
Predicting Early and Often: Predictive Student Modeling
for Block-Based Programming Environments

Andrew Emerson
North Carolina State University

Raleigh, NC 27695
ajemerso@ncsu.edu

Fernando J. Rodríguez
University of Florida

Gainesville, FL 32611
fjrodriguez@ufl.edu

Bradford Mott
North Carolina State University

Raleigh, NC 27695
bwmott@ncsu.edu

Andy Smith
North Carolina State University

Raleigh, NC 27695
pmsmith4@ncsu.edu

Wookhee Min
North Carolina State University

Raleigh, NC 27695
wmin@ncsu.edu

Kristy Elizabeth Boyer
University of Florida

Gainesville, FL 32611
keboyer@ufl.edu

Cody Smith
North Carolina State University

Raleigh, NC 27695
crsmit16@ncsu.edu

Eric Wiebe
North Carolina State University

Raleigh, NC 27695
wiebe@ncsu.edu

James Lester
North Carolina State University

Raleigh, NC 27695
lester@ncsu.edu

ABSTRACT
Recent years have seen a growing interest in block-based
programming environments for computer science education.
While these environments hold significant potential for novice
programmers, they lack the adaptive support necessary to
accommodate students exhibiting a wide range of initial
capabilities and dispositions toward computing. A promising
approach to addressing this problem is introducing adaptive
feedback. This work investigates a key capability for adaptive
support: training student models that predict student success in
block-based programming activities for novice programmers.
The predictive student models utilize four categories of
features: prior performance, hint usage, activity progress, and
interface interaction. In addition to evaluating the accuracy of
these models for multiple block-based programming activities,
we also investigate how quickly the models converge to
accurate prediction, and we evaluate the additive value of each
of the four categories of features. Results show that the
predictive models are able to predict whether a student will
successfully complete an exercise with high accuracy, as well
as converge on this prediction early in the sequence of student
interactions.

Keywords

Block-Based Programming, Student Performance Prediction,
Predictive Student Models

1. INTRODUCTION
A central thrust of computer science education research in
recent years has been improving the recruitment and retention
of students into computing-related fields of study [2]. Yet,
many undergraduate students face challenges in introductory

programming courses [36], which have been found to be
particularly difficult for novice learners [4]. Block-based
programming languages are a promising approach to
supporting novices because they reduce the need to focus on
syntax, thereby reducing cognitive load and encouraging
novices to attempt more complex implementations [40]. In
contrast to text-based programming languages, students using
block-based programming languages have been shown to
spend proportionally more time on productive coding [24].
Further, some aspects of block-based code representations,
such as the nesting of blocks and the closer alignment with
natural language expression, can help students better
understand programming concepts [37]. However, despite their
benefits, block-based programming environments have
typically provided limited support to students, which places a
significant burden on students, as well as their instructors and
teaching assistants who have limited availability.
Adaptive learning environments have had success in a broad
range of subject matters [19, 20, 32]. They also offer a
promising vehicle for addressing the complexity of scaffolding
and assessing students’ programming activities [3, 6, 8, 15]. A
key feature of adaptive learning environments is their ability to
leverage student models that assess knowledge and skills from
observed learning activities and support learning based on the
estimated competency levels in real time.
In this paper, we introduce predictive student models that
generate a series of predictions of student success on block-
based programming activities. As students complete
programming activities, predictive student models can predict
student performance, thereby enabling adaptive learning
environments to make informed decisions on when to
proactively provide support and scaffolding to struggling
students. This paper presents predictive student models for
block-based programming activities that were trained on over
200 undergraduate students’ interactions with a block-based
programming environment in an introductory engineering
course. The models utilized four categories of student
programming behavior: prior performance, hint usage, activity
progress, and interface interaction. The trained models
accurately predict student performance on future programming
activities. Analyses of the feature sets reveal prior
performance to be the most predictive feature early in the

programming exercises, with other features providing more
predictive power as the exercises progress.
This paper is structured as follows. Section 2 discusses related
work on analyzing student block-based programs and
predicting student coding performance. Section 3 describes
PRIME, the block-based programming environment that was
used to collect the dataset of students’ construction of block-
based programs. Section 4 presents the early prediction student
modeling framework, as well as an evaluation of the
effectiveness of the models, and Section 5 provides a
discussion of the results and design implications.

2. RELATED WORK
Hint generation for block-based programming has been the
subject of considerable attention. Given the vast solution
spaces of programming exercises, data-driven methods of hint
generation have been explored extensively. For example, hint
generation for Python tutoring [28] as well as comparing the
quality of generated hints to expert hints in a block-based
programming environment [25] have both shown promise.
However, even with high-quality hints, student performance
can nevertheless suffer as a result of poor help-seeking
behavior, which is prevalent among students who are most in
need of assistance [1]. Approaches to hint generation need to
address “gaming the system” behaviors, in which students
request multiple levels of hints until they receive a “bottom-
out” hint [23] providing the answer to the activity. A potential
solution is to design a proactive hint generation framework
that can monitor students’ progress and deliver proactive
support when necessary [5, 12]. The work presented in this
paper seeks to enable such proactive feedback by creating
predictive models capable of accurately detecting struggling
students and doing so as early as possible.

Student modeling in programming environments has largely
focused on constructing granular models of student domain
knowledge. These approaches seek to apply modeling
techniques such as Bayesian Knowledge Tracing [7] to
programming exercises, mapping exercises to individual
knowledge components to identify which concepts students are
struggling with [27], and to enable mastery learning [9, 18].
Related work has sought to leverage large datasets and deep
neural architectures to analyze student behaviors and identify
struggling students as they complete open-ended programming
activities [35]. This work builds on these inner-loop student
models by incorporating new features such as prior
performance and hint usage to predict student performance.

In addition to work on programming environments, examining
student behaviors in open-ended environments has shown
promise. For example, Sabourin et al. utilized dynamic
Bayesian networks to create early prediction models of student
learning in a game-based learning environment [31]. Min et al.
used deep-learning techniques and multimodal datasets to
recognize student goals in an open-ended game-based learning
environment [21, 22]. Others have used textbook annotations
to create early prediction models of student learning [38],
clustering techniques for early prediction of students
interacting in an open-ended exploratory simulation
environment [11, 16], and fine-grained analysis of game-based
learning behaviors to predict student quitting (or dropout)
early [17].

3. METHODS
In this work, we investigate college student interactions with a
block-based programming environment using features that
capture system-level interactions, prior student data, and
programming progress. We first describe the learning
environment, the coding activities, and interface design,
followed by the study with college students and the coding
problem-solving dataset collected for training and analysis.

3.1 PRIME Environment
PRIME is an adaptive learning environment designed to support
novices in learning computer science concepts through block-
based programming. Students can use PRIME both during class
time as well as for lab and homework assignments.

3.1.1 Task Progression Design
The curriculum for PRIME was informed by a review of the
syllabi for introductory programming courses from the fifty
top-rated undergraduate computer science programs in the US
[33]. From this review, we identified the set of topics that are
typically covered in the first five units of courses, as well as
the order in which they are covered: 1) Input/Output,
Variables, and Loops, 2) Functions, Parameters, and Return
Values, 3) Conditional Execution, 4) String Manipulation and
Basic Data Structures, and 5) Search and Sort Algorithms. The
work presented in this paper focuses on Units 1-3 (Table 1).

Table 1. Computer science curricular coverage.

Unit Topics

1
PRIME environment tutorial, Input/Output, Numeric
data types, Expressions (math), Variables, Iteration
(definite)

2 Abstraction, Functions (methods), Parameters, Return
Values

3 Boolean data types, Conditionals, Iteration
(indefinite), Debugging

Each unit of PRIME is typically covered in a week and consists
of multiple sequential activities. Units 1 and 2 consist of seven
activities each, with Unit 3 consisting of six activities. Within
each unit, activities progressively build upon concepts and
require students to build more complex programs to solve
increasingly challenging problems.

3.1.2 Interface Design
To support the translation of block-based programs into their
text-based equivalents (e.g., Python), PRIME uses Google’s
Blockly framework [13] (Figure 1). The primary user interface
provides a Program panel, a Console panel, a Feedback panel,
and an Instructions panel. The Program panel consists of a
visual coding widget with the block-based coding workspace
and toolbox of available blocks.
The default workspace is augmented with a “Start” block,
which serves a purpose analogous to the “main” function or
method in other programming languages. The toolbox varies
for each task, gradually adding more blocks as students
complete tasks and are introduced to new topics. This
approach is based on prior work indicating that introducing
new blocks only as needed may reduce extraneous cognitive

load [26] and increase interface usability for novice learners
[29].
The Console panel contains a “Run” button and shows the
output generated from running the program. An input field also
appears in this panel if a program prompts the user for input.
Finally, the Instructions panel contains step-by-step
instructions for a given task. This type of instruction format is
common for adaptive learning environments [10], though it is
rarely found in block-based programming environments. In
addition to navigation buttons, this panel also contains positive
feedback and links to the next task when a student has
successfully completed the current task. Task completeness is
checked every time students run their programs and is based
primarily on a set of exemplar cases for each
activity. Additionally, some activities also check for the
presence/absence of certain blocks to ensure an appropriate
solution was submitted.
The Feedback panel contains the “Get Hint” button, allowing
students to request textual hints. Hints are suggestions for
minor changes to the program that direct students toward the
solution. Hints check various aspects of the student code,
including the presence or absence of certain blocks, structural
features such as whether code is connected to the “Start”
block, and the content of the parameters and fields of certain
blocks.
Multiple hints were authored for each activity (M = 5.40, SD =
2.76) based on common errors identified from prior data
collections and pilot testing. The maximum number of hints in
an activity is 12, and the minimum authored is 2. An example

of a hint is, “Instead of numbers, you can put other value
blocks (like variables) inside the math operation block.” Hints
were cast at a sufficiently abstract level that they do not
directly provide the solution to an activity but rather nudge
students in the right direction. These nudges are designed to
assist the student to consider block creations, deletions, or
moves that may be advantageous.
Hints are delivered to students in the text panel if they click on
the “Get Hint” button in the Feedback panel. If no new hints
are available, then the button is disabled and cannot be
pressed. If there is an available hint different than the one
currently displayed, then pressing the button will display that
hint. A set of test cases is used to determine which hint is
given to the student at a specific point for each activity. The
number of test cases passed determines both the specific hint
to provide to the student as well as generating the “Next Step”
prompt that students receive when completing an intermediate
portion of the activity. After requesting a hint, if the student
makes changes to satisfy the conditions of the displayed hint,
the text of the hint converts to a strikethrough font, visually
indicating its status to the student.

3.2 Study Design
Student programming interactions were collected in a study
conducted at a large university in the southeastern United
States. Participants were students enrolled in two sections of
an online introductory course required for all engineering
majors. The study sample consisted of 248 students, 222 of
which attempted at least one activity.

Instructions
panel.

Blockly
panel with
the toolbox
(left) and
student
code (right).

Feedback panel
with hint.

Console
panel prior to
running code.

Figure 1. Screenshot of PRIME environment.

The average age of the participants was 18, with 31.5% of the
group being female. The racial makeup was 75.8% White,
12.9% Asian, 3.2% African American, and 1.2% Hispanic or
Latino. The primary major reported was Non-CS Engineering
(90.3%), with 6.9% reporting as Computer Science majors and
the remaining either Undecided, Math, or Agricultural Science.
Of the 222 students, 17.3% reported having prior experience
with block-based programming. Of the 222 students who
attempted at least one activity, the total number of activities
was 2,170 (M = 9.77, SD = 6.24, Median = 8), and the total
number of completed activities was 1,492 (M = 6.72, SD =
4.87, Median = 4).

3.3 Dataset
The data used in this study was student interaction data
collected from students coding with the PRIME block-based
programming environment. The data collected for each student
consist of actions the student or system took during the course
of an attempted activity. For example, the system logs when
students perform actions such as requesting a hint, moving a
block, creating a block, and other interactions. When a student
performs actions relating to a specific block, the system
creates an identification number associated with each block to
allow easier tracking of specific blocks that the student
creates.
As the goal of this work is to predict successful coding activity
completion, the activities used for analysis were selected as
those with completion rates between 30-70% (i.e., a 70%
threshold for the incompletion/completion rate). Very high
completion rates were seen in early activities geared for
mastery-oriented introduction to block-based programming. As
the activities become more difficult and once the student has
been acquainted with the system, the completion rates drop
slightly. At the other end of the spectrum, later activities did
not have sufficient student attempts for a predictive model to
be trained. We therefore focused on the middle activities: 5, 6,
7, 10, 11, 12, 13, 14, 15, 16, 17, and 18. A summary of the
completion rates for each activity is shown in Table 2.

Table 2. Completion Rates for each Activity

Activity Completed Attempted Success Rate (%)

5 57 177 32.2
6 61 126 48.4
7 38 108 35.2

10 59 92 64.1
11 46 81 56.8
12 45 71 63.4
13 36 67 53.7
14 32 60 53.3
15 34 78 43.6
16 38 59 64.4
17 39 56 69.6
18 37 55 67.3

3.4 Feature Families
We formulate the task of predictive student modeling for
students’ coding activities as a binary classification task. We

define successful completion of a block-based programming
activity as a coding activity that the student completes from
start to finish and fulfills each of the activity requirements.
Completing an activity will only occur once for each attempt
of an activity by a student, and it is important to note that there
is no time limit for the completion to occur: a student’s
interaction with an activity can last from the time they start the
activity until the semester ends or until he or she has
completed the activity. The input for the predictive models is
the number of student-activity attempts where each pair
denotes a student attempt on a particular activity. There were a
total of 1,966 student-activity attempts in the dataset. This
count is calculated as the number of student-activity attempts
for which the student had at least 20 system-logged actions
within the given activity, where an action is a system-logged
interaction where the student clicks within the environment,
creates/deletes/moves blocks, or interacts with any of the
system components, such as the toolbox or “Save Workspace”
button. Thus, the inputs of the predictive models are features
derived from each of these student-activity attempts. We
define the model input vectors formally with four categories of
features: prior performance, hint usage, activity progress, and
interface interaction. The prior performance feature is defined
as the percentage of activities that a student has completed out
of the total activities he or she has attempted up to that point.
This feature only considers the activities listed in Table 2. The
hint usage feature is the total number of times a student has
requested a hint for the activity (i.e., pressed the “Get Hint”
button).
The activity progress features denote the system analysis of
the student’s code up to a particular point within the activity.
We use two features, test cases passed and checkpoints passed,
to represent the student’s progress. These features are
calculated by evaluating the student’s code with expert-
designed test cases. The test cases passed feature represents
the overall test cases required to complete the activity, and the
checkpoints passed feature consists of finer-grained test cases
within the activity. The checkpoints passed feature is used to
select which hint to give to the student when a hint is
requested. In addition, these intermediate-level test cases are
used to drive the “Next Step” prompts that the student sees
when making incremental progress required to complete the
activity.
The final family of features, interface interaction, consists of
12 features: enter button presses, last save loads, previous
exercise code loads, next instruction clicks, previous
instruction clicks, code runs, workspace saves, workspace
changes, block creations, block deletions, block moves, and
user interface clicks in block-display. These features are
logged by the system over the course of a student’s attempt at
the activity and represent a finer-grained snapshot of the
student’s problem-solving interactions.
We also use a temporal feature, time interval, to introduce a
measurement of the student’s dynamic progress. We use this to
encode sequential interactions and summarize the time
interval-based cumulative counts of all other features. The
time interval in this work is defined as the 30 second segment
of cumulative features up to that point in time (e.g., interval 1
consists of all features within the first 30 seconds, interval 5
consists of the cumulative features up to the first 2 minutes
and 30 seconds). There is variation in the maximal interval for

students within the same activity because certain students may
take longer to complete (or not complete) the activity. As an
example, one student may have spent 2 minutes and 30
seconds on a particular activity, so he or she will have 5 rows
of data, each considering the cumulative counts of each
described feature. Each row is then indexed by the
corresponding time interval, 1 through 5. Before passing the
complete input vector into our predictive models, we perform
standardization on each feature at the activity level (i.e.,
subtracting the mean and dividing by the standard deviation).

4. RESULTS
4.1 Activity Completion Predictions
To account for differences in curricular content across
activities, we trained a separate model for each activity. We
maintained the same set of hyperparameter values for the
predictive model for each activity in order to support better
generalization to other tasks and to observe patterns spanning
all interactions rather than within individual activities. Due to
the nature of this predictive task and the fact that the
sequential intervals for a particular student-activity attempt are
indirectly dependent on one another when comparing the same
student, we utilize leave-one-out cross-validation (LOOCV) at
the student-level within each activity to validate results found
by the predictive models. To report the most accurate results,
we averaged the results from the cross-validation process to
account for the fact that the student occurring in the test set
each iteration does not account for the total distribution of the
input data, thereby increasing variance in the results. This
validation process was motivated by the occurrence of
successive intervals for a given student-activity attempt being
related. For example, a student who attempted a specific
activity will have cumulative actions in their first interval that
will also be counted in the next interval. LOOCV at the
student-level thereby prevents data leakage. We adopt logistic
regression for interpretability.

Table 3. Classification performance using logistic
regression. The results for the majority class baseline (BL),

full feature set (Full), and best performing individual
family of features (Ind.) are shown.

 Accuracy F1

Activity BL Full Ind. Full Ind.

5 0.662 0.719 0.666 0.132 0.006
6 0.668 0.751 0.774 0.491 0.469
7 0.708 0.710 0.639 0.281 0.206
10 0.636 0.757 0.815 0.575 0.555
11 0.583 0.762 0.761 0.566 0.563
12 0.747 0.737 0.729 0.680 0.729
13 0.749 0.714 0.664 0.606 0.604
14 0.695 0.704 0.766 0.599 0.611
15 0.607 0.603 0.599 0.417 0.418
16 0.625 0.718 0.694 0.621 0.618
17 0.700 0.865 0.857 0.698 0.683
18 0.757 0.818 0.916 0.701 0.729

We report two metrics: accuracy and F1 score. As a
classification problem, it is important to predict both the
majority and minority classes at a high rate. In most cases,
activity completion is the majority class, but in some cases, the
classes are reversed. This occurs primarily when the activities
become more difficult, and thus the incompletion rate is
greater than the completion rate for that activity. In reporting
these metrics, we show both the results from the full set of
features (i.e., all four feature categories), and we choose the
best single family of features as a comparison. In addition to
these, we compare the results against a baseline of the majority
class consisting of every time interval where students spent
time on an activity. The label for each interval is the end
outcome (completion/incompletion) during their interaction
with that activity.
Table 3 summarizes the cross-validation results of the full
feature sets and the best performing family of features against
the majority class baseline. Across all the activities, prior
performance was the best performing family of features in 7
out of 12 activities, or 58% of the time. Of the five remaining
activities, interface interaction served as the best performing
family once, activity progress twice, and hint usage twice.

4.2 Feature Analysis
After determining the best performing model for the entire set
of features, it is informative to determine which of the features
held the greatest predictive value. After training the model, we
evaluated the feature coefficients of the trained regression to
determine the relative importance of each of the features. Both
the magnitude and sign of the coefficients can be used for
interpretation in this case, as we can determine which features
were positive or negative predictors in this classification.

Table 4. Logistic regression model coefficients using the
full feature set.

Feature Mean SD Rank

Prior Performance 1.269 0.889 1
Time Interval -1.176 1.493 2
Test Cases Passed 0.828 0.327 3
Block Deletion 0.648 1.486 4
Block Creation -0.465 0.692 5
Enter Button Presses 0.458 0.528 6
Checkpoints Passed -0.277 0.251 7
Save Workspace -0.232 0.780 8
Next Instruction 0.148 0.663 9
Workspace Change 0.118 0.663 10
User Interface Clicks 0.115 0.989 11
Block Moves -0.094 0.633 12
Hint Button Presses 0.067 0.799 13
Load Last Save 0.063 0.618 14
Load Previous Exercise Code 0.032 0.112 15
Run Code -0.013 0.896 16
Previous Instruction 0.004 1.022 17

In Table 4, the coefficient results for the full feature set are
shown. The four strongest predictors in terms of magnitude
were prior performance, time interval, test cases passed, and
block deletion. Many of the features representing students’
interactions with the block-based environment (e.g., block
creations, deletions) provided a strong boost to predictive
performance. In addition, features encoding more productivity-
based actions, such as workspace saves and checkpoints passed
also provided an improvement to the model. It is worth noting
that time interval is a strong negative (coefficient direction)
predictor, while prior performance was equally as strong of a
positive predictor.

4.3 Early Prediction
As a predictive student model observes more student problem-
solving actions over time, we would like for its accuracy to
improve. A more rapid convergence toward more accurate
predictions would mean that an adaptive learning environment
could proactively intervene and provide feedback at an earlier
stage if the prediction were that the student would not
successfully complete an activity. To evaluate this, we
performed a survival-based analysis of the predictive models
for each interval of each activity. Specifically, we evaluated
the performance of our models at each time interval step,
where the accuracy at each successive interval includes the
students who have already finished interacting with the

Figure 2. Survival-based analysis of student completion prediction over each interval. The green line represents the baseline for
each activity, and the red lines denote the standard deviation of each interval’s average accuracy.

activity as correct predictions. The results for this analysis are
shown in Figure 2.
For evaluation, we trained the same logistic regression models
on each interval for each activity and recorded the number of
errors. The accuracy for each interval is then the number of
correct predictions divided by the total number of students
who attempted that activity (i.e., the total number of samples
for the first interval of that activity). Due to the decreasing
size of data for each successive interval, we split the data into
a 50% train and 50% test set on each interval for each activity,
and we took the average performance over 10 randomly
generated splits. We then plotted the accuracy over time,
noting the standard deviation as the error bars for each
interval. We did not perform LOOCV in this analysis because
there is at most one interval per student in each activity, so the
train/test split will not have data leakage. In other words,
splitting the data in half for a train/test split will not have
overlapping students in the test set no matter how the split is
made.
As noted above, the desired behavior for these predictive
models is that accuracy improves over time as the models
observe more student problem-solving interaction data. An
additional desirable characteristic is that models surpass the
baseline at a relatively fast rate. We note that in 8 of the 12
activities, the accuracy of the first interval is at or above that
of the baseline (interval-level class majority). For the
remaining activities, and those where the accuracy dips below
the baseline, the accuracy surpasses the respective baseline at
interval 4, which corresponds to 2 minutes of interaction time
with PRIME.

Figure 3. Standardized convergence point metric for
sequence prediction analysis.
To quantify the rate at which predictions converged towards an
accurate prediction, we also calculated metrics used in the
related task of goal recognition for sequence analyses [14, 22].
Specifically, we measured model performance using accuracy
rate, convergence rate, convergence point, and standardized
convergence point. In this context, convergence rate calculates
the proportion of sequences where predicted outcome for the
final interval is correct. In other words, this metric quantifies
how well by the final interval the predictive models can
accurately predict whether the student will complete the
programming activity. Thus, a higher value for this metric is
desirable.
Convergence point refers to the proportion of the sequence of
intervals occurring before the predictive model has
consistently begun to predict the correct outcome. In other
words, this proportion measures a predictive model’s ability to
converge to an early prediction. This implies that a lower
number is more desirable for this metric. The overall
convergence point is the average proportion of all sequences of
intervals. An issue with using convergence point to measure

how early in a sequence predictions converge is that
convergence point is only calculated for sequences where the
model successfully predicts the last action in a sequence (i.e., a
sequence converged to the correct prediction). Standardized
convergence point (Figure 3) takes this into account by adding
a penalty factor for sequences where the last prediction is
incorrect. If the prediction of the outcome (O) for a sequence
of intervals (I) does not converge, then its value is calculated
as (n + p)/n, where p is a penalty factor. For this work we set
the penalty factor to 1 because of the relatively short length of
the sequences investigated. As with convergence point, a lower
value for these metrics is desirable.
In Table 5, we report these metrics for our early prediction
models using the same train/test split as mentioned previously.
Thus, the sequences of intervals for each student-activity
attempt in the test set used as the sequences for these metrics.
We average the rates for 10 randomly produced train/test splits
to validate the results.
Table 5. Averaged rate results for logistic regression (LR)

model.

Metric

Accuracy Rate 63.96%
Convergence Rate 70.62%
Convergence Point 35.84%
Standardized Convergence Point 57.75%
F1 Score 68.87%

5. DISCUSSION
Four families of features contribute to predictive student
modeling. Prior performance, hint usage, activity progress,
and interface interactions all play an important role in
accurately predicting student success in programming
activities. The predictive models outperform baselines which
use majority class prediction of each individual interval. Using
these enhanced models, we found that several features stood
out as more predictive.
The prior performance feature was the strongest positive
(coefficient direction) predictor. If students have successfully
completed more of their previous exercises, then they are
likely to continue doing so. Because this feature accounts for
successes on other activities, when students have just begun
attempting activities, there will be no data to inform this
feature. This is demonstrated in Table 3 when the F1 score is
close to 0 for the individual family of features (Ind.) column.
However, when no information is known about a student’s
prior success (i.e., when they are just starting their
interaction), the system can use the other features to account
for this. A strong negative predictor of student activity
completion was the time interval. If a student attempts an
activity and begins taking more time, the likelihood of their
completing that activity may decrease. This could be due to the
student not grasping the underlying concept in which the
activity is centered.
Two strong positive predictors were checkpoints passed and
test cases passed (activity progress), denoting how many steps
a student has completed in the problem. This is a different
measure than time interval, as time interval does not capture

the objective progress the student has made. Therefore, if a
model is able to detect how much of the code the student has
completed relative to the total code needed for the activity, this
could boost predictions. The more incremental checkpoints the
system designer uses to assess student code, the more likely
this feature will be a strong predictor.
Within the interface interaction family of features, block
creations served as a negative predictor, while block deletions
served as a positive predictor. These features are fundamental
to understanding a student’s code. For systems that do not use
built-in test cases, these can serve as core predictive features
to use for this prediction task. In PRIME, students can freely
create, delete, change, and move blocks according to their
believed solution to the activity. Actions such as move and
create may reveal a more “trial and error” approach, in which
the student is attempting new ideas without knowledge of how
these blocks interact. Similarly, actions such as deleting a
block and changing a block could indicate when a student has
tried a block configuration and no longer believes this to be
the correct block configuration. In this case, the student is
revising his or her answer, and this could point to a block
configuration that is closer to an actual solution.
A surprising result is the fact that hint button presses was not
one of the strongest predictors. The hint request functionality
in this environment guides student problem solving at a
conceptual level. Hints are designed to nudge students to
consider approaches that may spark a correct move or block
creation. Thus, if students request many hints, it may be that
they are not getting closer to the correct answer. If they keep
requesting hints without successfully completing an activity,
this could indicate either a lack of effort or lack of
understanding, or perhaps both. For effort, analyses would
need to be performed to determine if there is a pattern with
other interface interaction features that indicate little attempt
on the activity. For understanding, analyses would need to be
performed to determine if the student is making little progress,
such as is the case in wheel-spinning [34]. One reason that
hints did not serve as a stronger predictor could be the fact that
there were not a consistent number of hints per activity. In
addition, these hints are not hierarchical. In other words, the
hints do not utilize a “bottom-out” mechanism that becomes
finer-grained as the student requests more hints at the same
point in their code. This type of hinting system would allow
for students who are clearly experiencing an impasse (or
lacking effort) to receive more explicit hints, which would
likely change the predictive value of the feature.

5.1 Limitations
In this analysis, predictive models were created to determine if
a student will complete a block-based programming activity.
We explored the possibility of making this prediction as early
as possible. While we quantified this through the improvement
of accuracy over time and through the use of convergence rate
and convergence point, there are no clear standards or
baselines for comparing these results. Without a baseline, it is
impossible to fully know how this predictive model performs
in relation to other models. When determining the type of
model to use, we chose logistic regression due to its relative
interpretability. However, other models may have higher
performance, especially when tuned appropriately. It will be
important to investigate other models in future work.

Another limitation is that this analysis did not fully represent
the temporal nature of the data. We created a time interval
feature to account for 30-second intervals, but we do not treat
the actions themselves as sequential features. An alternative to
treating the features as sequential could be to create finer-
grained intervals (varying time lengths) and to use sequential-
based machine learning models, such as probabilistic graphical
models or recurrent neural networks. Additionally, though the
feature families were chosen to generalize well across learning
environments, the underlying features are specific to this
environment and may not generalize well. Further
investigation is needed to understand the effectiveness of this
modelling approach for both other programming environments
as well as similarly structured environments from other
domains.
A final limitation of this work that should be investigated in
future work is level of granularity at which analyses of student
code is conducted. One way to analyze student code is to
perform static tests, such as in checkpoints passed and test
cases passed. Another method would be to create a new
representation of the code and analyze this representation, as
the automated code analysis approach presented in [39].

6. CONCLUSION
With increasing interest in block-based programming
environments for teaching introductory computer science,
programming environments that can provide adaptive support
hold considerable promise. In order for these environments to
evolve beyond providing on-demand hints, there is a need to
develop predictive models that can accurately and quickly
identify whether a student will succeed or abandon a given
activity.
To explore this potential, we created predictive student models
for the PRIME block-based programming environment that were
informed by four families of features: prior performance, hint
usage, activity progress, and interface interaction. Evaluations
showed that the models could predict student activity
completion more accurately than baselines, and results also
demonstrate that by splitting up student-activity attempt data
into time intervals, they can make accurate early predictions. A
survival-based analysis showed that by 2 minutes of student
interaction time, these models consistently outperform
baselines, and prior performance, time interval, and test cases
passed were the most predictive features.
In future work, it will be important to investigate modeling
frameworks that can better leverage sequential features of the
data. Second, it will be important to explore more granular
assessment rubrics of student programming artifacts, such as
those that might be derived from an evidence-centered design
approach [30] to drive the predictive models. Third, exploring
models that integrate performance prediction with “sibling”
models for help-seeking, off-task-behavior, and wheel-
spinning is a promising direction for future work. Here, an
ensemble of predictive models could be assembled to most
effectively support novice student programming. Finally, it
will be important to investigate models that operate in tandem
with block-based programming and text-based programming
and that best support the transition from block-based to text-
based programming as students progress to increasingly
complex computational problem-solving tasks.

7. ACKNOWLEDGMENTS
This research was supported by the National Science
Foundation under Grants DUE-1626235 and DUE-1625908.
Any opinions, findings, and conclusions expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

8. REFERENCES
[1] Aleven, V., Roll, I., McLaren, B.M. and Koedinger, K.R.

2016. Help helps, but only so much: Research on help
seeking with intelligent tutoring systems. International
Journal of Artificial Intelligence in Education. 26, 1,
205–223.

[2] Beaubouef, T. and Mason, J. 2005. Why the high attrition
rate for computer science students: Some thoughts and
observations. ACM SIGCSE Bulletin. 37, 2, 103–106.

[3] Blikstein, P. 2011. Using learning analytics to assess
students’ behavior in open-ended programming tasks. In
Proceedings of the 1st international conference on
learning analytics and knowledge, 110–116.

[4] Chi, M.T.H. 2005. Commonsense conceptions of
emergent processes: Why some misconceptions are
robust. Journal of the Learning Sciences. 14, 2, 161–199.

[5] Chi, M.T.H., Siler, S. A., Jeong, H., Yamauchi, T. and
Hausmann, R.G. 2001. Learning from human tutoring.
Cognitive Science. 25, 4, 471–533.

[6] Corbett, A., Anderson, J.R. and Patterson, E. 1990.
Student modeling and tutoring flexibility in the Lisp
intelligent tutoring system. In C. Frasson and G. Gauthier
(Eds.). Intelligent tutoring systems: At the crossroads of
artificial intelligence and education. 83–106. Norwood,
NJ: Ablex.

[7] Corbett, A.T. and Anderson, J.R. 1994. Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User Modelling and User-Adapted
Interaction. 4, 253–278.

[8] Corbett, A.T. and Anderson, J.R. 2001. Locus of feedback
control in computer-based tutoring: Impact on learning
rate, achievement, and attitudes. In Proceedings of the
SIGCHI Conference on Human Computer Interaction,
245–252.

[9] Corbett, A.T. and Anderson, J.R. 1992. Student modeling
and mastery learning in a computer-based programming
tutor. In Proceedings of the Second International
Conference on Intelligent Tutoring Systems, 413–420.

[10] Crow, T., Luxton-Reilly, A. and Wuensche, B. 2018.
Intelligent tutoring systems for programming education.
In Proceedings of the Twentieth Australasian Computing
Education Conference, 53–62.

[11] Fratamico, L., Conati, C., Kardan, S. and Roll, I. 2017.
Applying a framework for student modeling in
exploratory learning environments: Comparing data
representation granularity to handle environment
complexity. International Journal of Artificial
Intelligence in Education. 27, 2, 320–352.

[12] Gerdes, A., Heeren, B., Jeuring, J. and van Binsbergen,

L.T. 2016. Ask-Elle: An adaptable programming tutor for
Haskell giving automated feedback. International Journal
of Artificial Intelligence in Education. 27, 1–36.

[13] Google Blockly - A Visual Programming Editor: 2013.

[14] Ha, E.Y., Rowe, J.P., Mott, B.W., and Lester, J.C. 2012.
Goal recognition with Markov logic networks for player-
adaptive games. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2113-2119.

[15] Ihantola, P., Edwards, S.H., Petersen, A., Sheard, J.,
Korhonen, A., Spacco, J., Butler, M., Rivers, K., Szabo,
C. and Toll, D. 2016. Educational data mining and
learning analytics in programming: Literature review and
case studies. In Proceedings of ACM ITiCSE Conference,
41–63.

[16] Kardan, S. and Conati, C. 2015. Providing adaptive
support in an interactive simulation for learning. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, 3671–3680.

[17] Karumbaiah, S., Baker, R.S. and Shute, V. 2018.
Predicting quitting in students playing a learning game. In
Proceedings of the International Conference on
Educational Data Mining, 167-176.

[18] Kasurinen, J. and Nikula, U. 2009. Estimating
programming knowledge with Bayesian knowledge
tracing. ACM SIGCSE Bulletin. 41, 3, 313.

[19] Kulik, J.A. and Fletcher, J.D. 2015. Effectiveness of
intelligent tutoring systems. Review of Educational
Research. 37, 1–37.

[20] Ma, W., Adesope, O., Nesbit, J. and Liu, Q. 2014.
Intelligent tutoring systems and learning outcomes: A
meta-analysis. Journal of Educational Psychology. 106, 4,
901–918.

[21] Min, W., Frankosky, M.H., Mott, B.W., Rowe, J.P.,
Wiebe, E., Boyer, K.E. and Lester, J.C. 2015.
DeepStealth: Leveraging deep learning models for stealth
assessment in game-based learning environments. In
Proceedings of the Seventeenth International Conference
on Artificial Intelligence in Education, 277–286.

[22] Min, W., Mott, B., Rowe, J., Liu, B. and Lester, J. 2016.
Player goal recognition in open-world digital games with
long short-term memory networks. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial
Intelligence, 2590-2596.

[23] Muldner, K., Burleson, W., Van De Sande, B. and
Vanlehn, K. 2011. An analysis of students’ gaming
behaviors in an intelligent tutoring system: Predictors and
impacts. User Modelling and User-Adapted Interaction.
21, 1–2, 99–135.

[24] Price, T.W. and Barnes, T. 2015. Comparing textual and
block interfaces in a novice programming environment. In
Proceedings of the Eleventh International Conference on
International Computing Education Research, 91–99.

[25] Price, T.W., Zhi, R. and Barnes, T. 2017. Hint generation
under uncertainty: The effect of hint quality on help-
seeking behavior. In Proceedings of the Eighteenth

International Conference on Artificial Intelligence in
Education, 311–322.

[26] Renkl, A. and Atkinson, R.K. 2003. Structuring the
transition from example study to problem solving in
cognitive skill acquisition: A cognitive load perspective.
Educational Psychologist. 38, 1, 15–22.

[27] Rivers, K., Harpstead, E. and Koedinger, K. 2016.
Learning curve analysis for programming: Which
concepts do students struggle with? In Proceedings of the
Twelfth International Computing Education Research
Conference, 143–151.

[28] Rivers, K. and Koedinger, K.R. 2017. Data-driven hint
generation in vast solution spaces: A self-improving
Python programming tutor. International Journal of
Artificial Intelligence in Education. 27, 1, 37–64.

[29] Rodríguez, F.J., Price, K.M., Isaac, J., Boyer, K.E. and
Gardner-McCune, C. 2017. How block categories affect
learner satisfaction with a block-based programming
interface. In Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 201–
205.

[30] Rupp, A., Levy, R., Dicerbo, K.E., Sweet, S.J., Crawford,
A. V., Calico, T., Benson, M., Fay, D., Kunze, K.L.,
Mislevy, R.J. and Behrens, J. 2012. Putting ECD into
practice: The interplay of theory and data in evidence
models within a digital learning environment. Journal of
Educational Data Mining. 4, 1, 49–110.

[31] Sabourin, J., Mott, B. and Lester, J. 2013. Utilizing
dynamic Bayes nets to improve early prediction models of
self-regulated learning. In Proceedings of the Twenty-
First International Conference on User Modeling,
Adaptation and Personalization, 228–241.

[32] Steenbergen-Hu, S. and Cooper, H. 2013. A meta-analysis
of the effectiveness of intelligent tutoring systems on K–
12 students’ mathematical learning. Journal of
Educational Psychology. 105, 4, 970–987.

[33] The 50 best computer-science and engineering schools in
America: 2015. http://www.businessinsider.com/best-
computer- science-engineering-schools-in-america-2015-
7/.

[34] Wan, H. and Beck, J.E. 2015. Considering the influence
of prerequisite performance on wheel spinning. In
Proceedings of the Eighth International Conference on
Educational Data Mining, 129–135.

[35] Wang, L., Sy, A., Liu, L. and Piech, C. 2017. Learning to
represent student knowledge on programming exercises
using deep learning. In Proceedings of the Tenth
International Conference on Educational Data Mining,
324–329.

[36] Watson, C. and Li, F.W. 2014. Failure rates in
introductory programming revisited. In Proceedings of the
Nineteenth Conference on Innovation & Technology in
Computer Science, 39–44.

[37] Weintrop, D. and Wilensky, U. 2015. Using commutative
assessments to compare conceptual understanding in
blocks-based and text-based programs. In Proceedings of
the Eleventh Annual International Conference on
International Computing Education Research, 101–110.

[38] Winchell, A., Mozer, M., Lan, A., Grimaldi, P. and
Pashler, H. 2018. Can textbook annotations serve as an
early predictor of student learning? In Proceedings of the
Eleventh International Conference on Educational Data
Mining, 431-437.

[39] Wu, M., Mosse, M., Goodman, N. and Piech, C. 2019.
Zero Shot Learning for Code Education : Rubric Sampling
with Deep Learning Inference. In Proceedings of the
Thirty-Third International Conference of the Association
for Advancement of Artificial Intelligence.

[40] Xie, B. and Abelson, H. 2016. Skill progression in MIT
app inventor. In Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC) 213–217.

