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ABSTRACT 
Recent years have seen a growing interest in block-based 
programming environments for computer science education. 
Although block-based programming offers a gentle introduction 
to coding for novice programmers, introductory computer science 
still presents significant challenges, so there is a great need for 
block-based programming environments to provide students with 
adaptive support. Predictive student modeling holds significant 
potential for adaptive support in block-based programming 
environments because it can identify early on when a student is 
struggling. However, predictive student models often make a 
number of simplifying assumptions, such as assuming a normal 
response distribution or homogeneous student characteristics, 
which can limit the predictive performance of models. These 
assumptions, when invalid, can significantly reduce the predictive 
accuracy of student models.  

To address these issues, we introduce an approach to 
predictive student modeling that utilizes Bayesian hierarchical 
linear models. This approach explicitly accounts for individual 
student differences and programming activity differences by 
analyzing block-based programs created by students in a series of 
introductory programming activities. Evaluation results reveal 
that predictive student models that account for both the 
distributional and hierarchical factors outperform baseline 
models. These findings suggest that predictive student models 
based on Bayesian hierarchical modeling and representing 
individual differences in students can substantially improve 
models’ accuracy for predicting student performance on post-
tests. By improving the predictive performance of student models, 
this work holds substantial potential for improving adaptive 
support in block-based programming environments. 
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1 Introduction 
Introductory computer science education poses significant 
challenges to students, including unfamiliar syntax and obscure 
compiler errors. To address these challenges, block-based 
programming environments have been introduced to simplify 
introductory programming by enabling students to create 
programs by dragging and connecting blocks. Block-based 
programming is becoming an increasingly widely used approach 
to providing novice students with a smoother transition into 
computing, which increases overall interest and improves 
learning in computer science [28]. Block-based environments 
eliminate the majority of syntax and compiler errors that often 
frustrate novice learners, and have been shown to reduce 
students’ overall cognitive load [30].  

Despite these benefits, block-based environments currently 
provide limited support to students beyond the structure of the 
blocks themselves, such as hints or feedback related to semantic 
errors in the program, relying on instructors to fill any gaps in 
student knowledge or ability [19]. Predictive student modeling 
provides a potential solution, as models of student performance 
can inform learning  environments in real time when a student is 
struggling [7, 8, 12]. Predictive student models can inform 
adaptive support systems by providing real-time formative 
assessments of student knowledge. However, many approaches to 
student modeling rely on techniques that can detrimentally 



 
 

 
 

impact the predictive performance of student models and their 
interpretation due to statistical assumptions related to the 
underlying data [3].  

Block-based programming environments pose significant 
challenges for predictive student modeling. Programming 
activities are typically multi-step, with both multiple possible 
correct solutions, as well as a wide variance in incorrect solutions. 
In addition, there is often a large variation in the number of 
activities completed by individual students, particularly when 
activities are completed outside of the classroom in online 
environments. Further, students exhibit a wide range of incoming 
abilities in programming, thereby substantially increasing the 
need to model individual student competencies.   

In this work we present a novel approach to predictive student 
modeling for block-based programming. First, we capture student 
programming performance using a novel encoding based on a 
distance metric to an expert solution. Using this encoding, we 
utilize a novel Bayesian hierarchical regression framework using 
alternative distributions and participant-matching for estimating 
random effects. By choosing distributions that more accurately 
reflect the distribution of the response variable and its associated 
residuals, predictive performance is improved and inference using 
the parameters remains valid. A hierarchical component to the 
Bayesian models accounts for both student-level characteristics as 
well as programming activity-level characteristics. Additionally, 
by using a Bayesian framework, implemented using L1 (Lasso) 
regularization on the features, we maintain interpretability that 
many student models lose by relying on more complex, less 
scrutable computational techniques.   

Results from a comparison of the normal, Poisson, and 
negative binomial distributions in the proposed Bayesian 
regression model shows that both the Poisson and negative 
binomial distributions, which are both used to model count data, 
outperform the normal distribution in modeling student 
performance. We then add random effects corresponding to the 
specific student and activity for which the model is making 
predictions. The trained models demonstrate substantial 
improvements in predictive performance over the baseline 
Bayesian linear models, and they reveal that models augmented 
with the student-level random effects outperform all other 
models. However, the activity-level random effect provided only 
marginal improvements compared to the student-level effects. 
These results highlight the effectiveness of the framework in 
modeling student knowledge in a block-based programming 
environment, as well as demonstrating the potential positive 
impacts of incorporating non-normal distributions and student-
level parameters into student modeling frameworks. 

2 Related Work 
Predictive student modeling is a type of student modeling that 
seeks to predict future student performance based on students’ 
prior behaviors in a learning environment. For example, many  
student models built using Bayesian Knowledge Tracing (BKT) [6] 
seek to predict future performance on activities involving a given 
concept based on students’ correct or incorrect responses to a 

previous series of activities involving that concept. Recent work 
has sought to improve the accuracy of these models by 
augmenting them with student-specific parameters [31], utilizing 
more complex underlying computational models [17], and 
incorporating additional factors such as inter-skill similarity [13]. 
For open-ended tasks, other models have shown improved 
accuracy by representing students’ performance on a continuous 
rather than binary scale (i.e., incorrect or correct) [33]. Sao Pedro 
et al. were able to apply a combination of human coded behaviors 
and machine learning techniques to detect inquiry behaviors in an 
open-ended science learning environment [24]. Additionally, 
several groups have developed models based on evidence-
centered design [16, 23, 26], seeking to model student knowledge 
by linking observed actions in a learning environment to 
conceptual knowledge through an evidence model. These models 
typically evaluate their predictions of student knowledge based on 
how well they predict a student’s performance on a summative 
assessment. 

Most student modeling related to programming has centered 
on text-based programming activities, including attempts to 
cluster similar student behavior [5], or identify which concepts 
are causing students the most difficulty [22]. Because most models 
of learners in text-based programming tend to focus on issues 
uncommon to block-based environments, such as syntax and 
compiler errors, there is a growing body of research focused 
specifically on learners in block-based programming 
environments built upon Snap! or Google’s Blockly. Price et al. 
utilized an edit distance metric to compare the current state of a 
student’s program to previously logged coding trajectories in 
order to generate next-step hints [20]. Mao et al. used Recent 
Temporal Patterns to predict student performance in an open-end 
programming task [14]. Grover et al. combined both hypothesis-
driven approaches with data-driven frameworks to measure 
computational thinking ability in block-based programming 
activities [11]. Other research has utilized both problem-solving 
behaviors [2, 15] and block-based programming trajectories [1] 
derived from student interactions in a game-based learning 
environment for computational thinking to predict student 
performance on a post-test assessment.  

Previous work in predictive student modeling has typically 
relied on the assumptions that the response variable follows the 
normal distribution and is independent and identically 
distributed. These assumptions, when incorrect, can significantly 
reduce the predictive accuracy of student models. For example, 
Arthurs et al. investigated the response variable distribution and 
found that using the logit-normal distribution improved 
predictive performance compared to the normal distribution [3]. 
Yudelson et al. further described how assuming homogeneous 
student data in BKT can lead to limited predictive performance 
[32]. Other work has shown significant improvements by 
incorporating hierarchical components into their models that 
account for differences in groups of data, treating student data 
differently depending on its context [4, 25]. This work builds on 
these families of prior work to create student models for block-
based programming that significantly improve the accuracy of 
predictive student models by accounting for both distributional 



 

assumptions and heterogeneity in student problem-solving 
interactions. 

3 Methods 
To investigate predictive student modeling for block-based 
programming environments, we collected programming 
interaction data of students interacting with a block-based 
programming environment for introductory computer science 
education. The programming environment captured interaction 
data in real time, logging students’ programming behaviors as 
they attempt to solve programming activities. In this section, we 
describe the block-based programming environment, the 
programming activities, and the study in which data were 
collected.  

3.1  The PRIME Learning Environment  
The analyses conducted in this paper utilizes data collected from 
PRIME, an adaptive block-based programming environment for 
undergraduate, non-computer science majors learning 
introductory programming concepts. The environment currently 
has over twenty programming activities that each build upon core 
computer science competencies: input/output, numeric data 
types, mathematical expressions, variables, iterations (both 
definite and indefinite), abstraction, functions, parameters, return 
values, Boolean data types, conditionals, and debugging. The 
block-based programs in PRIME are created using a customized 
version of Google’s Blockly block-based programming framework 
(Figure 1). Figure 1 illustrates a completed programming activity 
in PRIME. 

The current study focuses on the first three units of PRIME, 
which cover a set of topics for introductory undergraduate 
computer science courses. Unit 1 provides a brief tutorial on the 
learning environment, covers topics such as  basic input/output, 
numeric data types, math expressions, and definite loops. Unit 2 
primarily focuses on functions, parameters, and return variables, 
and Unit 3 introduces Boolean data types, conditionals, and 
indefinite loops. Each of these three units consists of a series of 
short programming activities, and each unit is designed to take 
approximately 1 hour to complete for a student of average ability. 
Units 1 and 2 contain seven activities each, and Unit 3 consists of 
six, for a total of 20 programming activities. The activities build 
upon concepts and require students to create more complex 
programs using blocks that introduce more advanced topics.  

 

 
Figure 1. Screenshot of the PRIME learning environment. 
 

Students program their solution to each activity through a 
workspace where they can drag and drop blocks of code. The 
default workspace consists only of the “Start” block, which serves 
as the entry point for the program (i.e., analogous to the “main” 
function in many programming languages). The set of blocks 
available to students expands as the activities introduce new 
topics. In addition to utilizing the blocks’ functionality, students 
can run their code, provide input to the program, request hints if 
they are unable to make progress, and save code to use in a later 
activity. 

3.2 Study Design 
We deployed PRIME at a large public university in the United States 
to collect student programming interactions. Students in the study 
were enrolled in one of two sections of an online introductory 
course required for all engineering students. The students in the 
study completed a pre- and post-test before and after interacting 
with PRIME to assess their computer science knowledge. This 
multiple-choice assessment was validated by three content area 
experts and demonstrated item-level reliability and appropriate 
difficulty using IRT analysis. Cronbach’s alpha for the pretest was 
.880 and for the post-test was .896.  

A total of 116 students completed both the pre- and post-tests. 
After removing students with missing data and only including 
those who had attempted at least one activity, this resulted in a 
final set of 99 students. A paired samples t-test indicated a 
significant difference between pre-test score (M = 15.49, SD = 6.39) 
and post-test score (M = 17.04, SD = 6.52), indicating that students’ 
assessment scores improved after interacting with PRIME (t(99) = 
4.62, p < 0.001). 

Study participants had an average age of 19 with 30.30% of 
participants reporting their gender as female. Of the 99 students, 
67.7% reported their race as White, 16.2% as Asian, 7.1% as 
Hispanic or Latino, 5.1% as Black or African American, and 4.0% 
as other. There were a total of 1172 activities attempted by the 99 
students (M = 11.58, SD = 6.07), with 769 completed successfully 
(M = 7.77, SD = 5.74). 



 
 

 
 

Within the 20 activities included in this study, there were a 
total of 20 distinct blocks, presented in a toolbox, that could be 
included in solutions. While each of these blocks are not included 
in every activity, the full set of blocks include: print, text, set 
variable, get variable, math number, math constant, math 
arithmetic, prompt, repeat loop (definite), function definition (no 
return), function call (no return), function definition (return), 
function call (return), logic operation, Boolean, logic comparison, if, 
else if, else, and repeat loop (indefinite).  

The PRIME learning environment logs each student’s 
interactions. The system uses expert-designed test cases to detect 
when the programming activity has been fully completed. 
Students can progress to the next activity at any time without 
fully completing the current activity. By using the results of the 
test cases, we determined the set of activities each student 
completed, as well as the activities they attempted but did not 
complete. In Figure 2 below, an example student solution is shown 
next to an expert-designed solution for one of the activities. This 
activity, the Accumulator activity, asks students to display the 
sum of five numbers entered by the user with the use of only two 
variable blocks. The student solution did not pass the test cases 
and was incorrect. 

 

Figure 2. Student solution (left) and expert solution (right) 
to the Accumulator activity. 

4 Bayesian Linear Models of Student 
Performance 
To predict student performance on a test administered after the 
programming interactions with PRIME, we constructed linear 
models using Bayesian Lasso regression. The dataset used in this 
work was relatively small (99 participants), which makes linear 
models more appropriate in order to prevent overfitting as well as 
maintain interpretability of the model parameters. We 
implemented the Bayesian regression models using double 
exponential priors on the parameters, which is equivalent to L1 
regularization (Lasso regression), serving as a form of variable 
selection.  

In addition to the prior distributions assigned to the model 
parameters, we varied the distribution chosen to model the 
response variable, the student’s post-test score. Choosing an 
appropriate distribution to model the response variable is critical, 
as it can influence the model’s predictive accuracy and 
interpretability. A simple example of this is when making a binary 

classification. In binary classification, the response variable is 
desired to be on a scale of 0 to 1, which is why the logistic function 
is chosen to map the linear combination of input variables and 
model parameters to this scale. Choosing a different distribution 
in this case, such as the normal distribution, would result in 
predictions outside the desired range of 0 to 1.  

In this case, the post-test score can only be positive, as it is a 
count of the number of questions that a student answered 
correctly out of a fixed number of questions. Thus, distributions 
designed for count-based data, such as the Poisson and negative 
binomial distribution, may be more appropriate than the typical 
normal distribution [21]. However, the Poisson distribution 
requires the assumption that the mean of the response variable is 
equal to its variance. The set of post-test scores from this study 
had a mean of 17.04 and variance of 42.57. This issue, 
overdispersion, requires a more flexible distribution for the mean 
and variance to differ.  

 
Figure 3. Post-test score histogram with the normal, 
Poisson, and negative binomial distributions fitted. 

 
To accommodate over-dispersion, one method is to use the 

negative binomial distribution, which adds flexibility to the 
existing model by adding a parameter m. Utilizing such a 
distribution is more appropriate for modeling post-test score 
because it addresses assumptions made by the normal 
distribution—namely, that post-test score can only be positive. We 
compare the use of the normal, Poisson, and negative binomial 
distributions for predicting student post-test scores. Figure 3 
shows how well each distribution fits the response variable based 
on maximum likelihood estimates of each distribution’s 
parameters. This reveals that both the normal and Poisson 
distributions do not account for the tails of the data nearly as well 
as the negative binomial distribution does. 

In standard linear regression models, another assumption that 
is made is that the same model applies to all observations in the 
data. If the data are grouped, such as having multiple observations 
per student and activity, it is more appropriate to treat 
observations from the same group as similar. Random effects are 



 

a way to describe these group-level characteristics. In terms of 
modeling students, a linear student model will have a set of fixed 
effects that describe the relationship between the predictor 
variables and the response variable, but there are student-level 
individual differences. Similarly, each programming activity 
varies in difficulty and ultimately has a different effect on the 
response variable. In this work, we explore the representation of 
both student-level and programming activity-level characteristics 
using random effects and use population-level fixed effects to 
represent extracted block-based programming features, which we 
will describe in the next section. 

4.1 Representing Student Programs 
To represent the student programming solutions, we first 
extracted the set of blocks used in the set of attempted 
programming activities from each student. We treated each 
student-activity attempt pair as an observation in the dataset, for 
a total of 1146 observations by the 99 students. Of these, 769 were 
correct solutions and 377 were incorrect/incomplete solutions. 
After extracting the programs, we represented each observation 
as the block-wise distance from an expert-designed solution to the 
given programming activity. The set of expert-designed correct 
solutions comprised of 20 unique blocks from the PRIME block 
toolbox. We created a vector for each observation that calculated 
the difference in the number of each block used between the 
expert solution and the student’s solution. Thus, the feature vector 
consists of 20 integers, each representing the difference for a 
specific block. For example, if the expert solution used 5 print 
blocks for a particular activity and the student used 3 print blocks 
for their attempt, this difference would be 2. As different 
programming activities require different blocks, the distribution 
of block utilization frequency varies by activity. 

As the expert solution to the programming activity only 
represents one possible solution to the activity, we also included 
a binary value of whether the student completed the activity, as 
defined by passing all test cases for that activity. This feature 
representation aims to capture if the student’s code was close (in 
edit distance) to an expected solution while also accounting for 
unique or creative solutions different from the expected. To give 
each feature vector context of a student’s prior knowledge, we 
also use pre-test score as a final feature for a complete feature 
representation of dimension 22. Since each student completes 
multiple activities, we ultimately aggregate predictions from each 
student-activity pair to result in one final prediction per student. 
To perform this aggregation, we averaged the predictions for each 
student using each of the activities they attempted. 

4.2 Student-Level Random Effects 
To capture the characteristics exhibited by each student, we 
created a random effect for each student in the training set. For 
each observation in the training set, the feature vectors were also 
given a unique identifier that ranged between one and the number 
of students in the training set, k, grouping observations by 
student. During training, the standard linear regression then adds 
an extra term, 𝜃, that serves as an additional intercept to the 

model. When evaluating the model on the test set, the regression 
uses the intercept of the student in the training set with the closest 
feature vector. To calculate this distance, we used the nearest 
neighbor in terms of Euclidean distance. By performing the 
mapping in this manner, the evaluation can be made aware of 
shared characteristics between different students. The final 
regression model that predicts student post-test score after each 
student-activity pair with a student-level random intercept is 
shown below using the normal distribution as the linking 
function. 

𝑌𝑖𝑗  ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼 + ∑ 𝑋𝑖𝑘𝛽𝑘
𝑝
𝑘=1  +  𝜃𝑖,𝜎

2)  (1) 

𝑌𝑖𝑗 is the post-test score for student i attempting activity j. 
Note that the post-test score will be the same for student i across 
all activities that they attempt, but we make this prediction several 
times. 𝛼 is a fixed intercept added to all predictions, 𝑋𝑖𝑘 (of which 
there are 22) is the input feature k for student i , and 𝛽𝑘 is the 
parameter learned for feature k. Finally, 𝜃𝑖 is the random intercept 
added corresponding to the specific training set student. In 
evaluation, the random intercept belonging to the observation 
closest to the test set observation will be used. 𝜎2 is the variance. 
When other distributions are used to model this regression, the 
usage of the linear combination of features and intercepts will 
vary to model those distribution’s mean and variance.  

4.3 Activity-Level Random Effects 
In addition to the student-level characteristics that can be modeled 
to help identify types of students and account for differences in 
prior knowledge, accounting for the differences in the specific 
programming activities a student attempted can inform predictive 
models. In PRIME, there are 20 activities that are ordered in such a 
way that introduces topics based on common curricula in 
computer science education. Thus, the activities build upon one 
another and increase in overall complexity. Without accounting 
for these differences when predicting the post-test score for each 
observation, the model treats the features for each activity as fixed 
effects. We introduce a random intercept for the specific activity 
that the student attempted for the given observation, 𝛾. This 
parameter is added to the standard regression formulation to 
denote differences in difficulty and requirements of each activity. 
In training, the model learns the random intercept parameter for 
each of the 20 activities, and in evaluation chooses the 
corresponding intercept to add to the regression based on the 
activity of the given observation. Using both the student-level and 
the activity-level random intercepts, the final regression equation 
is shown below, again showing the normal distribution link 
function. 

𝑌𝑖𝑗  ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼 + ∑ 𝑋𝑖𝑘𝛽𝑘
𝑝
𝑘=1  +  𝜃𝑖  +  𝛾𝑗,𝜎

2)   (2) 

This variation of the regression acts exactly the same as the 
student-level-only random effects model, but now the extra term, 
𝛾, is added. During training, the model learns the value of 𝛾 for 
each of the 20 activities. In evaluation, the model adds the random 
intercept corresponding to the activity of the observation. 



 
 

 
 

5 Results 
We compare the predictive accuracy of each model, evaluated 
using 10-fold student level cross-validation. We perform cross-
validation to compare the performance of the standard linear 
regression (without random effects) for the normal, Poisson, and 
negative binomial distributions. We then compare the 
performance of the best fitting fixed effect model (i.e., negative 
binomial) with the two versions of random intercepts (i.e., 
student, activity). We report R2, mean squared error (MSE), and 
mean absolute error (MAE) averaged across each cross-validation 
fold. In addition to performing cross-validation, we report the 
Watanabe-Akaike information criterion (WAIC) [27] for 
estimating the out-of-sample performance. In selecting the better 
performing model, the model with a lower WAIC is preferred. 
WAIC is calculated using the entire dataset (i.e., no folds). This 
method has the advantage over the more traditional cross-
validation by eliminating the requirement of training several 
models. WAIC is a computationally efficient method that is well 
suited for Bayesian regression models, and is reported in addition 
to cross-validation as a convenient alternative [9].  

All models in this work are trained using Markov chain Monte 
Carlo (MCMC) sampling in R using JAGS [18]. All models were 
checked for convergence using the Gelman-Rubin diagnostic, 
frequently used for evaluating MCMC convergence [10]. For each 
fold of the fixed-effect models, we draw 5000 MCMC samples after 
omitting the first 2000 for burn-in. The burn-in samples are 
omitted as part of a procedure to ensure the convergence of the 
Markov chain in MCMC sampling. The final model used to predict 
the post-test scores of test set observations uses the means of the 
5,000 samples for each model parameter. For the models that use 
random effects, we draw 15,000 MCMC samples after omitting the 
first 4,000 to allow for better convergence with the higher number 
of model parameters. Within each model, both the parameters 
corresponding to the coefficients of the features, 𝛽, and the 
random effects are given prior distributions in the Bayesian 
model. For each 𝛽, we used double exponential priors with mean 
0 to function as Lasso priors. By doing this, many of the features 
in the final model will be 0, as only a select few features will be 
chosen as significant. For each of the random effects, we chose the 
normal distribution with mean 0 and a large variance as an 
uninformative prior. The strength of the prior distributions for all 
model parameters are uninformative and weak. Therefore, we are 
allowing the data to have a larger effect on the posterior 
distributions for all model parameters.  

 We first compare the predictive performance of using 
different distributions to model student post-test scores. Next, we 
compare the addition of random effects to the model with the best 
performance—the negative binomial distribution. 

5.1 Comparison of Response Variable 
Distribution 
The first comparison shows the difference in predictive 
performance when different distributions are chosen to model the 
response variable, post-test score. Table 1 displays the 
performance of each model. 

 
Table 1. Comparison of predictive performance of the 
normal, Poisson, and negative binomial distributions. 

 

Regression Model R2 MSE MAE WAIC 

Normal 0.618 13.013 2.981 6491.815 

Poisson 0.639 12.813 2.879 6306.875 

Negative Binomial 0.641 12.696 2.877 6348.865 

 
As shown above, the negative binomial distribution best 

models the post-test score. The regressions using the negative 
binomial and Poisson distributions fit the data better than the 
regression using the normal distribution, though many of the 
metrics for the negative binomial distribution are only marginally 
different from the Poisson distribution. We select the negative 
binomial as the better choice due to the increased model 
flexibility, as the Poisson makes the assumption that the mean and 
variance are equal. 

5.2 Hierarchical Bayesian Modeling with the 
Negative Binomial Distribution 
The second comparison shows the difference in predictive 
performance when random effects (RE) are added to the base 
model. In this case, we chose the base model to be the Bayesian 
Lasso regression with the negative binomial (NB) distribution. 
Table 2 shows the performance of each model compared to the 
base regression model. 

 
Table 2. Comparison of predictive performance of the 
negative binomial (NB) regression, NB + student-level RE, 
and NB + student-level + activity-level RE. 

 

Regression Model R2 MSE MAE WAIC 

NB 0.641 12.696 2.877 6348.865 

NB+Student RE 0.681 11.608 2.717 5606.372 

NB+Student+Activity RE 0.683 11.585 2.725 5624.745 

 
As shown in the table, the NB+Student RE model significantly 

outperforms the baseline NB model across all metrics. However, 
there is very little difference in the performance between the 
student-level random effects model and the model that 
additionally incorporates the activity-level random effects. We 
will use the student-level random effects model as the best 
performing model moving forward because it uses less parameters 
overall and predicts post-test performance with near equal 
accuracy, and it is therefore more parsimonious. 

5.3 Variability of Student-Level Random 
Effects 
Bayesian linear models offer the advantage of interpretability 
relative to more complex models. Specifically, the MCMC samples 
produce a distribution for each parameter that can be used to 



 

estimate the uncertainty of the model for how useful each feature 
is. Additionally, the Bayesian Lasso coefficients produce a 
confidence interval, which can help in variable selection. The best 
performing model was the student-level random effects 
regression. Figure 4 shows the variability of the random effects for 
each student, emphasizing the usefulness of incorporating these 
student-level characteristics for student modeling. This figure 
highlights the differences in students, where the random intercept 
added to the regression equations varies widely for each student. 
The blue line represents the confidence of this effect. When 
evaluating the predictive model using these trained random 
effects, the nearest neighbors indexing selects the random 
intercept of the closest feature vector within the training set to 
the new observation. As this figure shows, selecting the most 
similar random effect is a crucial step in calculating the final 
regression output. 

 
Figure 4. Student-level random intercept values. 

6 Discussion 
The evaluation revealed that predictive student models 
incorporating student-level characteristics improved model 
accuracy. After evaluating Bayesian regression models that used 
the normal, Poisson, and negative binomial distributions, we 
found that the regression using the negative binomial distribution 
best predicted student post-test score. Additionally, the modeling 
assumptions made using the negative binomial distribution were 
upheld compared to the assumptions of the other distributions. 
Adding random effects to the negative binomial Bayesian 
regression model was found to significantly increase predictive 
performance. Adding student-level random effects yielded a 
significant performance increase, while the addition of activity-
level random effects had only a modest positive impact. Using 
non-normal distributions and hierarchical modeling offer the 
potential to improve student models so that they can more 
effectively and proactively support struggling students. 

The Bayesian framework presented in this work for modeling 
performance in block-based programing has several advantages. 
First, by making a prediction after each time a student attempts 
an activity, it is possible to handle varying amounts of data for 

different students. Some students only attempt a few activities, 
and some students attempt all activities. By averaging the 
predictions made after each student-activity pair, the model can 
handle both of these situations. Second, the addition of student-
level random effects in the hierarchical model enables the 
incorporation of student-specific characteristics when making 
predictions. The nearest-neighbor approach when extracting the 
random effects in predictions relies on the training set having seen 
a vast amount of types of students to ensure that the correct 
random effect is chosen in evaluation. Third, the Bayesian linear 
model with Lasso priors enables confidence intervals to be 
produced on the variables that are not close to 0. By doing this, 
we are able to infer which variables are important in this 
prediction. Ultimately, the model strongly relied on pre-test scores 
and applied very small coefficients to all other fixed variables. 

The improvement in performance of the regression models 
using the negative binomial and Poisson distributions is not 
surprising, as the approximate distribution of the post-test score 
does not follow the normal distribution. Specifically, the standard 
errors in the standard normal regression are calculated under the 
assumptions that the residuals are independently and identically 
distributed. When evaluating these models, the prediction 
intervals are calculated assuming the residuals are normally 
distributed. If this is not the case, the prediction intervals may not 
be accurate.  

A surprising result is that the activity-level random effects do 
not improve predictions over the student-level random effects. 
Activity-level random effects were hypothesized to be useful due 
to the varying level of difficulty in the activities, implying 
performance on easy activities is less informative than 
performance on harder programming activities. However, it is 
possible there is limited data for all activities to become of use. 
Specifically, fewer students attempt the later activities. The later 
activities, which are more difficult and perhaps more revealing 
about the student’s computer science skill, are attempted far less 
frequently and thus the random effects for these activities cannot 
be distinguished from those of earlier activities. Incorporating 
additional data will likely help with this phenomenon. 

7 Limitations 
A key challenge was determining how to aggregate predictions 
for each student in evaluation. Since the model makes predictions 
per every student-activity pair, the predictions must be 
aggregated for every student. We chose to average these results, 
i.e., each activity that a student attempts contributes equally to the 
overall prediction. A non-uniform weighting of the activities 
could further improve accuracy.  

A second limitation in this work is the way in which the 
nearest neighbor calculation is performed. For choosing the 
student-level random effect in evaluation, we found the closest 
vector in the training set to the test observation. This method 
assumes that each feature in the observation should be treated 
equally. However, we found that certain features were more 
predictive overall, which implies that weighting those features in 
this nearest neighbor calculation could improve the overall 



 
 

 
 

indexing of random effects. Another potential problem occurs if 
the test observation is unlike any observation in the training set. 
In this case, the random effect chosen will refer to a student that 
is perhaps extremely different from the students in the test 
observation. One approach would be to create a threshold distance 
between the test and training observations. If no training 
observation falls within this distance threshold, then the model 
could use a marginal random effect as a default.  

Another limitation is the large number of student-level 
random effects. The model creates a random effect per student in 
the training set, which ultimately varies depending on how much 
data is available. If expert prior information were available to 
describe types of students, fewer random effects could be used, 
reducing the number of parameters in the final model. This could 
reduce overall model complexity and lead to better interpretability 
with respect to which types of students benefit from particular 
programming activities. 

8 Conclusion 
As computer science education continues to evolve and utilize 
block-based programming as a teaching tool for introductory 
concepts, learning environments that tailor the experiences of 
students based on student-level characteristics have significant 
potential. However, predictive models that do incorporate these 
student-level characteristics often make a number of simplifying 
assumptions that can negatively affect model performance.  

To address these issues, we created a Bayesian linear 
regression framework that models the response variable 
distribution using more appropriate distributions, and we created 
random effects to account for both student-level and 
programming activity-level characteristics when making post-test 
score predictions. We found that models that used the negative 
binomial distribution outperformed both the Poisson and normal 
distribution-based models. Additionally, models that incorporated 
student-level characteristics outperformed models that did not. 
We also added activity-level random effects to the hierarchical 
model, but this did not significantly improve results, suggesting 
that the better model uses student-level characteristics only. This 
indicates that student models that treat types of students 
differently in making predictions can improve student modeling. 

In future work it will be instructive to investigate different 
feature representations for student programs. Instead of 
comparing student solutions to expert-designed block-based 
programs, other encodings such as comparing abstract syntax 
trees, or distributed representations created from large data sets 
using deep learning [29] could be used. Another promising 
direction for future work is to investigate alternative 
representations for student-level characteristics, which may 
further increase the predictive accuracy of student models. 
Finally, it will be important to integrate these models into the 
learning environment, to better understand how they can be used 
to drive adaptive support and improve the effectiveness and 
efficiency of the learning experience for novice computer science 
students.  
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