
Gaze-Enhanced Student Modeling for Game-based Learning 

ABSTRACT 
Recent advances in eye-tracking technologies have introduced the 
opportunity to incorporate gaze into student modeling. Creating 
student models that leverage gaze information holds significant 
promise for game-based learning environments. This paper 
introduces a gaze-enhanced student modeling framework that 
incorporates student eye tracking to dynamically predict 
students’ performance in a game-based learning environment for 
microbiology education, CRYSTAL ISLAND. The gaze-enhanced 
student modeling framework was investigated in a study 
comparing a gaze-enhanced student model with a baseline student 
model that does not utilize student eye-tracking. Results of a study 
conducted with 65 college students interacting with the CRYSTAL 

ISLAND game-based learning environment indicate that the gaze-
enhanced student model significantly outperforms the baseline 
model in dynamically predicting student problem-solving 
performance. The findings suggest that incorporating gaze into 
student modeling can contribute to a new generation of student 
models for game-based learning environments. 
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1 INTRODUCTION 
Student modeling plays a central role in user-adaptive 
environments for learning [12]. Student models  offer an  explicit 
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representation of a learning environment's representation of 
student characteristics. Student modeling techniques have been 
devised to infer a broad range of student characteristics, including 
student knowledge [3, 9, 25, 35], plans and goals [1, 25, 30-32], and 
affective states [4, 7, 17, 40, 43, 46]. Despite these advances, with 
only a few notable exceptions [11, 21, 28, 45], limited work has 
investigated the potential of leveraging information about student 
gaze to improve the accuracy of student modeling. 

Gaze offers a potentially rich source of information about 
student learning. Temporal patterns in eye movements, such as 
variations in fixations and saccades, may indicate the attentional 
foci of student interactions with a learning environment. Recent 
work such as the investigation of how gaze may signal the 
presence of cognitive processes [37] suggests that gaze can inform 
student modeling. While emerging work has begun to examine 
how learning can be inferred from gaze data [6, 24, 34] and how 
to infer mind wandering from gaze data [29], there has been 
limited investigation of how gaze can enhance student modeling 
to improve predictive accuracy for student problem-solving 
performance during learning interactions. 

Game-based learning environments offer a promising context 
for investigating gaze-enhanced student modeling. Over the past 
decade game-based learning environments have emerged as a 
vehicle for creating engaging learning experiences through game 
mechanics [5, 14, 18, 27, 39, 47]. Immersive game-based learning 
environments, such as the CRYSTAL ISLAND learning environment 
for microbiology education [39], feature rich story worlds, an 
expansive cast of characters, and a large set of digital artifacts that 
students interact with during learning episodes. Because 
immersive game-based learning environments feature 3D worlds 
that students navigate during problem solving, these 
environments may elicit fine-grained gaze behaviors that provide 
significant diagnostic value for student modeling, while providing 
a manifestation of intent-related cognitive processes [19, 33, 44]. 

This paper reports on an investigation of gaze-enhanced 
student modeling for game-based learning. With the goal of 
creating student models augmented with gaze data to improve the 
predictive accuracy of student models, in a study with 65 students 
we evaluate two student modeling approaches: a gaze-enhanced 
student model that leverages gaze data collected from a version of 
CRYSTAL ISLAND that was instrumented with eye-tracking, and a 
baseline student model that does not use gaze data. We compare 
both with respect to their predictive accuracy on student problem-
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solving performance during the game-based problem-solving 
episodes. In developing student models that can dynamically 
predict problem-solving performance, we investigate the 
capability of gaze-enhanced student models to predict student 
problem-solving effectiveness and efficiency throughout learning 
interactions, depicting the fruitfulness of the learning experience. 

2 RELATED WORK 
Gaze holds considerable promise for guiding user-adaptive 
interactions. Because movements of the human eye may indicate 
attention, engagement, and motivation [2, 13, 36], they may signal 
cognitive states such as foci of attention [10] as well as mind 
wandering, and thus offer significant potential for designing 
“attention-adaptive” learning environments [19-21, 28, 29]. Gaze 
may also be used to recognize off-task behavior and 
disengagement. For example, Mills et al. used reading patterns to 
predict a severe form of disengagement, quitting [30]. Gaze may 
also be able to play an important role in user-adaptive systems 
that consider learners' metacognitive processes [11, 22, 23, 27, 42] 
and assess or predict learning [6, 24]. While we only explore gaze, 
prior work has explored affect and gameplay interactions for this 
problem [3, 17, 42, 43, 45].  

Gaze has successfully been applied to student goal recognition 
in game-based learning environments [33]. Deep learning, and 
more specifically sequence-based recurrent neural networks 
using eye-tracking features, has emerged as a powerful student 
modeling technique for goal recognition. This line of investigation 
has shown that using multimodal data, including eye tracking, can 
yield high predictive accuracy for student goal recognition.  

Building on these developments, the work reported here 
explores how gaze data can be used to improve student modeling. 
By exploiting gaze transition data streams-in contrast to saccade 
patterns previously explored, which offer a potentially 
complementary source of gaze information-for improving student 
modeling, we explore how gaze-enhanced student models can 
improve the accuracy of dynamically predicting student problem-
solving effectiveness and student problem-solving efficiency. This 
work can inform future research that builds internal student 
models and use gaze as an indicator of cognitive states. 

3 GAME-BASED LEARNING ENVIRONMENT 
TESTBED 

To investigate gaze-enhanced student modeling, we conducted a 
study with college students interacting with the CRYSTAL ISLAND 
game-based learning environment for microbiology education 
[39] (Figure 1). When students interact with CRYSTAL ISLAND, they 
embark on a mission to solve a mysterious illness outbreak by 
collecting evidence and testing hypotheses. Students first arrive 
at the central research camp and travel to buildings such as the 
infirmary, dining hall, virtual laboratory, and living quarters. At 
each location, students interact with non-player characters 
(NPCs). Students speak with a variety of NPCs to collect evidence 
and obtain guidance. Two of the NPCs are domain experts in 
bacteria and viruses, allowing the students to gather information 
through dialogue. Students can read text resources distributed 
throughout the island including books, articles, and posters, 
which they use to learn about the potential diseases causing the 
outbreak. All student actions including navigation, dialogue, and 
text resource interactions are recorded in log files.  

4 METHODS AND DATA 
To evaluate the potential contribution of gaze information to 
student modeling, we compare two approaches. First, we 
instrumented CRYSTAL ISLAND with eye-tracking and introduced a 
real-time gaze-driven entity tracker (described in Section 4.4) to 
monitor the in-game objects of students’ focus on a moment-to-
moment basis. We then created a gaze-enhanced student model 
that uses student gaze data stream information together with 
students’ goal orientation [15], gameplay time, and prior 
knowledge (as assessed with a pre-test) to predict student 
problem-solving performance. Second, we created a baseline 
student model that uses all information in the gaze-enhanced 
student model but does not have access to any gaze information. 
We compared the performance of the two student models on 
predictions of student problem-solving effectiveness and student 
problem-solving efficiency.  

 

Figure 1. The CRYSTAL ISLAND learning environment with gaze entity categories (left) and book related content (right). 
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4.1 Participants and Experimental Set-Up 
During the study, 65 college students interacted with the CRYSTAL 

ISLAND game-based learning environment in a controlled setting. 
Three students were removed because they were missing key 
pieces of data, which resulted in 62 students (M = 20.0 years old, 
SD = 1.57). In this group, 42 subjects (68%) were female. Each of 
the students played CRYSTAL ISLAND until successfully solving the 
mystery, with game times ranging from a minimum of 39.7 
minutes to a maximum of 170.3 minutes (M = 81.3, SD = 22.8). 
Before playing the game, each student completed the 12-question 
Achievement Goal Questionnaire to measure their goal 
orientation [16]. The students also took a pre-test preceding their 
interaction with CRYSTAL ISLAND to assess their prior knowledge 
and a post-test following gameplay.  

4.2 Goal Orientation 
Because gameplay in CRYSTAL ISLAND features goal-oriented 
problem-solving activities, we used students' goal orientation to 
inform the student model. To measure goal orientation, prior to 
gameplay each student was asked to complete the Achievement 
Goal Questionnaire (AGQ) to measure their goal orientation [16], 
which is represented with a 2x2 matrix (Table 1).  

A student may exhibit traits from all four categories. Each 
competency is scored on a scale of 1 to 5. The self-reported 
measure includes four subscales with averages for Mastery-
Approach (M = 3.98, SD = 0.53), Mastery-Avoidance (M = 3.42, SD 
= 0.83), Performance-Approach (M = 3.47, SD = 0.80), and 
Performance-Avoidance (M = 3.43, SD = 0.85). We standardize 
each of these categories to a unit normal distribution to allow 
comparison among the four subscales of the AGQ. 

 
Table 1. 2x2 Framework for goal orientation construct. 
 

4.3  Problem-Solving Performance 
We designed the gaze-enhanced student model and baseline 
student model to predict real-time student problem-solving 
performance. Rather than designing student models to predict 
end-of-session metrics such as post-test scores, we sought to 
devise models that dynamically predict student in-game problem-
solving performance as this family of models could yield 
actionable information to inform the user-adaptive tailoring of 
gameplay and scaffolding. To measure students’ in-game 
problem-solving performance in CRYSTAL ISLAND, the actions they 
take, and the timing of those actions are used to compute their 
problem-solving performance scores at a given moment. 

Performance scores increase or decrease as students make 
progress (or fail to make progress) in solving the science mystery.  
The game-based problem-solving performance metric is 
parameterized on action types and elapsed time (Table 2). For 
example, a correct solution of the CRYSTAL ISLAND science mystery 
yields (+500) points, whereas scans of incorrect objects are 
penalized up to 35 points if the student is also scanning for the 
wrong contaminant. As such, there is usually an increase in the  

 
Table 2. Student game-based problem-solving performance 
metric. 

 

Action Points (pts) 

Overall Mystery Solution  

Correct Solution 500 pts 

Solution Efficiency (7500 / elapsed mins) pts 

Incorrect Solution Attempt -100 pts 

In-game Quiz Questions  
First Attempt Correct 25 pts 

Second Attempt Correct 10 pts 

Second Attempt Incorrect -10 pts 

Object Contaminant Testing  

Correct Object and Correct Contaminant 200 pts 
Incorrect Object and Correct Contaminant 15 pts 
Correct Object and Incorrect Contaminant -15 pts 

Incorrect Object and Incorrect 
Contaminant -35 pts 

Character Interactions  

Talk to Kim (25 / elapsed mins) pts 

Talk to Teresa (50 / elapsed mins) pts 

Talk to Ford (125 / elapsed mins) pts 

Talk to Robert (125 / elapsed mins) pts 

Talk to Quentin (125 / elapsed mins) pts 

  

Total Maximum Points 1665 pts 

 
Definition 

Mastery Performance 

Valence 

Approach 
(towards 
success) 

Mastery- 
Approach Goal 

Performance-
Approach 

Goal 

Avoidance 
(of 

failure) 

Mastery-
Avoidance Goal 

Performance-
Avoidance 

Goal 

Figure 2. Problem-solving performance distribution. 
 



  

 

score at the conclusion of gameplay if the student correctly solves 
the mystery. The metric thereby provides a real-time assessment 
of two facets of student problem solving: problem-solving 
effectiveness and problem-solving efficiency. It should also be 
noted that while the problem-solving performance measure was 
developed to assess student problem solving, it has also been used 
as a factor in measuring in-game student engagement with the 
problem-solving scenario [39].   

In this student gameplay data, the final problem-solving 
scores have a mean of 679.9 and standard deviation of 608.80. We 
note that the score can be a negative value; the minimum score 
achieved was a -1542.73, and the maximum score was 1413.17. 

Figure 2 displays a histogram of the problem-solving 
performance scores. Previous work has shown problem-solving 
performance to be significantly correlated with learning [38] and 
a marginally significant correlation between problem-solving 
performance and normalized learning gain was observed in this 
study (r(60) = 0.271 p = 0.033). 

4.4  Eye Tracking and Gaze-based Entity 
Tracking 

To provide eye gaze data stream information to the gaze-
enhanced student model, students' gaze was tracked during 
gameplay using the SMI RED 250 eye tracker, which was mounted 
on a desktop (Figure 3). As students interacted with CRYSTAL 

ISLAND, the system pinpointed the coordinates on the screen at 
each timestamp where the student was gazing to log gaze data. 
Eye movements were tracked at 120 Hz, and following established 
conventions [38], a “fixation” is operationalized as engaging in a 
sustained gaze for a minimal threshold of 250 milliseconds. 

The gaze-enhanced student model utilizes a gaze-driven entity 
tracking system that we have incorporated into the CRYSTAL 

ISLAND game-based learning environment. The gaze-driven entity 
tracker automatically detects which in-game objects the student 
is fixating on by analyzing the angle and gaze point on the screen 
by using ray casting to detect the intersection with specific in-
game objects. It operates in real-time to generate a gaze data 
stream from synchronized sequences of data representing each 

fixation event, the in-game object that is the subject of the 
fixation, and the duration of the fixation. The gaze-enhanced 
student model uses these three elements to compute proportions 
for multiple categories of gaze objects, and it uses the fixation 
duration to compute total fixation time per student.  

5  RESULTS 
We compared the predictive accuracies of the gaze-enhanced 
student model with the baseline student model to explore the 
potential additive value of gaze. The gaze-enhanced student 
model used gaze data in addition to students’ goal orientation, 
gameplay time, and prior knowledge, while the baseline model 
had access to the same information sources as the gaze-enhanced 
student model except for gaze. The gaze-enhanced student model 
used 15 features (9 gaze proportions and 6 baseline features), 
while the baseline model only had access to the 6 baseline 
features: 4 goal-orientation subscales, pre-test score, and 
gameplay duration. 

We conducted two sets of evaluations to compare the 
performance of the two student models. To begin, we compare the 
baseline model and gaze-enhanced model using data generated 
from full gameplay sessions (Baseline Full-Gameplay Model and 
Gaze-Enhanced Full-Gameplay Model). We then compare the 
baseline model and gaze-enhanced model on interval-based 
models that make dynamic predictions throughout gameplay 
from incrementally available data (Baseline Interval-Based Model 
and Gaze-Enhanced Interval-Based Model). In these comparisons, 
we evaluate the dynamic predictive capabilities of these models 
by using incrementally available cumulative gameplay to predict 
the problem-solving performance after discrete time intervals. 
Specifically, we investigate the use of percentage gameplay versus 
constant time-elapsed intervals. 

The evaluation uses two machine learning frameworks for 
student modeling: an L2-regularized linear regression model 
(Ridge Regression) and an ensemble partitioning method (Random 
Forests). We compare the use of Ridge Regression and Random 
Forests for each feature set and each gameplay accumulation 
setup. Ridge Regression provides a simple, interpretable, and 
regularized method for predicting a continuous outcome from 
continuous variables. Random Forests are better suited to avoid 
overfitting due to their ensemble nature, which is a concern when 
presented with relatively small datasets. These models were 
chosen because of their ability to prevent overfitting. To evaluate 
each model, we use leave-one-out cross-validation (LOOCV). In 
this context, we are leaving one student out of each iteration to 
create the test set. When examining each model’s performance, 
we evaluate the model test set R2. We also examine the mean 
absolute error (MAE) for each model. R2 is a way to determine the 
model’s relative fit, and it provides a quantified evaluation of 
explained variance (using held-out data) versus total variance in 
the data. MAE is advantageous with respect to interpretability 
because it determines the average error of the model predictions.  

5.1  Baseline Full-Gameplay Models 
Baseline models include 6 features. Out of these, 5 are known Figure 3. Gaze-instrumented CRYSTAL ISLAND 

environment. 

Eye Tracker 



 

 

beforehand (4 AGQ values, pretest score). The remaining value is 
the total time the student spent playing the game. This can be an 
important factor in predicting problem-solving performance 
because depending on students’ pre-test score and goal 
orientation, a longer game time could indicate a lack of self-
regulatory skills, spending a disproportionate amount of time 
acquiring knowledge, or using less efficient learning strategies. 
For Ridge Regression, we set up and evaluate the models by 
standardizing the input features and reporting the most 
significant features using the standard error of coefficients to 
calculate the t-statistic under the null hypothesis that the 
coefficient is equal to zero. We also report both the R2 and MAE. 

In addition to using Ridge Regression (RR), we also use a 
Random Forest (RF), where we use MAE as the criterion for 
deciding the quality split. We report leave one out cross validation 
R2 and MAE for this model as well. The “feature importance” of 
each feature is also presented for each RF model. This accounts 
for the sum of the decision tree splits that include the given 
feature in proportion to the number of students that it splits. 
Baseline student model results are shown in Tables 3, 4, and 5. 

Table 3. Overall baseline model LOOCV accuracy results. 
 

 R2 MAE 

Baseline RR 0.225 372.248 

Baseline RF 0.140 409.517 

 
Table 4. Baseline Ridge Regression model. 
 

Feature 
Coefficient 
(B) 

STD Error 
(B) 

β p-value 

Constant 391.165 621.592 3.88e-16 1.0 

Mastery-
Approach 

232.162 139.094 0.146 0.885 

Performance-
Approach 

-101.717 126.289 -0.141 0.890 

Mastery-
Avoidance 

110.104 86.213 0.139 0.891 

Performance-
Avoidance 

73.270 116.963 0.0834 0.935 

Game Time -24.757 1.001 -0.5839 0.564 

Pre-Test Score 25.624 25.599 0.0614 0.952 

 
Ridge Regression was conducted on the baseline data to 

determine significant attributes. The model coefficients are 
significantly different from a null model, F(6,55) = 15.221 (p < 
0.001) with an R2 of 0.398 and an adjusted R2 of 0.332. 

We note that we are able to achieve an R2 of 0.225 for the Ridge 
Regression model with the baseline feature set. With this 
performance, it is clear that the most significant feature is 
gameplay duration (Game Time). There are two plausible 
explanations for this result. A longer gameplay duration could 
indicate there is a lack of understanding of the game content or 

less efficient problem-solving strategies, which would negatively 
affect their problem-solving performance. Alternatively, the 
student may be exploring the environment or performing other 
off-task behaviors unrelated to solving the science mystery.  
 
Table 5. Random Forest results for baseline feature set. 
 

Feature Feature Importance 

Mastery-Approach 0.0828 

Performance-Approach 0.0928 

Mastery-Avoidance 0.136 

Performance-Avoidance 0.0828 

Game Time 0.422 

Pre-Test Score 0.184 

5.2  Gaze-Enhanced Full-Gameplay Models 
Next, we investigated gaze-enhanced student models that extend 
the baseline models with gaze data streams. We augmented the 
baseline model with category-based gaze patterns representing 
the sequence of categories of in-game objects that were the focus 
of students’ fixations.  Specifically, gaze-enhanced student models 
use gaze pertaining to in-game objects in the following categories: 
non-player characters (NPCs), Travel/Game Items, Food-Related, 
Lab-Related, Diagnosis-Related, Book-Related, Concept-Matrix-
Related, Miscellaneous, and Fixations-per-second. “Book Related” 
refers to the material that the students read throughout the game 
in order to gather information; “Concept-Matrix-Related” refers 
to the in-game testing the students complete after reading 
scientific content; “Travel/Game Items” refers to objects within 
the game that are related to transitioning between locations; “Lab 
Related”, “Diagnosis Related”, and “Food Related” are objects 
within the game that are relevant to solving the mystery (e.g., 
pieces of evidence towards a hypothesis, equipment to test 
hypotheses). “Miscellaneous” in this context encompasses game-
related objects that are not associated with game content, such as 
the heads-up display, settings menu, and achievement panel. The 
“Fixations per second” feature quantifies the student’s general 
fixation pattern. These categories were chosen to group specific 
game world objects identified by the gaze-driven entity tracker 
into higher-level game-based learning objects.  

 
Table 6. Overall gaze-enhanced model LOOCV accuracy. 
 

 R2 MAE 

Gaze RR 0.361 343.051 
Gaze RF 0.453 326.968 
PCA RR 0.212 373.339 
PCA RF 0.389 330.102 

 
We perform dimensionality reduction on these features to 

determine a transformed, reduced set of features that helps 
remove subjective bias of the categories, noise from a high 
dimensionality relative to the size of the data, and 
multicollinearity among the features. We used principal 



  

 

component analysis (PCA) with 5 components and then used 
these new orthogonal features in Ridge Regression and Random 
Forest gaze-enhanced student models for comparison. Tables 6, 7, 
and 8, display the results from the overall gaze-enhanced models 
and the PCA reduced models. 

As performed previously, Ridge Regression was performed on 
the gaze-enhanced data to determine if there were significant 
attributes. The model coefficients are significantly different from 
a null model, F(15,46) = 9.096 (p < 0.001) with an R2 of 0.662 and 
an adjusted R2 of 0.553. 
 
Table 7. Gaze-enhanced Ridge Regression model. 
 

Feature 
Coefficient 
(B) 

STD 
Error (B) 

β 
p-
value 

Constant 337.381 1.86e4 4.44e-16 1.0 

NPCs -101.452 2.19e4 -0.206 0.858 

Travel/Game Items -274.562 1.87e4 -0.0937 0.968 

Food-Related 9.996 1.97e4 0.0795 0.942 

Lab-Related -394.812 1.87e4 -0.341 0.839 

Diagnosis-Related -137.246 1.87e4 -0.203 0.872 

Miscellaneous 170.129 2.00e4 -0.0853 0.956 

Book-Related 839.123 1.86e4 0.135 0.955 

Concept-Matrix-
Related 

216.927 1.84e4 0.0933 0.947 

Fixations/Second -36.119 6.96e2 -0.0299 0.976 

Mastery-Approach 221.771 1.49e2 0.120 0.906 

Performance-
Approach 

-92.090 1.34e2 -0.0384 0.970 

Mastery-Avoidance 87.125 9.84e1 0.0271 0.979 

Performance-
Avoidance 

76.264 1.29e2 -7.82e-3 0.994 

Game Time -24.790 1.00 -0.598 0.556 

Pre-Test Score 26.564 2.70e1 0.152 0.880 

 
The gaze-enhanced full-gameplay models were the best 

performing models. With respect to contribution to problem-
solving performance prediction, we note that “Lab Related,” 
“Diagnosis Related,” and “Book Related” are of interest. The RF 
regressor model found these to be strong elements in predicting 
student performance according to feature importance. The RR 
model also found these to be important features (although not 
significant), as well as “Travel/Game Items.” The negative impact 

of “Lab Related” fixations could be due to the fact that students 
are awarded points based on whether their testing is correct. 
Thus, the longer a student spends fixated on testing equipment in-
game, could indicate they are performing additional, incorrect 
tests.  

The negative impact of fixation proportion of “Lab Related” is 
reinforced by the fact the Ridge Regression model found a 
negative coefficient, while the Random Forest Regressor found 
this feature to be the most important feature. “Book Related” 
fixations are important since book material within the 
environment is a primary source of how the student acquires 
content learning. Perhaps the longer students are fixating on these 
content items, the more relevant scientific information they 
acquire, which might enable them to solve the science mystery 
more efficiently. The negative impact of “Travel/Game Items” on 
problem-solving performance could indicate that a student 
performed more off-task behavior, as travel and game-related 
objects have little relevance to solving the mystery. 

 
Table 8. Random Forest results for gaze-enhanced models. 
 

Feature Feature Importance 
NPCs 0.0278 

Travel/Game Items 0.0409 
Food Related 0.0144 
Lab Related 0.207 

Diagnosis Related 0.124 
Miscellaneous 0.110 
Book Related 0.120 

Concept Matrix Related 0.0232 
Fixations/Sec 0.0367 

Mastery-Approach 0.0268 
Performance-Approach 0.0262 

Mastery-Avoidance 0.0161 
Performance-Avoidance 0.00927 

Game Time 0.125 
Pre-Test Score 0.0935 

 
Another explanation could be that the students have reached 

an impasse with respect to understanding the content, and they 
could be navigating widely to try out many different ideas. 
Previous work has shown that large amounts of time spent in 
irrelevant locations in the game may indicate off-task behavior, as 
there are no relevant materials in these locations [41]. Another 
interesting result is the fact that the duration of “Game Time” is 
considered to be a strong predictor of problem-solving 
performance. This could be attributed to the fact that students 
who are spending longer times in the environment are either (1) 
not fully engaged in the game and take longer to complete it or (2) 
do not fully grasp the material as quickly as other students and 
must devote more time to gain this level of understanding. It is 
also worth noting that problem-solving performance considers 
efficiency, which is based on game duration. 

Another interesting result from the Ridge Regression model 
evaluation is the fact that “Mastery-Approach” is weighted so 
highly. This poses an important question. Are students who 



 

 

exhibit this goal orientation potentially better performers in this 
type of environment? While difficult to determine, we note that 
each of the other goal orientation categories were weighted much 
lower in magnitude. Mastery-Approach students might strive to 
comprehend the material in its entirety and not leave the learning 
environment without gaining a firm understanding of these 
materials. In CRYSTAL ISLAND, an example of this phenomenon 
would be a student striving to understand a particular disease or 
microbiology concept at a deep level. 

5.3  Interval-Based Models 
The evaluations of Full-Gameplay student models shed light on 
the additive diagnostic value of gaze for problem-solving 
performance in toto, and we are particularly interested in 
investigating the additive diagnostic value of gaze for student 
models that are to operate dynamically and only have access to 
gaze data and gameplay data that have been produced before the 
current moment in the gameplay. A user-adaptive learning 
environment could exploit such models at runtime to make in-
game adaptations dynamically. The objective of informing 
runtime adaptations motivates the exploration of interval-based 
student models that predict students’ problem-solving 
performance in a cumulative fashion. We seek to design student 
models that can accurately predict students’ problem-solving 
performance scores in cumulative intervals using the same feature 
sets as the non-interval-based (i.e., Full-Gameplay) models.  

The baseline feature set containing goal orientation values are 
static throughout gameplay since these are calculated from a pre-
game survey. However, the gaze features will be dynamic 
throughout gameplay. For example, if an interval of the gameplay 
contains predominantly “Book Related” objects, this proportion 
will be very high relative to the other gaze attributes for this 
period. Table 9 shows that the gaze-enhanced models showed a 
predictive accuracy improvement of 62.3% over the baseline based 
on R2 using the RF model.  

We can distinguish two alternative approaches to interval-
based models. First, a percentage of total time played up to each 
point (i.e., 10%, 20%, … 100%) could be adopted, or second, a 
constant-time approach (i.e., 1 minute, 2 minutes, … total minutes 
played) could be used. We chose the constant-time approach as it 
supports the use of a more standard time period for each student. 
If we chose the percentage-based approach, then each student 
would likely have very different amounts of gameplay in each 
segment. It should be noted that using a constant time approach 
also presents the challenge of having a different number of time 
segments per student, which we address below. A constant time 
approach is more realistic for real-time prediction, and the results 
shown below in Table 9 use 1-minute intervals. Thus, predictions 
were made each minute during the student’s gameplay, using all 
student actions and gaze behavior up to the current prediction. 

The best performing models for using the cumulative 
interval-based gameplay models were the gaze-enhanced models. 
The Random Forest regressors performed well, but we note that 
as expected the general performance of these models was not as 
high as the Full-Game models. This could be because students 
generally proceed through different phases in the CRYSTAL ISLAND 

game. For example, the tutorial will feature different objects than 
latter parts of the game, thus creating a difference in gaze 
proportions between intervals. Early predictions may therefore be 
more inaccurate than later gameplay predictions, and because of 
the dynamic nature of student problem-solving in game-based 
learning, the models will improve over time as they observe 
additional gameplay for each student.  

 
Table 9. Summary results for interval-based models. 
 

 R2 MAE 

Gaze RR 0.00599 202.613 

Gaze RF 0.227 161.617 

 

5.4  Convergence of Interval-Based Models 
A desirable characteristic of dynamic models is continual 
improvement as they observe more gameplay. As a student 
progresses through the game, this would manifest as the student 
model achieving increases in predictive accuracy, which could 
enable user-adaptive learning environment to better adapt to the 
student’s needs as indicated by changes to predicted problem-
solving scores. Below, in Figure 4, we can see that the best models 
from the cumulative interval-based gameplay evaluation improve 
as they observe additional gameplay. 

 
Figure 4. Random Forest model accuracy over time. 
 

It should be noted that for purposes of evaluation, we use the 
predictions up to the time of the shortest student gameplay to 
guarantee that we have a prediction value for each student. As we 
can see, the R2 value starts off very unstable, and then appears to 
approach a positive, improving value. We believe the reason for 
the less accurate early fit is that much of the time early in the 
game is unrelated to problem-solving performance, e.g., becoming 
familiar with the environment.  

In addition, there are different stages of the game for which 
different types of objects may be present. Thus, significant 
features the model finds may not be present at certain early stages 



  

 

of the game.  After an initial period, the model fit improves 
continually, suggesting that the model is useful in predicting 
student problem-solving performance over time as it observes 
more student gameplay and gaze behavior.  

6  DISCUSSION 
The results of this evaluation demonstrate that gaze-enhanced 
student models achieve higher predictive accuracy on student 
problem-solving performance than baseline student models. After 
evaluating the baseline student models on the entire gameplay 
data for each student, we find that we significantly improve these 
models by augmenting them with student gaze patterns. 
Specifically, the gaze-enhanced student models use gaze 
proportions with respect to categories of objects within the game. 
Notably, the strongest predictor categories of objects within the 
game were “Book Related,” “Lab Related,” and “Diagnosis Related” 
materials. “Travel/Game Items” were also informative, which 
could be due to off-task behavior [41]. For “Book Related” objects, 
this could be generalized to learning science content within the 
game. Many game-based learning environments feature learning 
content in one form or another, and CRYSTAL ISLAND uses books, 
articles, and posters (reading material) to convey relevant 
microbiology and science content to students. If students are 
fixated upon these types of objects for a larger proportion of time, 
it could indicate that they are spending additional time using 
sophisticated cognitive strategies (e.g., making inferences) to 
understand material deeply, or it could mean that they are trying 
to absorb a large amount of science related material using a 
combination of accurate metacognitive monitoring and cognitive 
strategies. Either way, it would seem “Book Related” material has 
a positive effect on their problem-solving performance. 
Examining more fine-grained gaze information for this category, 
e.g., saccades while reading, offers a promising direction for 
future work, as it has been shown that various patterns in reading 
can affect performance and learning [45]. 

For “Lab Related” and “Diagnosis Related” objects, we note 
that these can be generalized to be a form of applying scientific 
reasoning processes associated with generating hypotheses, 
collecting relevant evidence, and confirming or contradicting 
hypotheses through testing evidence.  In terms of this specific 
learning environment, a higher proportion of time could indicate 
that a student is spending more time testing items they believe are 
related to solving the mysterious outbreak. At a high level, this 
would appear to have a positive effect on one’s performance. 
However, there are ways a student could “game the system” by 
exhibiting “guess-and-check” problem-solving behavior to simply 
test every single item to determine the correct answer, without 
learning the material or engaging in scientific reasoning [39]. 
Thus, the prediction model seems to be able to identify students 
pursuing a “guess-and-check” strategy.  

It is possible that students who spend more time testing items 
are not grasping concepts as well (e.g., differences between 
viruses and bacteria) and are perhaps testing irrelevant evidence. 
In fact, it would be logical for a student who efficiently determines 
the solution to the science mystery to have a very low proportion 
of their time fixating upon these test related objects, since they 

would use the test related areas of the environment less after 
confirming their hypothesis. This is perhaps related to self-
regulated learning in that students who employ certain strategies 
may have a particular learner profile [8].  

The fixation object categories were chosen to create 
generalizable, common categories that are broadly applicable. 
Data-driven methods of aggregating specific fixation items into 
higher-level categories, such as sparse autoencoders, should be 
explored to increase the generalizability of fixation models to 
other game-based learning environments. To address the concern 
of generalizability, dimensionality reduction (PCA) was used to 
calculate the components that maximize the total variance of the 
data. We chose 5 components, and the performance of the PCA 
components within the same prediction models outperformed the 
baseline. However, because a side effect of dimensionality 
reduction is losing interpretability of the original features, more 
interpretable aggregation techniques should be investigated.  

7  CONCLUSION 
With rapid improvements in eye-tracking technologies, 
incorporating gaze data streams into student modeling offers 
considerable promise for creating more robust student models, 
which in turn can yield user-adaptive learning environments that 
are more effective and engaging. To explore the potential of gaze 
for student modeling, we created gaze-enhanced student models 
that use student gaze fixation transitions to predict student 
problem-solving performance in a game-based learning 
environment. We conducted a comparative evaluation of the 
predictive accuracy of the gaze-enhanced student models relative 
to baseline models and found that the gaze-enhanced student 
models significantly outperformed baseline student models that 
did not have access to gaze data streams. The results also 
demonstrate that gaze-enhanced student models more accurately 
predict student problem-solving performance in both static 
contexts (when full-session gameplay data is made available) and 
in dynamic contexts (when predictions must be made 
incrementally in an interval-based fashion).  

Gaze-based student modeling can inform dynamic user-
adaptations, and it will be important to investigate this in future 
work. Two additional lines of investigation that are also 
promising are to explore sequence-based models that directly 
represent the temporal dimension of fixations, and multimodal 
student models that further extend gaze-enhanced models with 
additional modalities such as affect and posture to yield even 
higher predictive accuracies and support more effective user-
adaptation.  
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