug-
gest that adaptive scaffolding policies induced with batch-constrained deep Q-
networks outperform heuristic policies that strictly follow the ICAP model with-
out RL-based tailoring. The findings demonstrate the utility of deep RL for tai-
loring scaffolding for learner cognitive engagement. 

Keywords: Deep Reinforcement Learning, Cognitive Engagement, ICAP, 
Adaptive Learning Environments. 

1 Introduction 

Adaptive learning environments provide scaffolding in the form of hints, feedback and 
remediation to improve learning experiences. Scaffolds offer temporary support to stu-
dents as they learn, which is gradually faded as students gain knowledge and achieve 
mastery. Designing effective scaffolds is challenging. Determining how and when to 
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deliver scaffolding in different situations is critical to enabling effective learning expe-
riences [22]. A key factor in adaptive scaffolding is the cognitive engagement of learn-
ers. Chi and Wylie [7] describe cognitive engagement as an “active learning” process 
that involves higher-order thinking (e.g., analyzing, synthesizing, evaluating). Ideally, 
adaptive scaffolding is designed to optimize students’ cognitive engagement, and by 
extension, enhance learning outcomes. 

The ICAP framework provides a taxonomy for categorizing different modes of cog-
nitive engagement: Interactive, Constructive, Active, and Passive [7]. ICAP predicts 
that learning activities requiring higher levels of cognitive engagement (e.g., peer dia-
logue, writing a summary) yield improved learning outcomes compared to activities 
that involve lower levels of cognitive engagement (e.g., listening passively, highlight-
ing text). There is strong evidence in support of the ICAP theory, and it has been used 
to guide the design of lesson plans [6] and adaptive learning technologies [20], but it is 
less clear how to translate ICAP into the design of individual scaffolds. High levels of 
cognitive engagement require time and student motivation. A direct translation of ICAP 
may not be optimal for every scaffold and knowledge component in an adaptive learn-
ing environment. This raises a natural question: should ICAP be operationalized by 
adaptively scaffolding cognitive engagement, eliciting higher-order thinking at key mo-
ments with the aim of enhancing overall learning outcomes, and, if so, how should we 
devise models for adaptively scaffolding cognitive engagement? 

Recent years have seen growing interest in using reinforcement learning (RL) to 
devise policies for scaffolding student learning in adaptive learning environments [5, 
8]. Deep RL, which combines RL and deep neural networks, has shown particular 
promise for this task [1-3, 31]. Several studies have shown that deep RL techniques 
yield effective pedagogical models in adaptive learning environments [3, 15]. However, 
previous work has not systematically investigated methods for adaptively scaffolding 
cognitive engagement with deep RL techniques.  

In this paper, we introduce a data-driven pedagogical modeling framework based on 
batch constrained deep Q-networks, a type of deep RL method, to induce policies for 
scaffolding cognitive engagement in adaptive learning environments. The policies 
drive ICAP-based feedback and remediation following instructional videos and embed-
ded assessments in a learning environment for training operational command skills. The 
policies are induced using interaction log data from 487 learners as they engaged with 
the adaptive learning environment. We compare scaffolding policies induced with 
batch constrained deep Q-networks with heuristic policies that strictly follow the ICAP 
model without RL-based tailoring. 

2 Related Work 

RL provides a natural framework for inducing data-driven scaffolding models to im-
prove student learning experiences. Wang conducted a study with 30 students learning 
software development concepts in a dialogue-based tutoring system and found that an 
RL-based teaching assistant was able to learn from its teaching experience and contin-
uously improve its teaching strategies online [29]. Georgila and colleagues [10] found 
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that RL-based models fostered increased confidence among learners through adaptive 
scaffolding to support the development of interpersonal skills. Their results suggest that 
the induced policies matched, or outperformed heuristic scaffolding models designed 
by human experts. Similar findings have been reported in other studies and learning 
environments investigating RL-based pedagogical models [23, 33]. 

Over the past several years, deep RL techniques have shown significant promise for 
inducing scaffolding policies in adaptive learning environments. For example, Wang 
and colleagues [30] found that adaptively scaffolding student learning in a narrative-
centered learning environment for middle school microbiology using deep RL models 
trained with simulated students outperformed baseline methods. Additional work has 
investigated offline deep RL methods, where RL models are trained with previously 
collected data rather than simulations to induce scaffolding policies. For example, Az-
izsoltani and colleagues [4] found that inferring immediate rewards using Gaussian pro-
cess estimation to train offline deep RL-based pedagogical models can significantly 
improve learning gains in students. To date, deep RL techniques have not been used to 
induce policies for adaptively scaffolding cognitive engagement with ICAP-inspired 
feedback and remediation in adaptive learning environments.  

The ICAP framework predicts that as students become more actively engaged with 
learning materials, moving from passive to active to constructive to interactive behav-
iors, their learning will increase. Support for the ICAP framework has been found in a 
number of studies [18, 20, 32]. Mitrovic et al. [20] found that using interactive visuali-
zation and prompts to enforce constructive engagement in a video-based learning envi-
ronment led to high levels of confidence and lower levels of frustration during the learn-
ing episode compared to students who engaged in passive learning behaviors. Few stud-
ies have investigated how adaptive ICAP-inspired scaffolding applied at a step-based 
or micro-loop level in adaptive learning environments supports student learning [26].  

3 Dataset 

To induce data-driven pedagogical models for delivering ICAP-inspired feedback and 
remediation, we utilize log data collected from an online study involving 487 learners 
(54% male, 42% female) recruited through Amazon Mechanical Turk who interacted 
with an adaptive learning environment for training operational command skills. The 
learning environment was built using the Generalized Intelligent Framework for Tutor-
ing (GIFT), an open-source domain-independent framework for designing, deploying, 
and evaluating adaptive learning technologies [25]. The learning environment includes 
a series of instructional videos that cover core concepts and principles associated with 
operational command. Following each video, learners answered a series of multiple-
choice questions. An incorrect response to a question prompted the learning environ-
ment to deliver ICAP-inspired feedback and remediation that required the learner to 
either (1) passively re-read a transcription of the video that was just presented in the 
lesson video, (2) re-read the transcription of the video and actively highlight the portion 
of text that answered the recall question that was just missed, or (3) re-read the video 
transcription and constructively summarize the answer to the question in their own 
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words. The learning environment did not have built-in support for the interactive mode 
of engaging with feedback and remediation, so that component of ICAP was omitted. 
The active and constructive remediation prompts included expert highlighting/summar-
ies that asked students to self-evaluate the accuracy of their responses.  The learning 
environment also included a “no remediation” prompt that provided learners with a 
simple feedback message stating they incorrectly answered the question. 

After completing a remediation exercise, learners were presented again with the pre-
viously attempted question. If they answered the question correctly, then they advanced 
to the next question or video lesson. Learners continued to receive remediation, poten-
tially of different types, until they correctly answered the question. The learning envi-
ronment utilized a random policy to determine the type of ICAP-inspired remediation 
learners received each time they missed a question (irrespective of their number of at-
tempts), although a software error caused passive and no remediation instances to be 
under-sampled. 

In all, learners completed 39 embedded assessments, which were distributed across 
four units that typically take 1-2 hours in total to complete. The adaptive learning en-
vironment also included a set of web-based surveys designed to collect demographic 
information and a set of pre- and post-test items that measured student learning as a 
result of completing the course.  

The resulting dataset included a total of 4,998 instances of ICAP-inspired feedback 
and remediation. On average, learners received 10 instances of remediation while com-
pleting the course (SD=12.7; min=1, max=113). Table 1 summarizes the distribution of 
remediation instances encountered throughout the course. A paired t-test showed that 
the pre-test scores (M=4.18, SD=2.30, min=0, max=11) and the post-test scores 
(M=8.32, SD=2.96, min=0, max=12) were significantly different (p<0.001), implying 
the adaptive learning environment improved knowledge of operational command con-
cepts and skills among the participants.  

Table 1. Distribution of ICAP-based remediation instances. 

Remediation Total Chapter 1 Chapter 2 Chapter 3 Chapter 4 
None 470 (9.40%) 155 (3.10%) 141 (2.82%) 141 (2.82%) 33 (0.66%) 

Passive 445 (8.90%) 145 (2.90%) 136 (2.72%) 127 (2.54%) 37 (0.74%) 

Active 2074 (41.50%) 684 (13.65%) 587 (11.74%) 639 (12.79%) 166 (3.32%) 

Constructive 2009 (40.20%) 626 (12.53%) 606 (12.12%) 611 (12.22%) 166 (3.32%) 

4 Adaptive Scaffolding with Batch Constrained Deep Q-
Networks 

In this section, we present a deep RL framework for creating policies to scaffold cog-
nitive engagement in adaptive learning environments. Specifically, we describe our 
deep RL-based pedagogical model architecture, our approach to formalizing adaptive 
scaffolding as a Markov decision process, and a pair of metrics for evaluating policies 
for the delivering ICAP-inspired feedback and remediation.   
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4.1 Deep RL-based Pedagogical Model Architecture 

To devise data-driven policies for adaptively scaffolding students’ cognitive engage-
ment, we used deep Q learning, a type of RL technique that leverages deep neural net-
work-based function approximation to represent the values of input states [21]. Q-learn-
ing is a model-free RL algorithm where the goal is to learn an optimal policy 𝜋∗ based 
on the optimal action-value function 𝑄∗(𝑠, 𝑎) estimated from sample data without use 
of an explicit model of the task environment [27]. Starting from state 𝑠 ∈ 𝕊 and taking 
action 𝑎 ∈ 𝔸 while getting reward 𝑟 ∈ ℝ, the Q values are defined as the expected cu-
mulative reward following a policy 𝜋 that generates a set of actions at each successive 
state. To reduce extrapolation errors often seen in offline RL, we utilized batch con-
strained deep Q-networks [9]. 

Deep Q-networks (DQNs) follow an off-policy learning approach that involves iter-
atively sampling from a finite experience buffer to greedily estimate Q values according 
to the Bellman equation. A loss function (Equation 1) is defined to train a deep neural 
network to estimate the model’s Q-values: 

 𝐿𝑜𝑠𝑠(𝜃) = 𝔼[3𝑦 − 𝑄(𝑠, 𝑎; 𝜃)7"] (1) 

where 𝜃 represents the set of weights in the neural network. 
A variant of DQNs is the Double DQN, which uses two separate networks to reduce 

overestimation bias in the DQN by separating the action selection and action evaluation 
components of the model [11]. This provides improved stabilization and convergence 
while the model is trained. In Double DQNs, two neural networks with identical archi-
tectures are used, namely, the target network (𝜃̅) and the online network (𝜃). The online 
network is trained on every iteration while the target network is frozen for a fixed num-
ber of iterations. During training, the online network is used to select the next action  
𝑎# ∈ 𝔸 based on the next state 𝑠# ∈ 𝕊, and the target network is used to evaluate the Q 
value of the action: 

 𝑦 = 𝑟 + 𝛾𝑄(𝑠#, 𝑎𝑟𝑔𝑚𝑎𝑥$!∈𝔸𝑄(𝑠#, 𝑎#; 𝜃); 𝜃̅) (2) 

where 𝛾 ∈ [0,1] is the discount factor that controls the contribution of future rewards. 
DQNs are often used with an experience replay buffer to keep track of a finite set of 

recent training observations [21]. During training, transitions are sampled from the 
buffer randomly. Prioritized experience replay [24] prioritizes the sampling of transi-
tions based upon the current temporal difference errors. This additional priority makes 
the network more data efficient [12] by ensuring quick convergence. Priority is calcu-
lated as follows: 

 𝑡'()*()+, = B{𝑟 + 𝛾𝑄(𝑠#, 𝑎𝑟𝑔𝑚𝑎𝑥$!∈𝔸𝑄(𝑠#, 𝑎#; 𝜃); 𝜃̅)} − {𝑄(𝑠, 𝑎; 𝜃)}B
-

 (3) 

Here, 𝑡'()*()+, is the priority of a transition 𝑡 and 𝜔 is a hyperparameter.  
In batch RL, also known as offline RL, the experience replay buffer remains fixed. 

This approach is often necessary in RL applications in adaptive learning environments, 
where a training corpus is collected from students prior to employing RL, and additional 
data collection is not feasible during the RL process. With limited data, DQNs often 
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suffer from divergence issues due to extrapolating Q values outside of the data distri-
bution. Batch constrained DQNs restrict such extrapolation errors by only allowing ac-
tions that are evident in the available data using a probabilistic sampling technique [9]: 

 𝑦 = 𝑟 + 𝛾𝑄(𝑠#, 𝑎𝑟𝑔𝑚𝑎𝑥$!|($!|0!)/345"# 6$($7|0!)89𝑄(𝑠
#, 𝑎#; 𝜃); 𝜃̅) (4) 

Here, 𝜋: is the policy used to collect the data and 𝜏 is a probability threshold.  
Deep neural networks within batch constrained DQNs can be implemented using 

different neural architectures. In this work, we implement two commonly used archi-
tectures: fully connected (FC) layers and long short-term memory (LSTM) layers. In 
FC layers, each neuron is a perceptron that calculates a weighted sum of the input units 
to produce an output value through an activation function. All inputs are connected to 
all neurons in the first layer, all of the output of the first layer is fully connected to input 
neurons of the second layer, and so on until the final output layer.  

LSTMs are a specialized version of recurrent neural networks that use long term 
temporal dependencies to avoid common issues in neural networks such as the vanish-
ing and exploding gradient problems [13]. An LSTM unit consists of a memory cell 
state and three gates: a forget gate, an input gate, and an output gate. These pieces 
together control the flow of information during model training. Notably batch con-
strained DQNs with LSTM networks support sequential input representations, which 
enables them to keep track of (and forget) previous inputs and hidden states. 

4.2 States, Actions and Reward 

To formalize the task of inducing a policy for scaffolding cognitive engagement in an 
adaptive learning environment, we defined a Markov decision process, which involves 
controlling a set of actions 𝔸 based on some state 𝑠 ∈ 𝕊 to optimize the accumulation 
of reward 𝑟 ∈ ℝ. Markov decision process provide a standardized mathematical repre-
sentation for RL tasks. We define the state (𝕊), action (𝔸) and reward (ℝ) components 
of the Markov decision process as follows. 

State (𝕊). We devise the state representation by extracting 31 features from learners’ 
log data, which are divided into 3 groups: (1) survey features, (2) video playback fea-
tures, and (3) remediation engagement features. The survey features include gender, 
age, education level, content familiarity, domain interest, and pre-test score on a content 
knowledge assessment. Four video playback features are extracted: time spent on the 
last video, average time spent on videos, whether learners received automated feedback 
about their time spent on the last video, and time spent on the feedback. Twenty reme-
diation features are extracted: the previous type of remediation delivered, the total num-
ber of remediation instances delivered for each ICAP category, the average time spent 
engaged in the remediation activity, the average time spent on all previous remediation 
activities, and features reflecting how long learners spent answering the recall ques-
tions. We normalize each feature to range between [0,1] to improve stability when train-
ing the DQNs. Batch constrained DQNs require a discrete state space to calculate the 
probability of each state-action pair. Therefore, we cluster the set of state-action pairs 
into 5 groups using k-means clustering. We visually select the number of clusters using 
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the distortion elbow method [17]. These clusters are used when sampling for the batch 
constrained DQN action probabilities.  

Action (𝔸). At each pedagogical decision point (i.e., after a missed question), there 
are 4 possible actions (i.e., ICAP-based remediations) that can be selected: constructive 
(re-read the video transcription and summarize), active (re-read the video transcript and 
highlight relevant section), passive (re-read the video transcript), or no remediation. 

Reward (ℝ). Each participant completed a 12-item pre- and post-test to assess con-
tent knowledge about operational command concepts. We use learners’ pre- and post-
test scores to calculate normalized learning gains (NLG) associated with each sequence 
of ICAP-inspired remediation instances [19]. Note that, for each student, we will only 
have a single NLG value at the end of their episode, which is the delayed reward [4]. 
Our reward value is a real number and ranges between 0 to 100.  

4.3 Evaluation Metrics 

In batch constrained DQNs, the optimal policy (𝜋∗) usually has a significantly different 
distribution of state-action pairs than the behavioral policy (𝜋:) that was used to collect 
the training data. Performing RL policy evaluation with data collected under a different 
policy is known as off-policy evaluation [28]. We use two evaluation metrics, Expected 
Cumulative Reward and Doubly Robust. 

Expected cumulative reward (ECR) computes the average expected reward associ-
ated with a particular policy 𝜋 beginning at the initial state  𝑠) ∈ 𝕊 in a given dataset 𝐷 
of the RL task. Specifically, ECR reports the average Q value over all initial states as 
follows: 

 𝐸𝐶𝑅(𝐷) = ;
<
∑ max$∈𝔸 𝑄(𝑠) , 𝑎)<
)=;  (5) 

where 𝑁 is the total number of episodes and 𝑠) is an initial state for the ith episode. 
Doubly Robust (DR) evaluation [14] is an alternative technique that combines the 

low variance of importance sampling estimation and the low biases of model-based 
estimation into a single metric according to the following equation: 

𝐷𝑅(𝐷) = ;
<
∑ ∑ 𝛾+∏ 6>𝑎?@𝑠?A

6$>𝑎? @𝑠?A Q
𝑅+) − 𝑄3𝑠+) , 𝑎+)7R + 𝛾+∏

6>𝑎?@𝑠?A
6$>𝑎? @𝑠?A

𝑉(𝑠+))+B;
?=C

+
D=C

E
+=C

<
)=;  (6) 

The Q function and the value function (𝑉) are based on a given policy 𝜋. Doubly Ro-
bust provides unbiased estimates if a model is accurate and/or provides low variance 
estimates if the behavior policy is known. 

5 Results and Discussion 

To devise deep RL-based policies for adaptively scaffolding cognitive engagement, we 
created pedagogical models with batch constrained double DQNs (BCQs) using prior-
itized experience replay buffers. All models and analyses were implemented in Python 
using the Scikit-learn and Keras packages with Tensorflow backend. We select 𝜏 =
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10% for the batch constrained hyperparameter because the training data contains 8.9% 
passive remediations and 9.4% no remediations, resulting in any 𝜏 greater than 12% 
never applying constrained sampling and any value below 8% always enforcing random 
sampling. We use 𝜔 = 0.5 as our priority exponent following prior work [12] and use 
𝛾 = 0.95 with a minibatch size of 128. We copy the parameters from the online net-
work to the target network every 100 epochs. All models are trained for 20,000 epochs, 
repeated 5 times with different random seeds. We do not split our dataset into a training 
and testing set for validation as it is not necessary in batch RL [28]. 

We compare two alternative neural network architectures in the BCQ models: FC 
networks and LSTM networks. The FC BCQ models utilize four fully connected layers 
with 128 units per layer using ReLU activation functions. The LSTM BCQ models 
utilize 3 LSTM layers and a fully connected layer at the end, each with 128 units using 
ReLU activation functions. The output layer always uses a linear activation function to 
output Q values. For both architectures, a learning rate of 0.001 was utilized with the 
Adam optimizer [16] and L2 regularization. 

For both BCQ models we explore three types of input: input with only the current 
state (FC-1 or LSTM-1), input with the current state and the previous state (FC-2 or 
LSTM-2), and input with the current state and previous two states (FC-3 or LSTM-3). 
In the FC BCQ models, the input states are concatenated and encoded as a single ob-
servation. In LSTM BCQ, the input states are provided sequentially.   

We include three baseline models for the purpose of comparison in our analyses. All 
baseline models use a similar architecture as the FC BCQ models, but instead of fol-
lowing a greedy approach to action selection based upon the Bellman equation during 
model training (i.e., select the action with the maximum Q value in the next state), each 
baseline model takes a predetermined action while learning the Q functions as follows: 

 𝑦 = 𝑟 + 𝛾𝑄(𝑠#, 𝑎:$0F; 𝜃̅) (7) 

Here 𝑎:$0F is a constructive remediation for the constructive baseline model, and 𝑎:$0F 
is no remediation for the no remediation baseline model. For the random baseline, 𝑎:$0F 

involves selecting an ICAP-inspired re-
mediation according to a random pol-
icy. We select these baselines to serve 
as heuristic-based models that strictly 
follow ICAP without RL-based tailor-
ing. 𝜏 is set to 0 for the baseline mod-
els.  

We investigated the learning curves 
of different models based upon their 
ECR values. We found LSTM-2 BCQ 
performs slightly better than the 
LSTM-1 and LSTM-3 models, whereas 
little difference was observed between 
the three FC BCQ models. Based upon 
these findings, we focus our remaining 
analyses on FC-1 and LSTM-2.  

Fig. 1. Comparison between BCQ and 
ICAP-inspired baseline models. 
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As shown in Fig. 1, FC-1 and LSTM-2 both perform better than the three baseline 
models that strictly follow ICAP-inspired heuristics. Among the baselines, we observe 
that a random policy yields the lowest ECR and a constructive policy yields the highest. 

To investigate the models’ behavior after they converge to a stable policy, we exam-
ined their performance during the last 2000 training epochs (10% of the total training). 
Results are shown in Fig. 2. We observed that FC-1 and LSTM-2 scored higher than all 
other baselines in terms of both the ECR and DR evaluation metrics. Running a pair-
wise Tukey HSD test reveals significant differences (p-value < 0.001) between all mod-
els except between FC-1 and LSTM-2 for both the ECR and DR metrics. These results 
suggest there are no observed significant differences between the FC-1 BCQ and 
LSTM-2 BCQ models, but both significantly outperform all of the baselines.  

Next, we examined the number of times each type of ICAP-inspired remediation was 
selected by the different models. Once again, we use the last 2000 epochs for this anal-
ysis. For FC-1, we find that the most frequently selected action is Constructive 
(M=2195, SD=573), with Active being the second most frequent (M=1183, SD=450) 
and Passive being the third (M=962, SD=674). (All pairwise comparison p-values are 
less than 0.05). For LSTM-2, there are no significant differences observed between the 
number of Active (M=1041, SD=555), Passive (M=1041, SD=618) and No Remedia-
tion (M=1003, SD=566) actions. However, both models recommend Constructive re-
mediation significantly more often than other types of remediation (p=0.001). 

To interpret these results, it is useful to revisit our original research question: should 
ICAP be operationalized by adaptively scaffolding cognitive engagement, and, if so, 
how should we devise models for adaptively scaffolding cognitive engagement? In this 
analysis, higher ECR and DR values suggest a remediation policy has the potential to 
yield increased student normalized learning gains. Our findings indicate that the con-
structive heuristic policy performs the same or better than the no remediation and ran-
dom policies, respectively (Fig. 1 and Fig. 2). This is consistent with the ICAP model; 
feedback and remediation that elicits higher cognitive engagement yields higher learn-
ing gains than policies that elicit lower or randomized cognitive engagement. Upon 

Fig. 2. Performance comparison between BCQ and baseline models during the last 2,000 train-
ing epochs. 
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comparison with adaptive ICAP-inspired remediation policies (i.e., FC-1 BCQ and 
LSTM-2 BCQ), we find that the adaptive policies perform better than the non-adaptive 
constructive policy on the ECR and DR metrics (Fig. 1 and Fig. 2). This suggests that 
a deep RL-based adaptive approach to operationalizing ICAP to design scaffolding pol-
icies has promise for promoting increased learning compared to non-adaptive scaffold-
ing policies. Notably, we see that the adaptive policies select constructive remediation 
more frequently than other types, which is further consistent with ICAP (Fig. 2).  

There are limitations of the work. Most notably, the ECR and DR metrics are calcu-
lated from our existing dataset, which was collected according to a random policy. It is 
possible that the distribution of our data may differ from the true distribution when deep 
RL-based remediation policies are implemented in a run-time setting. This highlights 
the importance of future work implementing adaptive ICAP-inspired remediation pol-
icies at run-time and evaluating their impact on student learning outcomes. Despite 
these limitations, the results point toward the potential for improving student learning 
outcomes by combining ICAP with RL-based tailoring using batch constrained DQNs.   

6 Conclusions and Future Work 

Scaffolding cognitive engagement is a key challenge in adaptive learning environ-
ments. The ICAP framework predicts that increased cognitive engagement will yield 
improved learning, but it is unclear how to best translate the guidance provided by this 
theory into the design of scaffolding in adaptive learning environments. We utilized 
batch constrained deep Q-networks to induce policies for presenting learners with 
ICAP-inspired scaffolding in an adaptive learning environment. Empirical analysis of 
converged RL policies indicates that batch constrained deep Q-networks yield adaptive 
scaffolding policies that outperform heuristic-based policies which exclusively select 
constructive scaffolding, no scaffolding, or scaffolding at random. Policies induced 
with batch constrained deep Q-networks also select constructive scaffolding more fre-
quently than active, passive, or no scaffolding. These results (1) support the ICAP 
framework, and (2) suggest that adaptively scaffolding cognitive engagement using 
deep RL-induced policies shows promise for optimizing student learning outcomes. 

There are several promising directions for future work. First, future research should 
investigate the impact of additional reward and state features in deep RL-based policies 
to identify their impact on student learning and engagement. Second, it will be instruc-
tive to examine how multimodal data such as video-based analysis of student engage-
ment can be used to augment RL-induced policies for scaffolding student engagement. 
Finally, it will be important to evaluate the RL policies by implementing them in a run-
time learning environment and investigating their impact on student learning outcomes. 
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