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ABSTRACT 
Recent years have seen a growing interest in block-based 
programming environments for computer science education. 
While these environments hold significant potential for novice 
programmers, they lack the adaptive support necessary to 
accommodate students exhibiting a wide range of initial 
capabilities and dispositions toward computing. A promising 
approach to addressing this problem is introducing adaptive 
feedback. This work investigates a key capability for adaptive 
support: training student models that predict student success in 
block-based programming activities for novice programmers. 
The predictive student models utilize four categories of 
features: prior performance, hint usage, activity progress, and 
interface interaction. In addition to evaluating the accuracy of 
these models for multiple block-based programming activities, 
we also investigate how quickly the models converge to 
accurate prediction, and we evaluate the additive value of each 
of the four categories of features. Results show that the 
predictive models are able to predict whether a student will 
successfully complete an exercise with high accuracy, as well 
as converge on this prediction early in the sequence of student 
interactions. 
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1. INTRODUCTION 
A central thrust of computer science education research in 
recent years has been improving the recruitment and retention 
of students into computing-related fields of study [2]. Yet, 
many undergraduate students face challenges in introductory 

programming courses [36], which have been found to be 
particularly difficult for novice learners [4]. Block-based 
programming languages are a promising approach to 
supporting novices because they reduce the need to focus on 
syntax, thereby reducing cognitive load and encouraging 
novices to attempt more complex implementations [40]. In 
contrast to text-based programming languages, students using 
block-based programming languages have been shown to 
spend proportionally more time on productive coding [24]. 
Further, some aspects of block-based code representations, 
such as the nesting of blocks and the closer alignment with 
natural language expression, can help students better 
understand programming concepts [37]. However, despite their 
benefits, block-based programming environments have 
typically provided limited support to students, which places a 
significant burden on students, as well as their instructors and 
teaching assistants who have limited availability. 
Adaptive learning environments have had success in a broad 
range of subject matters [19, 20, 32]. They also offer a 
promising vehicle for addressing the complexity of scaffolding 
and assessing students’ programming activities [3, 6, 8, 15]. A 
key feature of adaptive learning environments is their ability to 
leverage student models that assess knowledge and skills from 
observed learning activities and support learning based on the 
estimated competency levels in real time.  
In this paper, we introduce predictive student models that 
generate a series of predictions of student success on block-
based programming activities. As students complete 
programming activities, predictive student models can predict 
student performance, thereby enabling adaptive learning 
environments to make informed decisions on when to 
proactively provide support and scaffolding to struggling 
students. This paper presents predictive student models for 
block-based programming activities that were trained on over 
200 undergraduate students’ interactions with a block-based 
programming environment in an introductory engineering 
course. The models utilized four categories of student 
programming behavior: prior performance, hint usage, activity 
progress, and interface interaction. The trained models 
accurately predict student performance on future programming 
activities. Analyses of the feature sets reveal prior 
performance to be the most predictive feature early in the 

 



programming exercises, with other features providing more 
predictive power as the exercises progress. 
This paper is structured as follows. Section 2 discusses related 
work on analyzing student block-based programs and 
predicting student coding performance. Section 3 describes 
PRIME, the block-based programming environment that was 
used to collect the dataset of students’ construction of block-
based programs. Section 4 presents the early prediction student 
modeling framework, as well as an evaluation of the 
effectiveness of the models, and Section 5 provides a 
discussion of the results and design implications. 

2. RELATED WORK 
Hint generation for block-based programming has been the 
subject of considerable attention. Given the vast solution 
spaces of programming exercises, data-driven methods of hint 
generation have been explored extensively. For example, hint 
generation for Python tutoring [28] as well as comparing the 
quality of generated hints to expert hints in a block-based 
programming environment [25] have both shown promise. 
However, even with high-quality hints, student performance 
can nevertheless suffer as a result of poor help-seeking 
behavior, which is prevalent among students who are most in 
need of assistance [1]. Approaches to hint generation need to 
address “gaming the system” behaviors, in which students 
request multiple levels of hints until they receive a “bottom-
out” hint [23] providing the answer to the activity. A potential 
solution is to design a proactive hint generation framework 
that can monitor students’ progress and deliver proactive 
support when necessary [5, 12]. The work presented in this 
paper seeks to enable such proactive feedback by creating 
predictive models capable of accurately detecting struggling 
students and doing so as early as possible. 

Student modeling in programming environments has largely 
focused on constructing granular models of student domain 
knowledge. These approaches seek to apply modeling 
techniques such as Bayesian Knowledge Tracing [7] to 
programming exercises, mapping exercises to individual 
knowledge components to identify which concepts students are 
struggling with [27], and to enable mastery learning [9, 18]. 
Related work has sought to leverage large datasets and deep 
neural architectures to analyze student behaviors and identify 
struggling students as they complete open-ended programming 
activities [35]. This work builds on these inner-loop student 
models by incorporating new features such as prior 
performance and hint usage to predict student performance. 

In addition to work on programming environments, examining 
student behaviors in open-ended environments has shown 
promise. For example, Sabourin et al. utilized dynamic 
Bayesian networks to create early prediction models of student 
learning in a game-based learning environment [31]. Min et al. 
used deep-learning techniques and multimodal datasets to 
recognize student goals in an open-ended game-based learning 
environment [21, 22]. Others have used textbook annotations 
to create early prediction models of student learning [38], 
clustering techniques for early prediction of students 
interacting in an open-ended exploratory simulation 
environment [11, 16], and fine-grained analysis of game-based 
learning behaviors to predict student quitting (or dropout) 
early [17]. 

3. METHODS 
In this work, we investigate college student interactions with a 
block-based programming environment using features that 
capture system-level interactions, prior student data, and 
programming progress. We first describe the learning 
environment, the coding activities, and interface design, 
followed by the study with college students and the coding 
problem-solving dataset collected for training and analysis. 

3.1 PRIME Environment 
PRIME is an adaptive learning environment designed to support 
novices in learning computer science concepts through block-
based programming. Students can use PRIME both during class 
time as well as for lab and homework assignments. 

3.1.1 Task Progression Design 
The curriculum for PRIME was informed by a review of the 
syllabi for introductory programming courses from the fifty 
top-rated undergraduate computer science programs in the US 
[33]. From this review, we identified the set of topics that are 
typically covered in the first five units of courses, as well as 
the order in which they are covered: 1) Input/Output, 
Variables, and Loops, 2) Functions, Parameters, and Return 
Values, 3) Conditional Execution, 4) String Manipulation and 
Basic Data Structures, and 5) Search and Sort Algorithms. The 
work presented in this paper focuses on Units 1-3 (Table 1). 

Table 1. Computer science curricular coverage.  

Unit Topics 

1 
PRIME environment tutorial, Input/Output, Numeric 
data types, Expressions (math), Variables, Iteration 
(definite) 

2 Abstraction, Functions (methods), Parameters, Return 
Values 

3 Boolean data types, Conditionals, Iteration 
(indefinite), Debugging 

 
Each unit of PRIME is typically covered in a week and consists 
of multiple sequential activities. Units 1 and 2 consist of seven 
activities each, with Unit 3 consisting of six activities. Within 
each unit, activities progressively build upon concepts and 
require students to build more complex programs to solve 
increasingly challenging problems.  

3.1.2 Interface Design 
To support the translation of block-based programs into their 
text-based equivalents (e.g., Python), PRIME uses Google’s 
Blockly framework [13] (Figure 1). The primary user interface 
provides a Program panel, a Console panel, a Feedback panel, 
and an Instructions panel. The Program panel consists of a 
visual coding widget with the block-based coding workspace 
and toolbox of available blocks.  
The default workspace is augmented with a “Start” block, 
which serves a purpose analogous to the “main” function or 
method in other programming languages. The toolbox varies 
for each task, gradually adding more blocks as students 
complete tasks and are introduced to new topics. This 
approach is based on prior work indicating that introducing 
new blocks only as needed may reduce extraneous cognitive 



load [26] and increase interface usability for novice learners 
[29].  
The Console panel contains a “Run” button and shows the 
output generated from running the program. An input field also 
appears in this panel if a program prompts the user for input. 
Finally, the Instructions panel contains step-by-step 
instructions for a given task. This type of instruction format is 
common for adaptive learning environments [10], though it is 
rarely found in block-based programming environments. In 
addition to navigation buttons, this panel also contains positive 
feedback and links to the next task when a student has 
successfully completed the current task. Task completeness is 
checked every time students run their programs and is based 
primarily on a set of exemplar cases for each 
activity. Additionally, some activities also check for the 
presence/absence of certain blocks to ensure an appropriate 
solution was submitted. 
The Feedback panel contains the “Get Hint” button, allowing 
students to request textual hints. Hints are suggestions for 
minor changes to the program that direct students toward the 
solution. Hints check various aspects of the student code, 
including the presence or absence of certain blocks, structural 
features such as whether code is connected to the “Start” 
block, and the content of the parameters and fields of certain 
blocks.  
Multiple hints were authored for each activity (M = 5.40, SD = 
2.76) based on common errors identified from prior data 
collections and pilot testing. The maximum number of hints in 
an activity is 12, and the minimum authored is 2. An example 

of a hint is, “Instead of numbers, you can put other value 
blocks (like variables) inside the math operation block.” Hints 
were cast at a sufficiently abstract level that they do not 
directly provide the solution to an activity but rather nudge 
students in the right direction. These nudges are designed to 
assist the student to consider block creations, deletions, or 
moves that may be advantageous.  
Hints are delivered to students in the text panel if they click on 
the “Get Hint” button in the Feedback panel. If no new hints 
are available, then the button is disabled and cannot be 
pressed. If there is an available hint different than the one 
currently displayed, then pressing the button will display that 
hint. A set of test cases is used to determine which hint is 
given to the student at a specific point for each activity. The 
number of test cases passed determines both the specific hint 
to provide to the student as well as generating the “Next Step” 
prompt that students receive when completing an intermediate 
portion of the activity. After requesting a hint, if the student 
makes changes to satisfy the conditions of the displayed hint, 
the text of the hint converts to a strikethrough font, visually 
indicating its status to the student. 

3.2 Study Design 
Student programming interactions were collected in a study 
conducted at a large university in the southeastern United 
States. Participants were students enrolled in two sections of 
an online introductory course required for all engineering 
majors. The study sample consisted of 248 students, 222 of 
which attempted at least one activity.  

Instructions 
panel. 

Blockly 
panel with 
the toolbox 
(left) and 
student 
code (right). 

Feedback panel 
with hint. 

Console 
panel prior to 
running code. 

Figure 1. Screenshot of PRIME environment. 



The average age of the participants was 18, with 31.5% of the 
group being female. The racial makeup was 75.8% White, 
12.9% Asian, 3.2% African American, and 1.2% Hispanic or 
Latino. The primary major reported was Non-CS Engineering 
(90.3%), with 6.9% reporting as Computer Science majors and 
the remaining either Undecided, Math, or Agricultural Science. 
Of the 222 students, 17.3% reported having prior experience 
with block-based programming. Of the 222 students who 
attempted at least one activity, the total number of activities 
was 2,170 (M = 9.77, SD = 6.24, Median = 8), and the total 
number of completed activities was 1,492 (M = 6.72, SD = 
4.87, Median = 4).  

3.3 Dataset 
The data used in this study was student interaction data 
collected from students coding with the PRIME block-based 
programming environment. The data collected for each student 
consist of actions the student or system took during the course 
of an attempted activity. For example, the system logs when 
students perform actions such as requesting a hint, moving a 
block, creating a block, and other interactions. When a student 
performs actions relating to a specific block, the system 
creates an identification number associated with each block to 
allow easier tracking of specific blocks that the student 
creates.  
As the goal of this work is to predict successful coding activity 
completion, the activities used for analysis were selected as 
those with completion rates between 30-70% (i.e., a 70% 
threshold for the incompletion/completion rate). Very high 
completion rates were seen in early activities geared for 
mastery-oriented introduction to block-based programming. As 
the activities become more difficult and once the student has 
been acquainted with the system, the completion rates drop 
slightly. At the other end of the spectrum, later activities did 
not have sufficient student attempts for a predictive model to 
be trained. We therefore focused on the middle activities: 5, 6, 
7, 10, 11, 12, 13, 14, 15, 16, 17, and 18. A summary of the 
completion rates for each activity is shown in Table 2. 

Table 2. Completion Rates for each Activity 

Activity Completed Attempted Success Rate (%) 

5 57 177 32.2 
6 61 126 48.4 
7 38 108 35.2 

10 59 92 64.1 
11 46 81 56.8 
12 45 71 63.4 
13 36 67 53.7 
14 32 60 53.3 
15 34 78 43.6 
16 38 59 64.4 
17 39 56 69.6 
18 37 55 67.3 

 

3.4 Feature Families 
We formulate the task of predictive student modeling for 
students’ coding activities as a binary classification task. We 

define successful completion of a block-based programming 
activity as a coding activity that the student completes from 
start to finish and fulfills each of the activity requirements. 
Completing an activity will only occur once for each attempt 
of an activity by a student, and it is important to note that there 
is no time limit for the completion to occur: a student’s 
interaction with an activity can last from the time they start the 
activity until the semester ends or until he or she has 
completed the activity. The input for the predictive models is 
the number of student-activity attempts where each pair 
denotes a student attempt on a particular activity. There were a 
total of 1,966 student-activity attempts in the dataset. This 
count is calculated as the number of student-activity attempts 
for which the student had at least 20 system-logged actions 
within the given activity, where an action is a system-logged 
interaction where the student clicks within the environment, 
creates/deletes/moves blocks, or interacts with any of the 
system components, such as the toolbox or “Save Workspace” 
button. Thus, the inputs of the predictive models are features 
derived from each of these student-activity attempts. We 
define the model input vectors formally with four categories of 
features: prior performance, hint usage, activity progress, and 
interface interaction. The prior performance feature is defined 
as the percentage of activities that a student has completed out 
of the total activities he or she has attempted up to that point. 
This feature only considers the activities listed in Table 2. The 
hint usage feature is the total number of times a student has 
requested a hint for the activity (i.e., pressed the “Get Hint” 
button).  
The activity progress features denote the system analysis of 
the student’s code up to a particular point within the activity. 
We use two features, test cases passed and checkpoints passed, 
to represent the student’s progress. These features are 
calculated by evaluating the student’s code with expert-
designed test cases. The test cases passed feature represents 
the overall test cases required to complete the activity, and the 
checkpoints passed feature consists of finer-grained test cases 
within the activity. The checkpoints passed feature is used to 
select which hint to give to the student when a hint is 
requested. In addition, these intermediate-level test cases are 
used to drive the “Next Step” prompts that the student sees 
when making incremental progress required to complete the 
activity.  
The final family of features, interface interaction, consists of 
12 features: enter button presses, last save loads, previous 
exercise code loads, next instruction clicks, previous 
instruction clicks, code runs, workspace saves, workspace 
changes, block creations, block deletions, block moves, and 
user interface clicks in block-display. These features are 
logged by the system over the course of a student’s attempt at 
the activity and represent a finer-grained snapshot of the 
student’s problem-solving interactions.  
We also use a temporal feature, time interval, to introduce a 
measurement of the student’s dynamic progress. We use this to 
encode sequential interactions and summarize the time 
interval-based cumulative counts of all other features. The 
time interval in this work is defined as the 30 second segment 
of cumulative features up to that point in time (e.g., interval 1 
consists of all features within the first 30 seconds, interval 5 
consists of the cumulative features up to the first 2 minutes 
and 30 seconds). There is variation in the maximal interval for 



students within the same activity because certain students may 
take longer to complete (or not complete) the activity. As an 
example, one student may have spent 2 minutes and 30 
seconds on a particular activity, so he or she will have 5 rows 
of data, each considering the cumulative counts of each 
described feature. Each row is then indexed by the 
corresponding time interval, 1 through 5. Before passing the 
complete input vector into our predictive models, we perform 
standardization on each feature at the activity level (i.e., 
subtracting the mean and dividing by the standard deviation).  

4. RESULTS 
4.1 Activity Completion Predictions 
To account for differences in curricular content across 
activities, we trained a separate model for each activity. We 
maintained the same set of hyperparameter values for the 
predictive model for each activity in order to support better 
generalization to other tasks and to observe patterns spanning 
all interactions rather than within individual activities. Due to 
the nature of this predictive task and the fact that the 
sequential intervals for a particular student-activity attempt are 
indirectly dependent on one another when comparing the same 
student, we utilize leave-one-out cross-validation (LOOCV) at 
the student-level within each activity to validate results found 
by the predictive models. To report the most accurate results, 
we averaged the results from the cross-validation process to 
account for the fact that the student occurring in the test set 
each iteration does not account for the total distribution of the 
input data, thereby increasing variance in the results. This 
validation process was motivated by the occurrence of 
successive intervals for a given student-activity attempt being 
related. For example, a student who attempted a specific 
activity will have cumulative actions in their first interval that 
will also be counted in the next interval. LOOCV at the 
student-level thereby prevents data leakage. We adopt logistic 
regression for interpretability.   

Table 3. Classification performance using logistic 
regression. The results for the majority class baseline (BL), 

full feature set (Full), and best performing individual 
family of features (Ind.) are shown. 

 Accuracy F1 

Activity BL Full Ind. Full Ind. 

5 0.662 0.719 0.666 0.132 0.006 
6 0.668 0.751 0.774 0.491 0.469 
7 0.708 0.710 0.639 0.281 0.206 
10 0.636 0.757 0.815 0.575 0.555 
11 0.583 0.762 0.761 0.566 0.563 
12 0.747 0.737 0.729 0.680 0.729 
13 0.749 0.714 0.664 0.606 0.604 
14 0.695 0.704 0.766 0.599 0.611 
15 0.607 0.603 0.599 0.417 0.418 
16 0.625 0.718 0.694 0.621 0.618 
17 0.700 0.865 0.857 0.698 0.683 
18 0.757 0.818 0.916 0.701 0.729 

We report two metrics: accuracy and F1 score. As a 
classification problem, it is important to predict both the 
majority and minority classes at a high rate. In most cases, 
activity completion is the majority class, but in some cases, the 
classes are reversed. This occurs primarily when the activities 
become more difficult, and thus the incompletion rate is 
greater than the completion rate for that activity. In reporting 
these metrics, we show both the results from the full set of 
features (i.e., all four feature categories), and we choose the 
best single family of features as a comparison. In addition to 
these, we compare the results against a baseline of the majority 
class consisting of every time interval where students spent 
time on an activity. The label for each interval is the end 
outcome (completion/incompletion) during their interaction 
with that activity.  
Table 3 summarizes the cross-validation results of the full 
feature sets and the best performing family of features against 
the majority class baseline. Across all the activities, prior 
performance was the best performing family of features in 7 
out of 12 activities, or 58% of the time. Of the five remaining 
activities, interface interaction served as the best performing 
family once, activity progress twice, and hint usage twice.  

4.2 Feature Analysis 
After determining the best performing model for the entire set 
of features, it is informative to determine which of the features 
held the greatest predictive value. After training the model, we 
evaluated the feature coefficients of the trained regression to 
determine the relative importance of each of the features. Both 
the magnitude and sign of the coefficients can be used for 
interpretation in this case, as we can determine which features 
were positive or negative predictors in this classification.  

Table 4. Logistic regression model coefficients using the 
full feature set. 

Feature Mean SD Rank 

Prior Performance 1.269 0.889 1 
Time Interval -1.176 1.493 2 
Test Cases Passed 0.828 0.327 3 
Block Deletion 0.648 1.486 4 
Block Creation -0.465 0.692 5 
Enter Button Presses 0.458 0.528 6 
Checkpoints Passed -0.277 0.251 7 
Save Workspace -0.232 0.780 8 
Next Instruction 0.148 0.663 9 
Workspace Change 0.118 0.663 10 
User Interface Clicks 0.115 0.989 11 
Block Moves -0.094 0.633 12 
Hint Button Presses 0.067 0.799 13 
Load Last Save 0.063 0.618 14 
Load Previous Exercise Code 0.032 0.112 15 
Run Code -0.013 0.896 16 
Previous Instruction 0.004 1.022 17 



In Table 4, the coefficient results for the full feature set are 
shown. The four strongest predictors in terms of magnitude 
were prior performance, time interval, test cases passed, and 
block deletion. Many of the features representing students’ 
interactions with the block-based environment (e.g., block 
creations, deletions) provided a strong boost to predictive 
performance. In addition, features encoding more productivity-
based actions, such as workspace saves and checkpoints passed 
also provided an improvement to the model. It is worth noting 
that time interval is a strong negative (coefficient direction) 
predictor, while prior performance was equally as strong of a 
positive predictor. 

4.3 Early Prediction 
As a predictive student model observes more student problem-
solving actions over time, we would like for its accuracy to 
improve. A more rapid convergence toward more accurate 
predictions would mean that an adaptive learning environment 
could proactively intervene and provide feedback at an earlier 
stage if the prediction were that the student would not 
successfully complete an activity. To evaluate this, we 
performed a survival-based analysis of the predictive models 
for each interval of each activity. Specifically, we evaluated 
the performance of our models at each time interval step, 
where the accuracy at each successive interval includes the 
students who have already finished interacting with the 

Figure 2. Survival-based analysis of student completion prediction over each interval. The green line represents the baseline for 
each activity, and the red lines denote the standard deviation of each interval’s average accuracy. 



activity as correct predictions. The results for this analysis are 
shown in Figure 2.  
For evaluation, we trained the same logistic regression models 
on each interval for each activity and recorded the number of 
errors. The accuracy for each interval is then the number of 
correct predictions divided by the total number of students 
who attempted that activity (i.e., the total number of samples 
for the first interval of that activity). Due to the decreasing 
size of data for each successive interval, we split the data into 
a 50% train and 50% test set on each interval for each activity, 
and we took the average performance over 10 randomly 
generated splits. We then plotted the accuracy over time, 
noting the standard deviation as the error bars for each 
interval. We did not perform LOOCV in this analysis because 
there is at most one interval per student in each activity, so the 
train/test split will not have data leakage. In other words, 
splitting the data in half for a train/test split will not have 
overlapping students in the test set no matter how the split is 
made. 
As noted above, the desired behavior for these predictive 
models is that accuracy improves over time as the models 
observe more student problem-solving interaction data. An 
additional desirable characteristic is that models surpass the 
baseline at a relatively fast rate. We note that in 8 of the 12 
activities, the accuracy of the first interval is at or above that 
of the baseline (interval-level class majority). For the 
remaining activities, and those where the accuracy dips below 
the baseline, the accuracy surpasses the respective baseline at 
interval 4, which corresponds to 2 minutes of interaction time 
with PRIME.  

 
Figure 3. Standardized convergence point metric for 
sequence prediction analysis. 
To quantify the rate at which predictions converged towards an 
accurate prediction, we also calculated metrics used in the 
related task of goal recognition for sequence analyses [14, 22]. 
Specifically, we measured model performance using accuracy 
rate, convergence rate, convergence point, and standardized 
convergence point. In this context, convergence rate calculates 
the proportion of sequences where predicted outcome for the 
final interval is correct. In other words, this metric quantifies 
how well by the final interval the predictive models can 
accurately predict whether the student will complete the 
programming activity. Thus, a higher value for this metric is 
desirable.  
Convergence point refers to the proportion of the sequence of 
intervals occurring before the predictive model has 
consistently begun to predict the correct outcome. In other 
words, this proportion measures a predictive model’s ability to 
converge to an early prediction. This implies that a lower 
number is more desirable for this metric. The overall 
convergence point is the average proportion of all sequences of 
intervals. An issue with using convergence point to measure 

how early in a sequence predictions converge is that 
convergence point is only calculated for sequences where the 
model successfully predicts the last action in a sequence (i.e., a 
sequence converged to the correct prediction). Standardized 
convergence point (Figure 3) takes this into account by adding 
a penalty factor for sequences where the last prediction is 
incorrect. If the prediction of the outcome (O) for a sequence 
of intervals (I) does not converge, then its value is calculated 
as (n + p)/n, where p is a penalty factor. For this work we set 
the penalty factor to 1 because of the relatively short length of 
the sequences investigated. As with convergence point, a lower 
value for these metrics is desirable. 
In Table 5, we report these metrics for our early prediction 
models using the same train/test split as mentioned previously. 
Thus, the sequences of intervals for each student-activity 
attempt in the test set used as the sequences for these metrics. 
We average the rates for 10 randomly produced train/test splits 
to validate the results. 
Table 5. Averaged rate results for logistic regression (LR) 

model. 

Metric  

Accuracy Rate 63.96% 
Convergence Rate 70.62% 
Convergence Point 35.84% 
Standardized Convergence Point 57.75% 
F1 Score 68.87% 

  

5. DISCUSSION 
Four families of features contribute to predictive student 
modeling. Prior performance, hint usage, activity progress, 
and interface interactions all play an important role in 
accurately predicting student success in programming 
activities. The predictive models outperform baselines which 
use majority class prediction of each individual interval. Using 
these enhanced models, we found that several features stood 
out as more predictive.  
The prior performance feature was the strongest positive 
(coefficient direction) predictor. If students have successfully 
completed more of their previous exercises, then they are 
likely to continue doing so. Because this feature accounts for 
successes on other activities, when students have just begun 
attempting activities, there will be no data to inform this 
feature. This is demonstrated in Table 3 when the F1 score is 
close to 0 for the individual family of features (Ind.) column. 
However, when no information is known about a student’s 
prior success (i.e., when they are just starting their 
interaction), the system can use the other features to account 
for this. A strong negative predictor of student activity 
completion was the time interval. If a student attempts an 
activity and begins taking more time, the likelihood of their 
completing that activity may decrease. This could be due to the 
student not grasping the underlying concept in which the 
activity is centered.  
Two strong positive predictors were checkpoints passed and 
test cases passed (activity progress), denoting how many steps 
a student has completed in the problem. This is a different 
measure than time interval, as time interval does not capture 



the objective progress the student has made. Therefore, if a 
model is able to detect how much of the code the student has 
completed relative to the total code needed for the activity, this 
could boost predictions. The more incremental checkpoints the 
system designer uses to assess student code, the more likely 
this feature will be a strong predictor.  
Within the interface interaction family of features, block 
creations served as a negative predictor, while block deletions 
served as a positive predictor. These features are fundamental 
to understanding a student’s code. For systems that do not use 
built-in test cases, these can serve as core predictive features 
to use for this prediction task. In PRIME, students can freely 
create, delete, change, and move blocks according to their 
believed solution to the activity. Actions such as move and 
create may reveal a more “trial and error” approach, in which 
the student is attempting new ideas without knowledge of how 
these blocks interact. Similarly, actions such as deleting a 
block and changing a block could indicate when a student has 
tried a block configuration and no longer believes this to be 
the correct block configuration. In this case, the student is 
revising his or her answer, and this could point to a block 
configuration that is closer to an actual solution.  
A surprising result is the fact that hint button presses was not 
one of the strongest predictors. The hint request functionality 
in this environment guides student problem solving at a 
conceptual level. Hints are designed to nudge students to 
consider approaches that may spark a correct move or block 
creation. Thus, if students request many hints, it may be that 
they are not getting closer to the correct answer. If they keep 
requesting hints without successfully completing an activity, 
this could indicate either a lack of effort or lack of 
understanding, or perhaps both. For effort, analyses would 
need to be performed to determine if there is a pattern with 
other interface interaction features that indicate little attempt 
on the activity. For understanding, analyses would need to be 
performed to determine if the student is making little progress, 
such as is the case in wheel-spinning [34]. One reason that 
hints did not serve as a stronger predictor could be the fact that 
there were not a consistent number of hints per activity. In 
addition, these hints are not hierarchical. In other words, the 
hints do not utilize a “bottom-out” mechanism that becomes 
finer-grained as the student requests more hints at the same 
point in their code. This type of hinting system would allow 
for students who are clearly experiencing an impasse (or 
lacking effort) to receive more explicit hints, which would 
likely change the predictive value of the feature. 

5.1 Limitations 
In this analysis, predictive models were created to determine if 
a student will complete a block-based programming activity. 
We explored the possibility of making this prediction as early 
as possible. While we quantified this through the improvement 
of accuracy over time and through the use of convergence rate 
and convergence point, there are no clear standards or 
baselines for comparing these results. Without a baseline, it is 
impossible to fully know how this predictive model performs 
in relation to other models. When determining the type of 
model to use, we chose logistic regression due to its relative 
interpretability. However, other models may have higher 
performance, especially when tuned appropriately. It will be 
important to investigate other models in future work.  

Another limitation is that this analysis did not fully represent 
the temporal nature of the data. We created a time interval 
feature to account for 30-second intervals, but we do not treat 
the actions themselves as sequential features. An alternative to 
treating the features as sequential could be to create finer-
grained intervals (varying time lengths) and to use sequential-
based machine learning models, such as probabilistic graphical 
models or recurrent neural networks. Additionally, though the 
feature families were chosen to generalize well across learning 
environments, the underlying features are specific to this 
environment and may not generalize well. Further 
investigation is needed to understand the effectiveness of this 
modelling approach for both other programming environments 
as well as similarly structured environments from other 
domains. 
A final limitation of this work that should be investigated in 
future work is level of granularity at which analyses of student 
code is conducted. One way to analyze student code is to 
perform static tests, such as in checkpoints passed and test 
cases passed. Another method would be to create a new 
representation of the code and analyze this representation, as 
the automated code analysis approach presented in [39]. 

6. CONCLUSION 
With increasing interest in block-based programming 
environments for teaching introductory computer science, 
programming environments that can provide adaptive support 
hold considerable promise. In order for these environments to 
evolve beyond providing on-demand hints, there is a need to 
develop predictive models that can accurately and quickly 
identify whether a student will succeed or abandon a given 
activity.  
To explore this potential, we created predictive student models 
for the PRIME block-based programming environment that were 
informed by four families of features: prior performance, hint 
usage, activity progress, and interface interaction. Evaluations 
showed that the models could predict student activity 
completion more accurately than baselines, and results also 
demonstrate that by splitting up student-activity attempt data 
into time intervals, they can make accurate early predictions. A 
survival-based analysis showed that by 2 minutes of student 
interaction time, these models consistently outperform 
baselines, and prior performance, time interval, and test cases 
passed were the most predictive features.   
In future work, it will be important to investigate modeling 
frameworks that can better leverage sequential features of the 
data. Second, it will be important to explore more granular 
assessment rubrics of student programming artifacts, such as 
those that might be derived from an evidence-centered design 
approach [30] to drive the predictive models. Third, exploring 
models that integrate performance prediction with “sibling” 
models for help-seeking, off-task-behavior, and wheel-
spinning is a promising direction for future work. Here, an 
ensemble of predictive models could be assembled to most 
effectively support novice student programming. Finally, it 
will be important to investigate models that operate in tandem 
with block-based programming and text-based programming 
and that best support the transition from block-based to text-
based programming as students progress to increasingly 
complex computational problem-solving tasks. 
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