
Predictive Student Modeling in Block-Based Programming
Environments with Bayesian Hierarchical Models

Andrew Emerson1 Michael Geden1 Andy Smith1 Eric Wiebe1 Bradford Mott1
Kristy Elizabeth Boyer2 James Lester1

 1North Carolina State University, Raleigh, North Carolina, USA
1{ajemerso, mageden, pmsmith4, wiebe, bwmott, lester}@ncsu.edu

 2University of Florida, Gainesville, Florida, USA
2keboyer@ufl.edu

ABSTRACT
Recent years have seen a growing interest in block-based
programming environments for computer science education.
Although block-based programming offers a gentle introduction
to coding for novice programmers, introductory computer science
still presents significant challenges, so there is a great need for
block-based programming environments to provide students with
adaptive support. Predictive student modeling holds significant
potential for adaptive support in block-based programming
environments because it can identify early on when a student is
struggling. However, predictive student models often make a
number of simplifying assumptions, such as assuming a normal
response distribution or homogeneous student characteristics,
which can limit the predictive performance of models. These
assumptions, when invalid, can significantly reduce the predictive
accuracy of student models.

To address these issues, we introduce an approach to
predictive student modeling that utilizes Bayesian hierarchical
linear models. This approach explicitly accounts for individual
student differences and programming activity differences by
analyzing block-based programs created by students in a series of
introductory programming activities. Evaluation results reveal
that predictive student models that account for both the
distributional and hierarchical factors outperform baseline
models. These findings suggest that predictive student models
based on Bayesian hierarchical modeling and representing
individual differences in students can substantially improve
models’ accuracy for predicting student performance on post-
tests. By improving the predictive performance of student models,
this work holds substantial potential for improving adaptive
support in block-based programming environments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
UMAP '20, July 14–17, 2020, Genoa, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6861-2/20/07…$15.00
https://doi.org/10.1145/3340631.3394853

CCS CONCEPTS
• Social and professional topics → Computing education;
• Applied computing → Education

KEYWORDS
Predictive Student Modeling, Bayesian Hierarchical Modeling,
Block-Based Programming

ACM Reference format:

Andrew Emerson, Michael Geden, Andy Smith, Eric Wiebe, Bradford
Mott, Kristy Elizabeth Boyer, and James Lester. 2020. Predictive Student
Modeling in Block-Based Programming Environments with Bayesian
Hierarchical Models. In Proceedings of Twenty-Eighth ACM International
Conference on User Modeling, Adaptation, and Personalization (UMAP’20).
ACM, New York, NY, USA, 10 pages.

1 Introduction
Introductory computer science education poses significant
challenges to students, including unfamiliar syntax and obscure
compiler errors. To address these challenges, block-based
programming environments have been introduced to simplify
introductory programming by enabling students to create
programs by dragging and connecting blocks. Block-based
programming is becoming an increasingly widely used approach
to providing novice students with a smoother transition into
computing, which increases overall interest and improves
learning in computer science [28]. Block-based environments
eliminate the majority of syntax and compiler errors that often
frustrate novice learners, and have been shown to reduce
students’ overall cognitive load [30].

Despite these benefits, block-based environments currently
provide limited support to students beyond the structure of the
blocks themselves, such as hints or feedback related to semantic
errors in the program, relying on instructors to fill any gaps in
student knowledge or ability [19]. Predictive student modeling
provides a potential solution, as models of student performance
can inform learning environments in real time when a student is
struggling [7, 8, 12]. Predictive student models can inform
adaptive support systems by providing real-time formative
assessments of student knowledge. However, many approaches to
student modeling rely on techniques that can detrimentally

impact the predictive performance of student models and their
interpretation due to statistical assumptions related to the
underlying data [3].

Block-based programming environments pose significant
challenges for predictive student modeling. Programming
activities are typically multi-step, with both multiple possible
correct solutions, as well as a wide variance in incorrect solutions.
In addition, there is often a large variation in the number of
activities completed by individual students, particularly when
activities are completed outside of the classroom in online
environments. Further, students exhibit a wide range of incoming
abilities in programming, thereby substantially increasing the
need to model individual student competencies.

In this work we present a novel approach to predictive student
modeling for block-based programming. First, we capture student
programming performance using a novel encoding based on a
distance metric to an expert solution. Using this encoding, we
utilize a novel Bayesian hierarchical regression framework using
alternative distributions and participant-matching for estimating
random effects. By choosing distributions that more accurately
reflect the distribution of the response variable and its associated
residuals, predictive performance is improved and inference using
the parameters remains valid. A hierarchical component to the
Bayesian models accounts for both student-level characteristics as
well as programming activity-level characteristics. Additionally,
by using a Bayesian framework, implemented using L1 (Lasso)
regularization on the features, we maintain interpretability that
many student models lose by relying on more complex, less
scrutable computational techniques.

Results from a comparison of the normal, Poisson, and
negative binomial distributions in the proposed Bayesian
regression model shows that both the Poisson and negative
binomial distributions, which are both used to model count data,
outperform the normal distribution in modeling student
performance. We then add random effects corresponding to the
specific student and activity for which the model is making
predictions. The trained models demonstrate substantial
improvements in predictive performance over the baseline
Bayesian linear models, and they reveal that models augmented
with the student-level random effects outperform all other
models. However, the activity-level random effect provided only
marginal improvements compared to the student-level effects.
These results highlight the effectiveness of the framework in
modeling student knowledge in a block-based programming
environment, as well as demonstrating the potential positive
impacts of incorporating non-normal distributions and student-
level parameters into student modeling frameworks.

2 Related Work
Predictive student modeling is a type of student modeling that
seeks to predict future student performance based on students’
prior behaviors in a learning environment. For example, many
student models built using Bayesian Knowledge Tracing (BKT) [6]
seek to predict future performance on activities involving a given
concept based on students’ correct or incorrect responses to a

previous series of activities involving that concept. Recent work
has sought to improve the accuracy of these models by
augmenting them with student-specific parameters [31], utilizing
more complex underlying computational models [17], and
incorporating additional factors such as inter-skill similarity [13].
For open-ended tasks, other models have shown improved
accuracy by representing students’ performance on a continuous
rather than binary scale (i.e., incorrect or correct) [33]. Sao Pedro
et al. were able to apply a combination of human coded behaviors
and machine learning techniques to detect inquiry behaviors in an
open-ended science learning environment [24]. Additionally,
several groups have developed models based on evidence-
centered design [16, 23, 26], seeking to model student knowledge
by linking observed actions in a learning environment to
conceptual knowledge through an evidence model. These models
typically evaluate their predictions of student knowledge based on
how well they predict a student’s performance on a summative
assessment.

Most student modeling related to programming has centered
on text-based programming activities, including attempts to
cluster similar student behavior [5], or identify which concepts
are causing students the most difficulty [22]. Because most models
of learners in text-based programming tend to focus on issues
uncommon to block-based environments, such as syntax and
compiler errors, there is a growing body of research focused
specifically on learners in block-based programming
environments built upon Snap! or Google’s Blockly. Price et al.
utilized an edit distance metric to compare the current state of a
student’s program to previously logged coding trajectories in
order to generate next-step hints [20]. Mao et al. used Recent
Temporal Patterns to predict student performance in an open-end
programming task [14]. Grover et al. combined both hypothesis-
driven approaches with data-driven frameworks to measure
computational thinking ability in block-based programming
activities [11]. Other research has utilized both problem-solving
behaviors [2, 15] and block-based programming trajectories [1]
derived from student interactions in a game-based learning
environment for computational thinking to predict student
performance on a post-test assessment.

Previous work in predictive student modeling has typically
relied on the assumptions that the response variable follows the
normal distribution and is independent and identically
distributed. These assumptions, when incorrect, can significantly
reduce the predictive accuracy of student models. For example,
Arthurs et al. investigated the response variable distribution and
found that using the logit-normal distribution improved
predictive performance compared to the normal distribution [3].
Yudelson et al. further described how assuming homogeneous
student data in BKT can lead to limited predictive performance
[32]. Other work has shown significant improvements by
incorporating hierarchical components into their models that
account for differences in groups of data, treating student data
differently depending on its context [4, 25]. This work builds on
these families of prior work to create student models for block-
based programming that significantly improve the accuracy of
predictive student models by accounting for both distributional

assumptions and heterogeneity in student problem-solving
interactions.

3 Methods
To investigate predictive student modeling for block-based
programming environments, we collected programming
interaction data of students interacting with a block-based
programming environment for introductory computer science
education. The programming environment captured interaction
data in real time, logging students’ programming behaviors as
they attempt to solve programming activities. In this section, we
describe the block-based programming environment, the
programming activities, and the study in which data were
collected.

3.1 The PRIME Learning Environment
The analyses conducted in this paper utilizes data collected from
PRIME, an adaptive block-based programming environment for
undergraduate, non-computer science majors learning
introductory programming concepts. The environment currently
has over twenty programming activities that each build upon core
computer science competencies: input/output, numeric data
types, mathematical expressions, variables, iterations (both
definite and indefinite), abstraction, functions, parameters, return
values, Boolean data types, conditionals, and debugging. The
block-based programs in PRIME are created using a customized
version of Google’s Blockly block-based programming framework
(Figure 1). Figure 1 illustrates a completed programming activity
in PRIME.

The current study focuses on the first three units of PRIME,
which cover a set of topics for introductory undergraduate
computer science courses. Unit 1 provides a brief tutorial on the
learning environment, covers topics such as basic input/output,
numeric data types, math expressions, and definite loops. Unit 2
primarily focuses on functions, parameters, and return variables,
and Unit 3 introduces Boolean data types, conditionals, and
indefinite loops. Each of these three units consists of a series of
short programming activities, and each unit is designed to take
approximately 1 hour to complete for a student of average ability.
Units 1 and 2 contain seven activities each, and Unit 3 consists of
six, for a total of 20 programming activities. The activities build
upon concepts and require students to create more complex
programs using blocks that introduce more advanced topics.

Figure 1. Screenshot of the PRIME learning environment.

Students program their solution to each activity through a
workspace where they can drag and drop blocks of code. The
default workspace consists only of the “Start” block, which serves
as the entry point for the program (i.e., analogous to the “main”
function in many programming languages). The set of blocks
available to students expands as the activities introduce new
topics. In addition to utilizing the blocks’ functionality, students
can run their code, provide input to the program, request hints if
they are unable to make progress, and save code to use in a later
activity.

3.2 Study Design
We deployed PRIME at a large public university in the United States
to collect student programming interactions. Students in the study
were enrolled in one of two sections of an online introductory
course required for all engineering students. The students in the
study completed a pre- and post-test before and after interacting
with PRIME to assess their computer science knowledge. This
multiple-choice assessment was validated by three content area
experts and demonstrated item-level reliability and appropriate
difficulty using IRT analysis. Cronbach’s alpha for the pretest was
.880 and for the post-test was .896.

A total of 116 students completed both the pre- and post-tests.
After removing students with missing data and only including
those who had attempted at least one activity, this resulted in a
final set of 99 students. A paired samples t-test indicated a
significant difference between pre-test score (M = 15.49, SD = 6.39)
and post-test score (M = 17.04, SD = 6.52), indicating that students’
assessment scores improved after interacting with PRIME (t(99) =
4.62, p < 0.001).

Study participants had an average age of 19 with 30.30% of
participants reporting their gender as female. Of the 99 students,
67.7% reported their race as White, 16.2% as Asian, 7.1% as
Hispanic or Latino, 5.1% as Black or African American, and 4.0%
as other. There were a total of 1172 activities attempted by the 99
students (M = 11.58, SD = 6.07), with 769 completed successfully
(M = 7.77, SD = 5.74).

Within the 20 activities included in this study, there were a
total of 20 distinct blocks, presented in a toolbox, that could be
included in solutions. While each of these blocks are not included
in every activity, the full set of blocks include: print, text, set
variable, get variable, math number, math constant, math
arithmetic, prompt, repeat loop (definite), function definition (no
return), function call (no return), function definition (return),
function call (return), logic operation, Boolean, logic comparison, if,
else if, else, and repeat loop (indefinite).

The PRIME learning environment logs each student’s
interactions. The system uses expert-designed test cases to detect
when the programming activity has been fully completed.
Students can progress to the next activity at any time without
fully completing the current activity. By using the results of the
test cases, we determined the set of activities each student
completed, as well as the activities they attempted but did not
complete. In Figure 2 below, an example student solution is shown
next to an expert-designed solution for one of the activities. This
activity, the Accumulator activity, asks students to display the
sum of five numbers entered by the user with the use of only two
variable blocks. The student solution did not pass the test cases
and was incorrect.

Figure 2. Student solution (left) and expert solution (right)
to the Accumulator activity.

4 Bayesian Linear Models of Student
Performance
To predict student performance on a test administered after the
programming interactions with PRIME, we constructed linear
models using Bayesian Lasso regression. The dataset used in this
work was relatively small (99 participants), which makes linear
models more appropriate in order to prevent overfitting as well as
maintain interpretability of the model parameters. We
implemented the Bayesian regression models using double
exponential priors on the parameters, which is equivalent to L1
regularization (Lasso regression), serving as a form of variable
selection.

In addition to the prior distributions assigned to the model
parameters, we varied the distribution chosen to model the
response variable, the student’s post-test score. Choosing an
appropriate distribution to model the response variable is critical,
as it can influence the model’s predictive accuracy and
interpretability. A simple example of this is when making a binary

classification. In binary classification, the response variable is
desired to be on a scale of 0 to 1, which is why the logistic function
is chosen to map the linear combination of input variables and
model parameters to this scale. Choosing a different distribution
in this case, such as the normal distribution, would result in
predictions outside the desired range of 0 to 1.

In this case, the post-test score can only be positive, as it is a
count of the number of questions that a student answered
correctly out of a fixed number of questions. Thus, distributions
designed for count-based data, such as the Poisson and negative
binomial distribution, may be more appropriate than the typical
normal distribution [21]. However, the Poisson distribution
requires the assumption that the mean of the response variable is
equal to its variance. The set of post-test scores from this study
had a mean of 17.04 and variance of 42.57. This issue,
overdispersion, requires a more flexible distribution for the mean
and variance to differ.

Figure 3. Post-test score histogram with the normal,
Poisson, and negative binomial distributions fitted.

To accommodate over-dispersion, one method is to use the

negative binomial distribution, which adds flexibility to the
existing model by adding a parameter m. Utilizing such a
distribution is more appropriate for modeling post-test score
because it addresses assumptions made by the normal
distribution—namely, that post-test score can only be positive. We
compare the use of the normal, Poisson, and negative binomial
distributions for predicting student post-test scores. Figure 3
shows how well each distribution fits the response variable based
on maximum likelihood estimates of each distribution’s
parameters. This reveals that both the normal and Poisson
distributions do not account for the tails of the data nearly as well
as the negative binomial distribution does.

In standard linear regression models, another assumption that
is made is that the same model applies to all observations in the
data. If the data are grouped, such as having multiple observations
per student and activity, it is more appropriate to treat
observations from the same group as similar. Random effects are

a way to describe these group-level characteristics. In terms of
modeling students, a linear student model will have a set of fixed
effects that describe the relationship between the predictor
variables and the response variable, but there are student-level
individual differences. Similarly, each programming activity
varies in difficulty and ultimately has a different effect on the
response variable. In this work, we explore the representation of
both student-level and programming activity-level characteristics
using random effects and use population-level fixed effects to
represent extracted block-based programming features, which we
will describe in the next section.

4.1 Representing Student Programs
To represent the student programming solutions, we first
extracted the set of blocks used in the set of attempted
programming activities from each student. We treated each
student-activity attempt pair as an observation in the dataset, for
a total of 1146 observations by the 99 students. Of these, 769 were
correct solutions and 377 were incorrect/incomplete solutions.
After extracting the programs, we represented each observation
as the block-wise distance from an expert-designed solution to the
given programming activity. The set of expert-designed correct
solutions comprised of 20 unique blocks from the PRIME block
toolbox. We created a vector for each observation that calculated
the difference in the number of each block used between the
expert solution and the student’s solution. Thus, the feature vector
consists of 20 integers, each representing the difference for a
specific block. For example, if the expert solution used 5 print
blocks for a particular activity and the student used 3 print blocks
for their attempt, this difference would be 2. As different
programming activities require different blocks, the distribution
of block utilization frequency varies by activity.

As the expert solution to the programming activity only
represents one possible solution to the activity, we also included
a binary value of whether the student completed the activity, as
defined by passing all test cases for that activity. This feature
representation aims to capture if the student’s code was close (in
edit distance) to an expected solution while also accounting for
unique or creative solutions different from the expected. To give
each feature vector context of a student’s prior knowledge, we
also use pre-test score as a final feature for a complete feature
representation of dimension 22. Since each student completes
multiple activities, we ultimately aggregate predictions from each
student-activity pair to result in one final prediction per student.
To perform this aggregation, we averaged the predictions for each
student using each of the activities they attempted.

4.2 Student-Level Random Effects
To capture the characteristics exhibited by each student, we
created a random effect for each student in the training set. For
each observation in the training set, the feature vectors were also
given a unique identifier that ranged between one and the number
of students in the training set, k, grouping observations by
student. During training, the standard linear regression then adds
an extra term, 𝜃, that serves as an additional intercept to the

model. When evaluating the model on the test set, the regression
uses the intercept of the student in the training set with the closest
feature vector. To calculate this distance, we used the nearest
neighbor in terms of Euclidean distance. By performing the
mapping in this manner, the evaluation can be made aware of
shared characteristics between different students. The final
regression model that predicts student post-test score after each
student-activity pair with a student-level random intercept is
shown below using the normal distribution as the linking
function.

𝑌𝑖𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼 + ∑ 𝑋𝑖𝑘𝛽𝑘
𝑝
𝑘=1 + 𝜃𝑖,𝜎

2) (1)

𝑌𝑖𝑗 is the post-test score for student i attempting activity j.
Note that the post-test score will be the same for student i across
all activities that they attempt, but we make this prediction several
times. 𝛼 is a fixed intercept added to all predictions, 𝑋𝑖𝑘 (of which
there are 22) is the input feature k for student i , and 𝛽𝑘 is the
parameter learned for feature k. Finally, 𝜃𝑖 is the random intercept
added corresponding to the specific training set student. In
evaluation, the random intercept belonging to the observation
closest to the test set observation will be used. 𝜎2 is the variance.
When other distributions are used to model this regression, the
usage of the linear combination of features and intercepts will
vary to model those distribution’s mean and variance.

4.3 Activity-Level Random Effects
In addition to the student-level characteristics that can be modeled
to help identify types of students and account for differences in
prior knowledge, accounting for the differences in the specific
programming activities a student attempted can inform predictive
models. In PRIME, there are 20 activities that are ordered in such a
way that introduces topics based on common curricula in
computer science education. Thus, the activities build upon one
another and increase in overall complexity. Without accounting
for these differences when predicting the post-test score for each
observation, the model treats the features for each activity as fixed
effects. We introduce a random intercept for the specific activity
that the student attempted for the given observation, 𝛾. This
parameter is added to the standard regression formulation to
denote differences in difficulty and requirements of each activity.
In training, the model learns the random intercept parameter for
each of the 20 activities, and in evaluation chooses the
corresponding intercept to add to the regression based on the
activity of the given observation. Using both the student-level and
the activity-level random intercepts, the final regression equation
is shown below, again showing the normal distribution link
function.

𝑌𝑖𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼 + ∑ 𝑋𝑖𝑘𝛽𝑘
𝑝
𝑘=1 + 𝜃𝑖 + 𝛾𝑗,𝜎

2) (2)

This variation of the regression acts exactly the same as the
student-level-only random effects model, but now the extra term,
𝛾, is added. During training, the model learns the value of 𝛾 for
each of the 20 activities. In evaluation, the model adds the random
intercept corresponding to the activity of the observation.

5 Results
We compare the predictive accuracy of each model, evaluated
using 10-fold student level cross-validation. We perform cross-
validation to compare the performance of the standard linear
regression (without random effects) for the normal, Poisson, and
negative binomial distributions. We then compare the
performance of the best fitting fixed effect model (i.e., negative
binomial) with the two versions of random intercepts (i.e.,
student, activity). We report R2, mean squared error (MSE), and
mean absolute error (MAE) averaged across each cross-validation
fold. In addition to performing cross-validation, we report the
Watanabe-Akaike information criterion (WAIC) [27] for
estimating the out-of-sample performance. In selecting the better
performing model, the model with a lower WAIC is preferred.
WAIC is calculated using the entire dataset (i.e., no folds). This
method has the advantage over the more traditional cross-
validation by eliminating the requirement of training several
models. WAIC is a computationally efficient method that is well
suited for Bayesian regression models, and is reported in addition
to cross-validation as a convenient alternative [9].

All models in this work are trained using Markov chain Monte
Carlo (MCMC) sampling in R using JAGS [18]. All models were
checked for convergence using the Gelman-Rubin diagnostic,
frequently used for evaluating MCMC convergence [10]. For each
fold of the fixed-effect models, we draw 5000 MCMC samples after
omitting the first 2000 for burn-in. The burn-in samples are
omitted as part of a procedure to ensure the convergence of the
Markov chain in MCMC sampling. The final model used to predict
the post-test scores of test set observations uses the means of the
5,000 samples for each model parameter. For the models that use
random effects, we draw 15,000 MCMC samples after omitting the
first 4,000 to allow for better convergence with the higher number
of model parameters. Within each model, both the parameters
corresponding to the coefficients of the features, 𝛽, and the
random effects are given prior distributions in the Bayesian
model. For each 𝛽, we used double exponential priors with mean
0 to function as Lasso priors. By doing this, many of the features
in the final model will be 0, as only a select few features will be
chosen as significant. For each of the random effects, we chose the
normal distribution with mean 0 and a large variance as an
uninformative prior. The strength of the prior distributions for all
model parameters are uninformative and weak. Therefore, we are
allowing the data to have a larger effect on the posterior
distributions for all model parameters.

 We first compare the predictive performance of using
different distributions to model student post-test scores. Next, we
compare the addition of random effects to the model with the best
performance—the negative binomial distribution.

5.1 Comparison of Response Variable
Distribution
The first comparison shows the difference in predictive
performance when different distributions are chosen to model the
response variable, post-test score. Table 1 displays the
performance of each model.

Table 1. Comparison of predictive performance of the
normal, Poisson, and negative binomial distributions.

Regression Model R2 MSE MAE WAIC

Normal 0.618 13.013 2.981 6491.815

Poisson 0.639 12.813 2.879 6306.875

Negative Binomial 0.641 12.696 2.877 6348.865

As shown above, the negative binomial distribution best

models the post-test score. The regressions using the negative
binomial and Poisson distributions fit the data better than the
regression using the normal distribution, though many of the
metrics for the negative binomial distribution are only marginally
different from the Poisson distribution. We select the negative
binomial as the better choice due to the increased model
flexibility, as the Poisson makes the assumption that the mean and
variance are equal.

5.2 Hierarchical Bayesian Modeling with the
Negative Binomial Distribution
The second comparison shows the difference in predictive
performance when random effects (RE) are added to the base
model. In this case, we chose the base model to be the Bayesian
Lasso regression with the negative binomial (NB) distribution.
Table 2 shows the performance of each model compared to the
base regression model.

Table 2. Comparison of predictive performance of the
negative binomial (NB) regression, NB + student-level RE,
and NB + student-level + activity-level RE.

Regression Model R2 MSE MAE WAIC

NB 0.641 12.696 2.877 6348.865

NB+Student RE 0.681 11.608 2.717 5606.372

NB+Student+Activity RE 0.683 11.585 2.725 5624.745

As shown in the table, the NB+Student RE model significantly

outperforms the baseline NB model across all metrics. However,
there is very little difference in the performance between the
student-level random effects model and the model that
additionally incorporates the activity-level random effects. We
will use the student-level random effects model as the best
performing model moving forward because it uses less parameters
overall and predicts post-test performance with near equal
accuracy, and it is therefore more parsimonious.

5.3 Variability of Student-Level Random
Effects
Bayesian linear models offer the advantage of interpretability
relative to more complex models. Specifically, the MCMC samples
produce a distribution for each parameter that can be used to

estimate the uncertainty of the model for how useful each feature
is. Additionally, the Bayesian Lasso coefficients produce a
confidence interval, which can help in variable selection. The best
performing model was the student-level random effects
regression. Figure 4 shows the variability of the random effects for
each student, emphasizing the usefulness of incorporating these
student-level characteristics for student modeling. This figure
highlights the differences in students, where the random intercept
added to the regression equations varies widely for each student.
The blue line represents the confidence of this effect. When
evaluating the predictive model using these trained random
effects, the nearest neighbors indexing selects the random
intercept of the closest feature vector within the training set to
the new observation. As this figure shows, selecting the most
similar random effect is a crucial step in calculating the final
regression output.

Figure 4. Student-level random intercept values.

6 Discussion
The evaluation revealed that predictive student models
incorporating student-level characteristics improved model
accuracy. After evaluating Bayesian regression models that used
the normal, Poisson, and negative binomial distributions, we
found that the regression using the negative binomial distribution
best predicted student post-test score. Additionally, the modeling
assumptions made using the negative binomial distribution were
upheld compared to the assumptions of the other distributions.
Adding random effects to the negative binomial Bayesian
regression model was found to significantly increase predictive
performance. Adding student-level random effects yielded a
significant performance increase, while the addition of activity-
level random effects had only a modest positive impact. Using
non-normal distributions and hierarchical modeling offer the
potential to improve student models so that they can more
effectively and proactively support struggling students.

The Bayesian framework presented in this work for modeling
performance in block-based programing has several advantages.
First, by making a prediction after each time a student attempts
an activity, it is possible to handle varying amounts of data for

different students. Some students only attempt a few activities,
and some students attempt all activities. By averaging the
predictions made after each student-activity pair, the model can
handle both of these situations. Second, the addition of student-
level random effects in the hierarchical model enables the
incorporation of student-specific characteristics when making
predictions. The nearest-neighbor approach when extracting the
random effects in predictions relies on the training set having seen
a vast amount of types of students to ensure that the correct
random effect is chosen in evaluation. Third, the Bayesian linear
model with Lasso priors enables confidence intervals to be
produced on the variables that are not close to 0. By doing this,
we are able to infer which variables are important in this
prediction. Ultimately, the model strongly relied on pre-test scores
and applied very small coefficients to all other fixed variables.

The improvement in performance of the regression models
using the negative binomial and Poisson distributions is not
surprising, as the approximate distribution of the post-test score
does not follow the normal distribution. Specifically, the standard
errors in the standard normal regression are calculated under the
assumptions that the residuals are independently and identically
distributed. When evaluating these models, the prediction
intervals are calculated assuming the residuals are normally
distributed. If this is not the case, the prediction intervals may not
be accurate.

A surprising result is that the activity-level random effects do
not improve predictions over the student-level random effects.
Activity-level random effects were hypothesized to be useful due
to the varying level of difficulty in the activities, implying
performance on easy activities is less informative than
performance on harder programming activities. However, it is
possible there is limited data for all activities to become of use.
Specifically, fewer students attempt the later activities. The later
activities, which are more difficult and perhaps more revealing
about the student’s computer science skill, are attempted far less
frequently and thus the random effects for these activities cannot
be distinguished from those of earlier activities. Incorporating
additional data will likely help with this phenomenon.

7 Limitations
A key challenge was determining how to aggregate predictions
for each student in evaluation. Since the model makes predictions
per every student-activity pair, the predictions must be
aggregated for every student. We chose to average these results,
i.e., each activity that a student attempts contributes equally to the
overall prediction. A non-uniform weighting of the activities
could further improve accuracy.

A second limitation in this work is the way in which the
nearest neighbor calculation is performed. For choosing the
student-level random effect in evaluation, we found the closest
vector in the training set to the test observation. This method
assumes that each feature in the observation should be treated
equally. However, we found that certain features were more
predictive overall, which implies that weighting those features in
this nearest neighbor calculation could improve the overall

indexing of random effects. Another potential problem occurs if
the test observation is unlike any observation in the training set.
In this case, the random effect chosen will refer to a student that
is perhaps extremely different from the students in the test
observation. One approach would be to create a threshold distance
between the test and training observations. If no training
observation falls within this distance threshold, then the model
could use a marginal random effect as a default.

Another limitation is the large number of student-level
random effects. The model creates a random effect per student in
the training set, which ultimately varies depending on how much
data is available. If expert prior information were available to
describe types of students, fewer random effects could be used,
reducing the number of parameters in the final model. This could
reduce overall model complexity and lead to better interpretability
with respect to which types of students benefit from particular
programming activities.

8 Conclusion
As computer science education continues to evolve and utilize
block-based programming as a teaching tool for introductory
concepts, learning environments that tailor the experiences of
students based on student-level characteristics have significant
potential. However, predictive models that do incorporate these
student-level characteristics often make a number of simplifying
assumptions that can negatively affect model performance.

To address these issues, we created a Bayesian linear
regression framework that models the response variable
distribution using more appropriate distributions, and we created
random effects to account for both student-level and
programming activity-level characteristics when making post-test
score predictions. We found that models that used the negative
binomial distribution outperformed both the Poisson and normal
distribution-based models. Additionally, models that incorporated
student-level characteristics outperformed models that did not.
We also added activity-level random effects to the hierarchical
model, but this did not significantly improve results, suggesting
that the better model uses student-level characteristics only. This
indicates that student models that treat types of students
differently in making predictions can improve student modeling.

In future work it will be instructive to investigate different
feature representations for student programs. Instead of
comparing student solutions to expert-designed block-based
programs, other encodings such as comparing abstract syntax
trees, or distributed representations created from large data sets
using deep learning [29] could be used. Another promising
direction for future work is to investigate alternative
representations for student-level characteristics, which may
further increase the predictive accuracy of student models.
Finally, it will be important to integrate these models into the
learning environment, to better understand how they can be used
to drive adaptive support and improve the effectiveness and
efficiency of the learning experience for novice computer science
students.

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under Grants DUE-1626235 and DUE-1625908. Any opinions,
findings, and conclusions expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] Akram, B., Min, W., Wiebe, E., Mott, B., Boyer, K.E. and Lester, J. 2019.

Assessing Middle School Students’ Computational Thinking Through
Programming Trajectory Analysis. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, 1269–1269.

[2] Akram, B., Min, W., Wiebe, E., Mott, B., Boyer, K.E. and Lester, J. 2018.
Improving Stealth Assessment in Game-Based Learning with LSTM-
Based Analytics. In Proceedings of the 11th International Conference on
Educational Data Mining, 208–218.

[3] Arthurs, N., Stenhaug, B., Karayev, S. and Piech, C. 2019. Grades are Not
Normal: Improving Exam Score Models Using the Logit-Normal
Distribution. In Proceedings of the 12th International Conference on
Educational Data Mining, 252–257.

[4] Bakker, B. and Heskes, T. 2004. Task Clustering and Gating for Bayesian
Multitask Learning. Journal of Machine Learning Research, 4(1), 83–99.

[5] Blikstein, P. 2011. Using Learning Analytics to Assess Students’ Behavior
in Open-Ended Programming Tasks. In Proceedings of the International
Conference on Learning Analytics and Knowledge, 110–116.

[6] Corbett, A.T. and Anderson, J.R. 1994. Knowledge Tracing: Modeling the
Acquisition of Procedural Knowledge. User Modelling and User-Adapted
Interaction, 4, 253–278.

[7] Desmarais, M.C. and Baker, R.S.J.D. 2011. A Review of Recent Advances
in Learner and Skill Modeling in Intelligent Learning Environments. User
Modeling and User-Adapted Interaction, 22(1–2), 9–38.

[8] Effenberger, T. and Pelánek, R. 2018. Towards Making Block-Based
Programming Activities Adaptive. In Proceedings of the 5th Annual ACM
Conference on Learning at Scale, 6–9.

[9] Gelman, A., Hwang, J. and Vehtari, A. 2014. Understanding Predictive
Information Criteria for Bayesian models. Statistics and Computing, 24(6),
997–1016.

[10] Gelman, A. and Rubin, D.B. 1992. Inference from Iterative Simulation
using Multiple Sequences. Statistical Science, 7, 457–511.

[11] Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N. and Stamper, J.
2017. A Framework for using Hypothesis-Driven Approaches to Support
Data-Driven Learning Analytics in Measuring Computational Thinking
in Block-Based Programming Environments. ACM Transactions on
Computing Education, 17(3), 1–25.

[12] Huang, Y., Xu, Y. and Brusilovsky, P. 2014. Doing More with Less: Student
Modeling and Performance Prediction with Reduced Content Models. In
Proceedings of the 22nd International Conference on User Modeling,
Adaptation and Personalization, 338–349.

[13] Khajah, M., Lindsey, R. V. and Mozer, M.C. 2016. How Deep is Knowledge
Tracing? In Proceedings of the 9th International Conference on Educational
Data Mining, 94–101.

[14] Mao, Y., Zhi, R., Khoshnevisan, F., Price, T.W., Barnes, T. and Chi, M.
2019. One Minute is Enough : Early Prediction of Student Success and
Event-level Difficulty during a Novice Programming Task. In Proceedings
of the International Conference on Educational Data Mining, 119–128.

[15] Min, W., Frankosky, M., Mott, B.W., Rowe, J., Smith, P.A.M., Wiebe, E.,
Boyer, K. and Lester, J. 2019. DeepStealth: Game-Based Learning Stealth
Assessment with Deep Neural Networks. IEEE Transactions on Learning
Technologies.

[16] Mislevy, R.J., Behrens, J.T., Dicerbo, K.E. and Levy, R. 2012. Design and
Discovery in Educational Assessment: Evidence-Centered Design,
Psychometrics, and Educational Data Mining. Journal of Educational Data
Mining, 4(1), 11–48.

[17] Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. and
Sohl-Dickstein, J. 2015. Deep Knowledge Tracing. In Advances in Neural
Information Processing Systems, 505–513.

[18] Plummer, M. 2003. DSC 2003 Working Papers JAGS: A Program for
Analysis of Bayesian Graphical Models using Gibbs Sampling. In
Proceedings of the 3rd International Conference on Distributed Statistical
Computing, 1–10.

[19] Price, T.W. and Barnes, T. 2017. Position Paper: Block-Based
Programming Should Offer Intelligent Support for Learners. In
Proceedings of the 2017 IEEE Blocks and Beyond Workshop, 65–68.

[20] Price, T.W., Dong, Y. and Lipovac, D. 2017. iSnap: Towards Intelligent
Tutoring in Novice Programming Environments. In Proceedings of the
Forty-Eighth ACM Symposium on Computer Science Education, 483–488.

[21] Reich, B.J. and Ghosh, S.K. 2019. Bayesian Statistical Methods. CRC Press.
[22] Rivers, K., Harpstead, E. and Koedinger, K. 2016. Learning Curve Analysis

for Programming. In Proceedings of the International Conference on
Computing Education Research, 143–151.

[23] Rupp, A., Levy, R., Dicerbo, K.E., Sweet, S.J., Crawford, A. V., Calico, T.,
Benson, M., Fay, D., Kunze, K.L., Mislevy, R.J. and Behrens, J. 2012.
Putting ECD into Practice: The Interplay of Theory and Data in Evidence
Models within a Digital Learning Environment. Journal of Educational
Data Mining, 4(1), 49–110.

[24] Sao Pedro, M.A., De Baker, R.S.J., Gobert, J.D., Montalvo, O. and Nakama,
A. 2013. Leveraging Machine-learned Detectors of Systematic Inquiry
Behavior to Estimate and Predict Transfer of Inquiry Skill. User Modelling
and User-Adapted Interaction, 23(1), 1–39.

[25] Sawyer, R., Rowe, J., Azevedo, R. and Lester, J. 2018. Modeling Player
Engagement with Bayesian Hierarchical Models. In Proceedings of the
14th AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 215–221.

[26] Shute, V.J. 2011. Stealth Assessment in Computer-Based Games to
Support Learning. Computer Games and Instruction, 503–524.

[27] Watanabe, S. 2010. Asymptotic Equivalence of Bayes Cross Validation
and Widely Applicable Information Criterion in Singular Learning
Theory. Journal of Machine Learning Research, 11, 3571–3594.

[28] Weintrop, D. and Wilensky, U. 2017. Comparing Block-Based and Text-
Based Programming in High School Computer Science Classrooms. ACM
Transactions on Computing Education, 18(1), 1–25.

[29] Wu, M., Mosse, M., Goodman, N. and Piech, C. 2018. Zero Shot Learning
for Code Education: Rubric Sampling with Deep Learning Inference. In
Proceedings of the AAAI Conference on Artificial Intelligence, 782–790.

[30] Xie, B. and Abelson, H. 2016. Skill Progression in MIT App Inventor. In
Proceedings of IEEE Symposium on Visual Languages and Human-Centric
Computing, 213–217.

[31] Yudelson, M. V., Koedinger, K.R. and Gordon, G.J. 2013. Individualized
Bayesian Knowledge Tracing Models. In Proceedings of the International
Conference on Artificial Intelligence in Education, 171–180.

[32] Yudelson, M. V., Medvedeva, O.P. and Crowley, R.S. 2008. A Multifactor
Approach to Student Model Evaluation. User Modeling and User-Adapted
Interaction, 18(4), 349–382.

[33] Zhang, L., Xiong, X., Zhao, S., Botelho, A. and Heffernan, N.T. 2017.
Incorporating Rich Features into Deep Knowledge Tracing. In Proceedings
of the 4th (2017) ACM Conference on Learning at Scale, 169–172.

