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ABSTRACT 
Modeling visitor engagement is a key challenge in informal 
learning environments, such as museums and science centers. 
Devising predictive models of visitor engagement that accurately 
forecast salient features of visitor behavior, such as dwell time, 
holds significant potential for enabling adaptive learning 
environments and visitor analytics for museums and science 
centers. In this paper, we introduce a multimodal early prediction 
approach to modeling visitor engagement with interactive science 
museum exhibits. We utilize multimodal sensor data—including 
eye gaze, facial expression, posture, and interaction log data—
captured during visitor interactions with an interactive museum 
exhibit for environmental science education, to induce predictive 
models of visitor dwell time. We investigate machine learning 
techniques (random forest, support vector machine, Lasso 
regression, gradient boosting trees, and multi-layer perceptron) to 
induce multimodal predictive models of visitor engagement with 
data from 85 museum visitors. Results from a series of ablation 
experiments suggest that incorporating additional modalities into 
predictive models of visitor engagement improves model 
accuracy. In addition, the models show improved predictive 
performance over time, demonstrating that increasingly accurate 
predictions of visitor dwell time can be achieved as more evidence 
becomes available from visitor interactions with interactive 
science museum exhibits. These findings highlight the efficacy of 
multimodal data for modeling museum exhibit visitor 
engagement. 
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1 Introduction 
Visitor engagement plays a central role in learning in informal 
environments, such as museums and science centers [20, 24]. It 
affects how visitors navigate through a museum, form interests 
and attitudes, and acquire knowledge about concepts and ideas 
presented in exhibits. As museums strive to better understand 
visitor engagement, a key challenge is to devise computational 
models that predict how visitors interact with exhibits. Recent 
work in multimodal learning analytics has demonstrated the 
ability to model and represent learner engagement in many 
contexts [5, 35], which introduces the opportunity to model visitor 
engagement in museums [19]. Computational models of visitor 
engagement in museums that leverage multimodal learning 
analytics could inform better understandings of patterns in visitor 
engagement by incorporating multi-channel data streams (e.g., 
facial expression, eye gaze, posture, interaction logs) captured by 
both physical hardware sensors and exhibit-specific software. 
Several studies have demonstrated the efficacy of incorporating 
multi-channel data from students’ learning interactions in 
multimodal sensor systems that model student knowledge [43-45, 
49] and engagement [8, 13, 14, 46] in both classroom and 
laboratory settings. However, limited work has investigated 
multimodal learning analytics within informal contexts, such as 
science museums. 

Inducing computational models of visitor engagement in 
museums poses significant challenges. Museum exhibits are 
frequently designed to foster brief interactions as visitors freely 
explore museums, resulting in very short dwell times [15, 28, 29].  
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Modeling visitor engagement using relatively short segments of 
data calls for rich, multimodal representations of visitor behavior. 
Specifically, it is important to predict engagement early in a 
visitor’s interaction with an exhibit because it creates potential 
opportunities to intervene to support and prolong engagement. 
Another challenge is the inherent difficulty of measuring 
engagement in museums; administering surveys and tests, or 
performing field observations, can be disruptive to visitor 
experiences and disrupt the natural flow of learning in museums 
[6]. To address these challenges, it is critical to devise 
computational models that leverage available data at early points 
within visitor interactions and make accurate predictions of 
visitor engagement. These models should accurately predict 
visitor engagement utilizing data that are captured using physical 
sensors and software that are minimally disruptive to learning. 

In this paper, we introduce a multimodal learning analytics 
approach for predicting visitor engagement with interactive 
exhibits in science museums. This analysis uses data collected 
from visitor interactions with a game-based interactive museum 
exhibit about environmental sustainability, FUTURE WORLDS. We 
captured visitors’ posture, facial expression, interaction trace logs, 
and eye gaze to model salient features for predicting visitor 
engagement. Leveraging machine learning techniques (random 
forest, support vector machine, lasso regression, gradient 
boosting, and multi-layer perceptron), we investigate the accuracy 
of predictions made at early points within visitor interactions by 
segmenting visitors’ multimodal data into thirty-second intervals. 
Additionally, we compare the accuracy of machine learning-based 
models of visitor engagement induced with several different 
combinations of input modalities. These ablation experiments 
were conducted to evaluate predictive models that use data 
collected from sensors that are less disruptive to learning. Results 
show that incorporating more modalities produces higher model 
accuracy by the end of visitor interactions. Additionally, the 
predictive models improved over time and converged to accurate 
predictions at points prior to the end of visitors’ learning 
interactions, indicating that increasingly accurate predictions of 
visitor dwell time are possible as more data becomes available 
from visitor interactions with interactive science museum 
exhibits. This is the first work to use multimodal data to induce 
early prediction models of visitor dwell time for museum exhibits. 
In addition, the paper contributes findings on the influence of 
different combinations of data channels in predicting visitor dwell 
times by investigating the impact of different data channels 
through a series of ablation experiments. 

2 Related Work 
Promoting visitor engagement with exhibits is central to creating 
meaningful learning experiences in museums [15]. While there 
has been a significant amount of work modeling learner 
engagement in formal educational settings (e.g., classrooms) and 
laboratories [22], limited work has investigated this potential in 
museums. Visitor engagement in museums is manifested in 
several ways. Low levels of engagement may appear as shallow 
interactions (or no interaction at all) with interactive exhibits, 

while higher levels of engagement could be indicated by longer 
dwell times, thoughtful behaviors, and expressions stemming 
from visitors engaged with the exhibit. In our study, we focus on 
predicting visitor dwell time, a manifestation of visitors’ 
behavioral engagement, which has been previously examined 
with museum exhibits [6, 19, 26].  

Multimodal learning analytics has received significant 
attention for its potential to create a comprehensive view of 
learners’ actions and their internal states [7, 33]. By taking 
advantage of trace data extracted from different modalities, 
multimodal learning analytics can assess learner’s affective and 
cognitive behaviors [34, 49]. Prior work in learning analytics has 
explored the use of several modalities for modeling learning 
outcomes and components of learner engagement. For example, 
eye gaze has been used to determine a learner’s level of attention 
in a discussion by tracking the gaze direction in classroom [37]; 
gesture has been used to provide alternative ways of emphasizing 
during presentation [17]; posture has been used to model learner 
attention in a classroom setting [38]; facial expression has been 
widely used to devise computational models for recognizing 
learner’s affective states [8]; and speech has been used to evaluate 
question-answering interactions between instructor and learners 
in a lecture setting [12]. A broad range of multimodal learning 
analytics approaches have been investigated to measure or 
understand learning processes, ranging from detecting and 
identifying learners’ collaborative behaviors in learning contexts 
[18, 25, 40], assisting teachers with classroom orchestration [1, 2, 
36], and understanding visitor engagement in science museums 
[19]. A significant portion of this prior work has investigated 
modalities in a setting where sensors are used to monitor all 
aspects of student learning. These sensors are sometimes 
wearable by the student, and they often require calibration to 
accurately monitor student characteristics while engaging with 
learning content. However, little work has compared the 
performance of multimodal predictive models that incorporate 
sets of modalities that are less disruptive to learning, which can 
inform learning environments that are designed to be more 
naturalistic for the students using them. 

A key challenge in modeling visitor engagement is developing 
the ability to make robust early predictions, i.e., making 
consistently accurate predictions as early as possible. This is 
important for run-time settings, as it sets the stage for the creation 
of adaptive exhibits that tailor content and feedback to promote 
engagement by intervening before visitors leave an exhibit. This 
characteristic has significant potential to improve visitor 
engagement with museum exhibits and to enhance learning in 
museums and science centers. However, little work has 
investigated predictive models that leverage multimodal data to 
make accurate predictions at early points in learners’ interactions. 
Prior work on early prediction in museums has investigated a pair 
of visitors’ social behavior types to provide socially aware, 
adaptive support that addresses visitors’ diverse needs [16, 27]. 
Early prediction has been examined in the context of game-based 
learning environments centering on predicting middle-grade 
students’ engagement [48] and in the context of recognizing 
dynamically changing learning goals [31]. When combined, 



 

multimodal data streams have demonstrated significant promise 
for early prediction, such as predicting kindergarteners’ reading 
skills in two years using electrophysiological and functional MRI 
data [3], enhancing the predictive performance of goal 
recognition with gaze data [31], and improving early prediction 
of academic failure with sentiment analysis of text‐based self‐
evaluated comments [50]. Utilizing multimodal data for learning 
analytics problems has been studied extensively. Our work makes 
the following novel contributions: (1) we conduct a series of 
ablation experiments on multimodal data channels to identify 
modalities that achieve the highest predictive performance for 
visitor engagement, and (2) we investigate the early prediction 
capacity of visitor engagement models with the goal of providing 
adaptive support as early as possible. Unlike most previous early 
prediction work that has focused on classification settings, where 
performance was often measured with convergence-based metrics 
[30], our work demonstrates the effectiveness of predictive 
models using multimodal regression models and how these 
models’ performances improve over time. 

3 FUTURE WORLDS Testbed Exhibit 
To investigate visitor engagement in science museums, we 
instrumented a game-based museum exhibit, FUTURE WORLDS, 
with several physical hardware sensors and data-logging software 
to capture museum visitor interactions. FUTURE WORLDS was 
developed with the Unity game engine and runs on an interactive 
surface display to enable touch-based interactions and 
explorations of environmental sustainability within a virtual 
environment [41]. As visitors interact with the game, they learn 
about environmental sustainability by solving problems through 
investigations of the impacts of environmental decisions on a 3D 
simulated environment (Figure 1). The goal of this game is for the 
visitor to improve aspects of the virtual environment (e.g., the 
renewable energy portfolio of a virtual location). Visitors can 
touch, swipe, and tap the screen to change the virtual 
environmental states and test hypotheses about the impacts of 
environmental decisions. Visitors learn through textual interfaces 
about the aspects of the virtual environment (e.g., the region’s 
electricity portfolio or a farm’s waste management practices) and 
how these are affected by environmental decisions. Changes made 
to the environment are rendered in real-time, and the virtual 
environment is colored to provide visual feedback based on the 
decisions the visitor makes. The primary target audience for 
FUTURE WORLDS is learners ages 10-11, and the educational content 
has been designed for this audience. In prior work, pilot testing 
with students from several elementary schools in a science 
museum revealed that visitors interacting with FUTURE WORLDS 
improved knowledge of sustainability content and showed 
promising levels of engagement measured by researcher 
observation [41].  

4 Multimodal Data Collection 
We captured visitors’ facial expression, body movement, and eye 
gaze in conjunction with game interaction trace data as visitors 

interacted with FUTURE WORLDS. The resulting data captured from 
these devices was subsequently analyzed to extract features for 
predicting visitor dwell time at the FUTURE WORLDS exhibit. As 
noted above, dwell time serves as the target variable for this 
prediction task. 

4.1 Study Participants and Procedure 
The predictive models are induced using data captured during 
three data collections with museum visitors interacting with the 
FUTURE WORLDS exhibit at the North Carolina Museum of Natural 
Sciences in Raleigh, North Carolina. The three groups each came 
from different socio-cultural backgrounds (e.g., race/ethnicity, 
urban vs. rural, language diversity). The schools each served 
student populations in which over 70% of students at each school 
are considered economically disadvantaged. The total number of 
participants in the study included 116 visitors between the ages of 
10-11 (M = 10.4, SD = 0.57). Fourteen of the participants did not 
provide demographics data, leaving 47 female and 55 male 
participants. The racial makeup of the participants was 32.4% 
Hispanic or Latino, 21.6% African American, 11.8% American 
Indian, 8% Asian, 7.5% had mixed races, 3% Caucasian, and 15.7% 
preferred not to respond. Some participants were missing one or 
multiple modalities, resulting in the removal of several visitors’ 
data from the final dataset for analyses. The final dataset consisted 
of multimodal data for 85 visitors, with demographics similar to 
the visitor population. 

The exhibit setup and data collection procedure were as 
follows. Two instances of the exhibit were set up on tables in a 
temporary space divided by pipe and drape in a special exhibition 
room at the museum. Each station was instrumented with a 
tripod-mounted Kinect camera approximately 5-feet from the 
participant, a mounted eye tracker beneath the surface display, 
and an external Logitech webcam mounted on top of the display 
(Figure 1). Participants completed informed consent and pre-
survey materials prior to the beginning of the study. Participants 
were introduced to the exhibit individually, and the multimodal 
sensors were calibrated at the beginning of the visitor’s 
interaction with the exhibit with the assistance of a researcher. 
Visitors individually interacted with FUTURE WORLDS until they 

Figure 1: Museum visitor interacting with the  
FUTURE WORLDS exhibit 

 



 

 

completed the game or up to a maximum of approximately 12 
minutes (M = 5.8, SD = 2.4, min = 1.8, max = 11.8).  Visitor dwell 
times were captured by the game-based exhibit software. 
Participants were quietly observed by researchers, and after 
finishing with the game, moved to a different part of the special 
exhibition room to complete post-survey materials and participate 
in a short de-brief interview.  

4.2 Multimodal Data Channels 
We instrumented the FUTURE WORLDS exhibit with several sensors 
to track visitor engagement in real-time and to better understand 
visitors’ interactions with the exhibit. The data streams collected 
by these sensors and logging software included posture, gesture, 
facial expression, eye gaze, and interaction trace logs, each of 
which is described in turn. 

Body Movement. Utilizing physical behavior exhibited by 
learners has been demonstrated to be predictive of various states 
of affect within multimodal learning analytics [9, 23]. Visitors’ 
posture and gesture movements were captured using the 
Microsoft Kinect for Windows v2. This motion-sensing camera 
tracks the movements and positions of 26 distinct vertices in 3D 
coordinate space, in addition to pixel data for both depth and 
camera sensors [10]. In this study, the Kinect was mounted to a 
tripod approximately 1.5 meters away from the exhibit and 
enabled posture tracking of visitors that characterizes different 
non-verbal behavioral signatures of visitor engagement.  

Facial Expression. Facial expression provides an alternative 
perspective on learner emotion and engagement [32]. Facial 
movement data has been frequently used in multimodal learning 
analytics to produce models of learner affective states and 
learning [8]. The facial expression data collected in this study was 
from video recordings captured from an externally mounted 
Logitech C920 USB webcam. The captured video data is analyzed 
by OpenFace, an open-source toolkit to detect facial landmarks, 
estimate head pose, recognize facial action units (AUs), and 
estimate eye gaze [4]. OpenFace automatically detects and 
analyzes 17 distinct AUs for each participant face captured within 
the camera’s field of view in real-time.  

Interaction Trace Logs. The FUTURE WORLDS exhibit is equipped 
with software that enables the granular logging of learner 
interactions with the exhibit. These logs consist of sequential 
records (at the millisecond level) of taps and gestures on the 
multitouch surface, as well as learning events (e.g., requesting 
more information about a particular topic) and states of the 
underlying simulation, that arise during visitor experiences. This 
data can be utilized to investigate how learners explore and 
manipulate the underlying simulation provided by FUTURE 

WORLDS.  
Eye Gaze. Gaze provides rich, task-based information that can 

inform models of learners’ cognitive and affective states [9, 25]. 
Recent work has demonstrated the efficacy of using eye gaze for 
modeling learner interactions [43, 44]. We utilized a mounted 
Tobii EyeX eye-tracking sensor which uses near-infrared light to 
track eye movements and gaze points during visitor interactions 
with the interactive exhibit. We automatically identify in-game 
targets of visitor attention in FUTURE WORLDS using a gaze target-

labeling module that processes eye tracking data using ray casting 
techniques. This module automatically tracks visitors’ visual 
fixations on in-game objects and interface elements, yielding log 
events denoting the gaze target, timestamp, and duration of the 
fixation.  

4.3 Multimodal Features 
Using each of the modalities described above, we extracted 
features to serve as predictors of visitor dwell time. We 
engineered features for each modality that have proven to be 
valuable in prior multimodal learning analytics work [19].  

To extract features that capture components of visitor body 
movement, we focused on four skeletal vertices tracked by the 
Microsoft Kinect motion sensor: Head, SpineShoulder (upper-
back), SpineMid (mid-back), and Neck. These features were 
selected based on prior work on multimodal affect detection and 
engagement prediction with motion-tracking sensor data [9, 19, 
21]. For each skeletal vertex, we calculated the minimum, 
maximum, and median position values, as well as the variance of 
each vertex. We used the four vertices to calculate two additional 
features used to represent changes in visitor posture. The first 
feature was the total posture change, which was generated by 
calculating the summative changes in each vertex’s coordinates 
over a certain duration. The second feature was generated in a 
similar manner to the total posture movement but was instead 
calculated using the total change in the vertices’ distance from the 
Kinect. In total, we distilled 18 posture-related features from the 
raw Kinect coordinate data. 

To model visitor facial expressions, we processed facial AU 
data captured by OpenFace. We calculated the duration that each 
AU was exhibited throughout the visitor’s interaction with FUTURE 

WORLDS. Each visitor’s observed AU intensity values were 
standardized, and the duration of an AU was calculated during 
intervals where consecutive intensity values were at least one 
standard deviation greater than the mean of that particular 
visitor-specific AU feature. This is to ensure that only relative 
spikes of the intensity of each AU contributed towards the 
calculation of the total duration. Additionally, each duration was 
only recorded if it was present for longer than 0.5 consecutive 
seconds to avoid noise associated with facial micro expressions 
[42]. This process was performed for 18 AUs tracked by the 
software. Additional features were generated by calculating the 
percentage of a visitor’s gameplay that contained the presence of 
the individual AU [10]. Using the same sequence, the standard 
deviation and maximum value of the AU values were calculated 
as well. In total, we distilled 72 facial expression-related features 
from video data processed by OpenFace. 

Two interaction-based features were engineered based on the 
total number of times a visitor tapped on the multi-touch user 
interface of FUTURE WORLDS (Total Taps) and the total number of 
times the visitor tapped to display additional information about 
certain environmental sustainability elements of the game (Total 
Info Taps). Both of these interaction log features measure how 
actively participants interacted with the FUTURE WORLDS exhibit 
and its embedded environmental sustainability content. 



 

A Tobii EyeX eye tracking device captured gaze data from each 
visitor and determined areas of interest (AOIs) within the context 
of the FUTURE WORLDS display. Instances of visitor gaze data that 
centered on in-game objects for a duration longer than 210 
milliseconds were automatically identified and tracked, which is 
a fixation duration based on prior eye gaze research [39]. The 
gaze-based features that were distilled from this data include the 
proportion of time spent looking at four different types of in-game 
objects: virtual location (AOI-Location), environmental 
sustainability selection menus (AOI-Menu), environmental 
sustainability informational text and imagery (AOI-Information), 
and user interface elements (AOI-Interface). AOI-Location refers to 
fixations on any of nine distinct regions of the virtual 
environment. AOI-Menu refers to a menu that can be accessed by 
a visitor tapping on a particular location within the virtual 
environment, allowing the visitor to either learn more about that 
particular element or make changes within the virtual 
environment. AOI-Information represents fixations on textual 
labels pertaining to environmental sustainability concepts 
presented in FUTURE WORLDS, in addition to high-resolution 
images associated with the presented concepts. AOI-Interface 
represents fixations on UI-specific elements for navigating the 
FUTURE WORLDS software, such as the arrow buttons to change 
environmental conditions. These four categories of gaze-based 
features represent visitor fixation relative to different elements of 
the museum exhibit platform. Because these categories of 
durations can be summed to calculate dwell time directly, we scale 
each category to create a rate of fixation durations, which we 
describe in detail later. 

5 Predictive Models of Visitor Dwell Time 
We conduct two types of analysis: 1) early prediction of visitor 
dwell time and the improvement of these predictive models over 
time; and 2) ablation of specific modalities to determine how 
performance of early prediction models varies with different sets 
of modalities. Each of these is described below.  

5.1 Early Prediction 
A desirable characteristic of multimodal predictive models is that 
as a model observes more interaction data over time, its predictive 
accuracy increases. Rapidly converging toward accurate 
predictions provides adaptive learning environments information 
to proactively provide support or intervention. This could lead to 
more engaging interactive museum exhibits that can better 
capture the attention of visitors and lead to more effective 
learning experiences. To evaluate this characteristic, we trained 
machine learning-based regression models to predict visitor dwell 
time at various time points during the visitor’s interaction. These 
models were trained on full sequences of visitor data and then 
tested on varying amounts of data stemming from different 
visitors. 

To predict visitor dwell time throughout each visitor’s 
interaction, we calculated the set of features described above 
using equal time intervals. Specifically, we split visitor 
interactions into 30-second cumulative segments and calculated 

the set of features from each modality encompassing data from 
the start of the interaction up until that 30-second interval. For 
example, if a visitor interacted with FUTURE WORLDS for two 
minutes and thirty seconds, he or she would have five time points 
where the multimodal features are calculated (at 30s, 1min, 1min 
30s, 2min, 2min 30s). Each of these time points serves as a data 
point for our analysis. We used 30-second intervals to ensure 
sufficient changes in the features for each modality across time 
steps, as features from some modalities were sampled at different 
rates than others. Previous studies have successfully used smaller 
window sizes where data could be sampled at higher rates (e.g., 
video data), but this is not always possible [47]. 

After splitting all visitor data into time segments based on 30 
second intervals, the resulting dataset consisted of 1,013 data 
points for the 85 visitors. Following this process, the features for 
each modality were scaled by dividing each feature by the total 
elapsed time at each point. This ensures that the models’ 
performances are not artificially inflated due to monotonically 
increasing values within the features. 

5.2 Ablation 
To evaluate the performance of the early prediction models using 
different modalities, a set of ablation experiments was conducted. 
In practice, it may not always be possible to instrument a museum 
exhibit with multimodal sensors, as they could be obtrusive for 
exhibits on the museum floor or raise privacy concerns. For 
example, interaction logs can be collected from digital exhibits 
that have pre-existing logging features, or for which source code 
access is available, but this may not always be the case. Some data 
channels, such as visitor posture, can be collected unobtrusively 
from a physically distant camera, and can be configured to 
enhance privacy by performing run-time skeletal tracking 
without storing the raw video recordings. Similarly, facial 
expression poses privacy considerations, as personally identifying 
information from visitors is captured when facial video recordings 
are stored and analyzed. Other channels such as eye gaze require 
a cumbersome calibration process, and there are practical 
challenges with respect to adjusting the position and angle of the 
eye tracker based upon the height of the visitor. Data 
management, especially for data with personally identifiable 
information, is a critical consideration for multimodal 
instrumentation in museum contexts.  

In the ablation experiments, we evaluate the impact of 
removing more intrusive sensors and data streams from the full 
set of multimodal data. First, we examine models induced with the 
full set of modalities: posture (P), facial expression (F), interaction 
logs (I), and eye gaze (E). Next, we removed the data captured by 
the eye tracker from the multimodal dataset, which resulted in 
three remaining modalities (PFI). This was done to simulate 
situations in which it may be infeasible to collect gaze data. The 
next ablation removed both the eye tracker data and the 
interaction logs, resulting in two modalities used (PF). Interaction 
logs require the ability to instrument exhibits with trace logging 
software, which sometimes is infeasible. The final ablation 
removed the facial expression data in addition to the eye gaze and 
interaction log data, leaving only posture data (P). This was done 



 

 

to simulate situations in which facial expression data is difficult 
(or impossible) to collect, either because of privacy concerns or 
risk of distracting visitors from the exhibit. In total, we compare 
four combinations of input modalities: the full set of modalities 
and three ablation conditions that remove one additional modality 
per condition.  

6 Results 
For evaluation, we trained five machine learning-based models: 
random forest (RF), support vector regression (SVR), Lasso 
regression (Lasso), gradient boosting trees regression (GBT), and 
multi-layer perceptron regression (MLP). We performed 10-fold 
cross-validation at the visitor level to ensure no data from a visitor 
was present in both the training and test partitions (i.e., 8-9 unique 
visitors per test set). For each machine learning model, we 

optimized the hyperparameters using grid search. The best set of 
parameters were determined in a nested 3-fold cross-validation 
within the training set in each fold of the outer cross-validation. 
For the RF models, we varied the number of estimators, the max 
depth allowed by the individual learned trees, and the minimum 
samples per leaf required to make a split on an internal node. For 
the SVR models, we varied the kernel and the regularization 
parameter. For Lasso regression, we varied the alpha 
regularization term. For the GBT models, we optimized the 
learning rate, the number of estimators, the max depth, and the 
minimum samples per leaf to make an internal node split. For the 
MLP modes, we used a two-layer model and varied the number of 
hidden nodes in both layers. All other hyperparameters were set 
to the default values offered by the machine learning library, 
scikit-learn. Once the best set of hyperparameters was found, the 
best performing parameters on the internal cross-validation were 
used to predict the dwell times of the data points in the outer 

Figure 2: Early prediction performance using different sets of modalities (lower is better) 
 



 

cross-validation test set, allowing for better generalization for 
each predictive modelling method. 

Given the large number of available features when 
incorporating all sets of modalities, we performed feature 
selection to reduce the number of features that were utilized in 
the predictive models within each iteration of cross-validation. 
We performed univariate linear regression tests between the 
training set of features used in each experiment with dwell time 
and selected features that had p-values less than or equal to 0.15. 
Finally, all data was standardized within cross-validation splits 
using the training set’s mean and standard deviation for each 
feature. We report the performance of early prediction models for 
each ablation condition in Figure 2.  

In Figure 2, each graph shows the performance over 
proportions of visitor dwell times for each ablation condition for 
all predictive models. The x-axis denotes the percentage of the 
visitors’ interaction that was used by the predictive models to 
predict dwell time. The y-axis shows the performance at each 
point in terms of root mean squared error (RMSE). We note that 
as the models see more data in each ablation, prediction 
performance tends to improve (i.e., the RMSE decreases). As 
modalities are removed, prediction performance tends to improve 
at a slower rate, and the predictions converge to a higher RMSE 
by the end of the visitors’ interactions.  

In addition to displaying early prediction performance, we also 
report the overall performance of the predictive models for each 
ablation. We report the R2, RMSE, and mean absolute error (MAE) 
for each predictive model in each ablation condition using 
possible time segments of the visitors’ interactions. This 
represents the average performance achieved by each model at all 
time points. These results are shown in Table 1. Each vertical 
section of the table displays the sets of modalities used, where “P” 
represents posture, “F” represents facial expression, “I” represents 
interaction logs, and “E” represents eye gaze. We bold the highest 
performing model for each set of modalities across the entire set 
of metrics. As displayed, the random forest (RF) and Lasso 
regression (Lasso) models tended to outperform competing 
methods across all time segments.  

7 Discussion and Limitations 
The evaluation revealed that predictive models of visitor dwell 
time can make improved predictions over time, and using 
additional modalities yields better performance as visitors near 
the end of their interactions. After evaluating five predictive 
models using four different combinations of modalities, the results 
revealed that random forest models outperformed competing 
models on three of the four modality combinations, and Lasso 
regression performed best on the unimodal configuration for 
predicting dwell time. These two models tend to perform well 
with limited data and relatively many features. The MLP model 
tended to perform worst on each set of modalities, likely suffering 
from overfitting and lack of data. Notably, overall predictive 
performance improves when removing eye gaze and interaction 
log modalities. However, removing facial expression results in a 
steep drop in performance.  

 
Table 1. Early prediction model performance on all time 

segments. 
 

PFIE 
Model R2 MAE RMSE 

RF 0.178 104.894 133.626 
SVR 0.105 109.906 139.442 

Lasso 0.151 108.412 135.827 
GBT 0.102 113.258 139.658 
MLP -0.271 127.448 166.140 

PFI 
Model R2 MAE RMSE 

RF 0.195 104.274 132.253 
SVR 0.127 110.053 137.721 

Lasso 0.188 107.025 132.789 
GBT 0.113 113.153 138.840 
MLP -0.433 139.786 176.453 

PF 
Model R2 MAE RMSE 

RF 0.207 102.005 131.258 
SVR 0.060 116.257 142.893 

Lasso -0.112 124.716 155.386 
GBT 0.116 112.741 138.576 
MLP -0.515 150.354 181.423 

P 
Model R2 MAE RMSE 

RF 0.010 120.477 146.646 
SVR 0.092 110.978 140.417 

Lasso 0.142 109.816 136.548 
GBT -0.017 120.857 148.609 
MLP -0.581 147.266 185.333 

 
One reason the eye gaze and interaction log modalities do not 

provide substantial boosts in performance is due to each of these 
features having few overall extracted features. We extracted four 
eye gaze features and two interaction log features, as opposed to 
72 from facial expression and 18 from posture. Performance on 
earlier segments tends to improve faster when incorporating eye 
gaze and interaction logs, but the initial performance is worse.  

The results in Table 1 indicate the overall trend for each 
predictive model by calculating the metrics using all time 
segments. This provides a snapshot of the performance, but it does 
not account for the final predictive performance achieved for each 
model. For example, the RMSE values for models in the PFIE 
condition are below 125.0, but the highest performing model 
overall (RF) yields an RMSE of 133.6. This tradeoff of evaluating 
models based on overall performance and performance when the 
models are given additional data should be considered further. 

When incorporating more modalities, the predictive 
performance tended to converge to the highest achieved 
performance (RMSE: 100-125) for more models. Each predictive 



 

 

model for each set of modalities tended to plateau around 70% of 
total dwell time, indicating that peak performance occurs before 
the end of visitor interactions. While this is the case for each set 
of modalities, the models that incorporate less modalities plateau 
much sooner. Additionally, the rate of improvement tended to be 
faster when the models were evaluated with more modalities.  

There are a few potential causes of this pattern. First, when 
incorporating more modalities, the predictive models are better 
able to learn complex relationships between modalities, which can 
change over time. Uncovering these patterns can produce faster 
improvement when leveraging more data. Second, the models 
trained with more sets of modalities have access to more features, 
which introduces more opportunity to characterize visitor 
engagement. However, introducing many features also introduces 
the opportunity for additional noise when predicting dwell time. 
While feature selection attempts to minimize the effect of noisy 
features, there is still opportunity to have negative effects from 
combining modalities [11]. Additionally, multicollinearity and 
redundancy between features coming from different modalities 
can inhibit predictive performance when combining modalities. 

The results from this analysis highlight the value of modeling 
museum visitor engagement with multiple modalities. 
Incorporating sensors that are relatively unobtrusive for exhibits 
can support accurate predictions of visitor engagement. 
Additional data channels such as eye gaze and interaction trace 
logs can provide meaningful data that can help early prediction 
models of visitor engagement generate accurate predictions 
efficiently. We anticipate that the methodological approach and 
feature representations presented in this work are generalizable 
to other exhibits and museums. Specifically, we hypothesize that 
the predictive performance of the models would be similar in 
other museums contexts, although the results may be influenced 
by factors such as visitor characteristics and exhibit design.  

There are several limitations of the work that should be noted. 
A common challenge in multimodal learning analytics is 
determining which predictive features to extract from multimodal 
data streams. We distilled features based on the results of previous 
work investigating multimodal interaction in adaptive learning 
environments, but further investigation is needed to extract 
richer, more descriptive features in modalities where the number 
of features is scarce (i.e., eye gaze and interaction logs). A second 
limitation is the way that we represented visitor interactions. We 
chose to split visitor interactions into segments of thirty second 
cumulative intervals, making predictions after each thirty-second 
interval. Choosing intervals that are shorter (e.g., fifteen seconds) 
could allow for more predictions to be made at earlier points 
within a visitor’s interaction, and it could increase the training 
sample size as well as afford the opportunity to provide more fine-
grained adaptive support for visitors. We operationalize visitor 
engagement in terms of dwell time, but we do not utilize other 
channels of engagement (e.g., self-reports, field observations). 
Dwell time is a useful measure of behavioral engagement, but it 
does not provide a comprehensive picture of visitor experience. 
Another limitation of this work is related to quantifying early 
prediction convergence in regression-based models. Various 
metrics exist for early prediction in classification settings [30], but 

there are no analogous methods for regression models. As such, 
we measured the models’ performance over time to visually 
display both convergence and improvement of prediction 
accuracy as the models were given additional data. 

8 Conclusion 
Visitor engagement is critically important for learning in informal 
learning environments such as museums. Multimodal learning 
analytics offers significant potential for modeling learner 
engagement in museums, which is challenging due to several 
factors, including very brief visitor dwell times and the 
multifaceted nature of how visitors manifest engagement (e.g., 
visual attention and body language). To address these challenges, 
we have introduced a machine learning-based approach to 
predicting visitor engagement with museum exhibits at early 
points in their interactions using multimodal sensor data. We 
found that by leveraging multimodal data collected from visitor 
interactions with an interactive game-based exhibit, early 
prediction models were able to predict visitor dwell times 
efficiently and accurately. Furthermore, the early prediction 
models that incorporated more multimodal channels reached 
accurate predictions at a faster rate. Results indicate that each 
multimodal channel has predictive value for modeling dwell time, 
highlighting the importance of modeling visitor dwell time with 
multimodal data. These results are in agreement with previous 
work investigating multimodal learning analytics for other 
learning settings, such as classrooms and laboratories. These 
findings also highlight the need to investigate predictive models 
that use unobtrusive sensors to model the museum visitor 
experience, as not all modalities provide equal predictive value. 

There are several promising directions for future work. First, 
investigating sequential representations of visitor data could help 
reveal temporal patterns of visitor engagement. Sequential models 
(e.g., recurrent neural networks) that utilize fine-grained 
sequences of visitor data are promising techniques to investigate. 
Second, utilizing additional modalities will be an important next 
step as the results showed that more modalities provide predictive 
value. To this end, additional features from each modality should 
be distilled to better model how each modality bears on 
engagement. A third direction will be to incorporate this early 
prediction approach into museum exhibits to enable run-time 
interventions to support visitor engagement. This will introduce 
the opportunity to enrich understanding of how multimodal 
learning analytics can dynamically capture visitor engagement in 
museums and to enhance the learning experiences of visitors. 
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