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Abstract. Engagement plays a critical role in visitor learning in museums. 

Devising computational models of visitor engagement shows significant promise 

for enabling adaptive support to enhance visitors’ learning experiences and for 

providing analytic tools for museum educators. A salient feature of science 

museums is their capacity to attract diverse visitor populations that range broadly 

in age, interest, prior knowledge, and socio-cultural background, which can 

significantly affect how visitors interact with museum exhibits. In this paper, we 

introduce a Bayesian hierarchical modeling framework for predicting learner 

engagement with FUTURE WORLDS, a tabletop science exhibit for environmental 

sustainability. We utilize multi-channel data (e.g., eye tracking, facial expression, 

posture, interaction logs) captured from visitor interactions with a fully-

instrumented version of FUTURE WORLDS to model visitor dwell time with the 

exhibit in a science museum. We demonstrate that the proposed Bayesian 

hierarchical modeling approach outperforms competitive baseline techniques. 

These findings point toward significant opportunities for enriching our 

understanding of visitor engagement in science museums with multimodal 

learning analytics. 

Keywords: Museum-Based Learning, Visitor Modeling, Multimodal Learning 
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1 Introduction 

Engagement is a critical component of learning in informal environments such as 

museums [1–2]. Visitor engagement shapes how learners interact with museum 

exhibits, navigate the exhibit space, and form attitudes, interests, and understanding of 

scientific ideas and practices. Recent developments in multimodal learning analytics 

have significant potential to enhance our understanding of visitor engagement with 

interactive museum exhibits [3–4]. Multimodal learning analytics techniques can be 

utilized to create computational models for uncovering patterns in meaningful visitor 

engagement through the triangulation of multimodal data streams captured by physical 

hardware sensors (e.g., webcams, eye trackers, motion sensors). Multimodal learning 

analytics has shown significant promise in laboratory and classroom environments [5–
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6], but there has been comparatively little work investigating multimodal learning 

analytics in informal contexts, such as science museums. 

Devising computational models of visitor engagement with interactive science 

museum exhibits poses significant challenges. Visitor interactions with museum 

exhibits are brief; dwell times with highly engaging exhibits often last only 3–4 minutes 

[7–9]. Furthermore, museums attract a broad range of visitors of varying age, 

background, knowledge, and learning objectives. Different types of museum visitors 

show distinctive patterns of engagement, including how they interact with specific 

exhibits, as well as how they move about the museum floor [10]. To address these 

challenges, it is important to utilize computational techniques that make efficient use 

of available data and account for inherent differences in how visitors engage with 

interactive exhibits in museums. 

In this paper, we present a multimodal learning analytics framework for 

investigating visitor engagement in science museums that is based upon Bayesian 

hierarchical models. Bayesian hierarchical models explicitly account for differences in 

patterns of visitor engagement between separate visitor groups. We focus on visitor 

interactions with a game-based interactive museum exhibit about environmental 

sustainability, FUTURE WORLDS. By instrumenting FUTURE WORLDS with multiple 

hardware sensors, it is possible to capture fine-grained data on visitors’ facial 

expression, eye gaze, posture, and learning interactions to model key components of 

visitor engagement in science museums. We investigate the relationship between 

multimodal interactions and visitor engagement by analyzing posterior multimodal 

parameter distributions of Bayesian hierarchical models that model visitor dwell time 

with the FUTURE WORLDS interactive exhibit. Results show that Bayesian hierarchical 

linear models more accurately model visitor dwell time than baseline techniques that 

do not incorporate hierarchical architectures and yield valuable insights into which 

features are most predictive for modeling visitor engagement. 

2 Related Work 

Engagement is a critical mechanism for fostering meaningful learning in museums [7]. 

Much work on modeling learner engagement has focused on formal educational 

settings, such as school classrooms [11]. In a museum context, low levels of visitor 

engagement may appear as shallow interactions with an interactive exhibit, or no 

interaction at all, whereas high-level engagement can manifest as extended dwell times 

and productive exploration behaviors. We seek to utilize rich multi-channel data 

streams to identify patterns of meaningful visitor engagement as defined through visitor 

dwell time with a game-based interactive exhibit. Dwell time has been used previously 

to examine visitor engagement with museum exhibits [12–13].  

Multimodal learning analytics techniques show significant promise for capturing 

patterns of visitor engagement in museums. By taking advantage of information across 

concurrent sensor-based data channels, multimodal learning analytic techniques have 

been found to yield improved models in terms of accuracy and robustness compared to 

unimodal techniques [14]. Although these applications have shown significant promise, 

the preponderance of work on multimodal learning analytics has been conducted in 

laboratory and classroom settings [15–16]. Using multimodal learning analytics to 
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investigate visitor engagement in informal environments is an important next step for 

the field. 

Traditionally, computational models of learner engagement assume relatively high 

levels of homogeneity across learners in the training data, which is a natural assumption 

for classroom settings where all learners are approximately the same age and have 

similar levels of prior knowledge. However, learners express engagement in different 

ways depending on a range of factors such as prior knowledge and socio-cultural 

background, suggesting that group-based differences should be considered when 

modeling engagement [17]. There are limited examples of research on computational 

models of engagement that account for these differences. Sawyer et al. used Bayesian 

hierarchical models to investigate models of learner engagement with a game-based 

learning environment in both classroom and laboratory settings [18]. We build on this 

work by adopting a Bayesian hierarchical modeling framework for investigating group-

level differences in visitor engagement in a museum context. 

3 FUTURE WORLDS Testbed Exhibit 

To conduct data-rich investigations of visitor engagement in science museums, we 

utilize a game-based museum exhibit called FUTURE WORLDS. Developed with the 

Unity game engine, FUTURE WORLDS integrates game-based learning technologies into 

an interactive surface display to enable hands-on explorations of environmental 

sustainability [19]. With FUTURE WORLDS, visitors solve sustainability problems by 

investigating the impacts of alternate environmental decisions on a 3D simulated 

environment (Fig. 1). Learners interact with the environment through tapping and 

swiping the display to test hypotheses about how different environmental decisions 

impact the environment’s sustainability and future health. Visitors read about different 

regions of the virtual environment and observe how they are impacted by the learner’s 

actions. The effects of visitors’ decisions are realized in real-time within the simulation.  

FUTURE WORLDS’ focus on environmental sustainability targets three major 

themes—water, energy (both renewable and non-renewable), and food—and it 

facilitates exploration of the interrelatedness of these themes. Initial pilot testing with 

both school and summer-camp groups in a science museum in the southeastern United 

Fig. 1. FUTURE WORLDS museum exhibit capturing multimodal visitor data. 
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States has shown that learner interactions with FUTURE WORLDS enhance sustainability 

content knowledge and yield promising levels of visitor engagement as indicated by 

observations of learner behavior [19]. 

4 Multimodal Data Collection 

We leverage a suite of multimodal sensors (e.g., video camera, motion tracking sensor, 

eye tracker, game logs) to capture visitors’ facial expression, body movement, eye gaze, 

and interaction trace data, respectively, to serve as complementary data sources for 

inducing computational models of visitor engagement with FUTURE WORLDS. In this 

work, we focus on modeling visitor dwell time, which is a manifestation of visitors’ 

behavioral engagement, as the ground-truth label of visitor engagement. 

4.1 Study Participants and Procedure 

We conducted a series of three data collections with museum visitors engaging with the 

FUTURE WORLDS exhibit at the North Carolina Museum of Natural Sciences in Raleigh, 

North Carolina. The three groups of visitors were recruited from regional elementary 

schools from different socio-cultural backgrounds (e.g., race/ethnicity, urban vs. rural, 

language diversity). Each of the schools served populations where 70% of the students 

are considered economically disadvantaged. In aggregate, participants included 116 

visitors between 10–11 years of age. Each visitor completed a series of questionnaires 

before and after interacting with FUTURE WORLDS, including a demographics survey, 

science interest scale, sustainability content knowledge assessment, and engagement 

survey. Fourteen of the participants did not complete the surveys, which left 47 female 

and 55 male participants. Approximately 21.6% of the visitors were African American, 

8% Asian, 3% Caucasian, 32.3% Latino, and 11.8% American Indian. Visitors 

interacted with FUTURE WORLDS individually until they were finished or up to a 

maximum of approximately 10 minutes (M = 3.97, SD = 2.24). The resulting dataset 

consisted of complete multimodal data for 86 visitors, following removal of participants 

with missing data from one or more modalities. 

4.2 Multimodal Data Channels 

The study utilized a suite of multimodal sensors to gather data on visitor interactions 

with FUTURE WORLDS. These data streams included facial expression, eye gaze, 

posture, gesture, and interaction trace logs. 

 

Facial expression. Facial movement data has been widely used to devise computational 

models for automatically recognizing learning-centered affective states [15]. In our 

work, we capture facial expression data using video recordings from an externally 

mounted Logitech C920 USB webcam. The resulting data is analyzed using OpenFace, 

an open-source facial behavior analysis toolkit that provides automated facial landmark 

detection and action unit (AU) recognition for 17 distinct AUs [20]. 
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Eye gaze. A growing body of empirical work has demonstrated the importance of eye 

gaze for modeling learner interactions [21]. To track visitor eye gaze, we utilize a 

mounted eye-tracking sensor which uses near-infrared light to track eye movements 

and gaze points during visitor interactions with the interactive exhibit. We 

automatically identify in-game targets of visitor attention in FUTURE WORLDS using a 

gaze target-labeling module that processes eye tracking data using ray casting 

techniques. 

Body Movement. Recent years have seen growing interest in research on affective 

modeling using human body movement data [22–23]. To capture data on visitor posture 

and gesture, we utilize Microsoft Kinect for Windows v2, a dedicated motion sensing 

camera that provides skeletal tracking for 26 distinct vertices, in addition to raw pixel 

data for depth and color camera sensors [24]. The Kinect sensor was mounted on a 

tripod five feet away from the exhibit and allowed for tracking of body movement. 

Interaction Trace Logs. FUTURE WORLDS provides support for detailed logs of learner 

interactions with the digital interactive exhibit software. The log data consists of 

timestamped records (at the millisecond level) of visitor taps and multitouch gestures, 

as well as learning events and simulation states, that arise during visitor experiences. 

4.3 Multimodal Features 

We extracted several features from each modality to serve as predictors of visitor dwell 

time. We selected a relatively small number of features for each modality due to the 

limited size of our dataset. For visitor facial expression, we used AU data captured by 

OpenFace. We calculated the proportional duration that each AU was exhibited 

throughout the visitor’s interaction with FUTURE WORLDS. Each visitor’s facial 

expression data was standardized and the duration of an AU was recorded if its tracked 

intensity exceeded one standard deviation above the mean intensity for that AU. Each 

duration was only recorded if it was present for longer than 0.5 seconds to avoid noise 

associated with facial micro expressions [25]. We selected 5 AU values: AU2 (Outer 

Brow Raiser), AU7 (Lid Tightener), AU10 (Upper Lip Raiser), AU12 (Lip Corner 

Puller), and AU14 (Dimpler). These AUs were selected based upon related work on 

modeling learner engagement with facial expression data [25–27]. We adopted a similar 

approach to previous work using facial expression for student modeling [25] by scaling 

the durations of AU data by the total time spent engaging with FUTURE WORLDS. 

To capture patterns in visitor attention with FUTURE WORLDS, we used the Tobii 

EyeX eye tracker to pinpoint areas of interest (AOIs) on the interactive exhibit’s 

display. Visitor fixations on in-game objects exceeding 210 milliseconds in duration 

were automatically tracked [28]. We aggregated the gaze fixation data to compute the 

proportion of time visitors spent looking at five categories of in-game objects: virtual 

locations (AOI-Location), environmental sustainability imagery (AOI-Imagery), 

environmental sustainability labels (AOI-Labels), environmental sustainability 

selection menus (AOI-Menu), and user interface elements (AOI-Interface). The AOI-

Location category included fixations on any of the nine discrete, hexagon-shaped 

regions of the virtual environment in FUTURE WORLDS. The AOI-Imagery category 

included high-resolution images associated with the exhibit’s environmental 

sustainability content. The AOI-Labels category encompassed all textual labels about 
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environmental sustainability topics within FUTURE WORLDS (e.g., text descriptions 

about renewable vs. non-renewable energy, sustainable farming practices). The AOI-

Menu category referred to a pop-up menu that appeared when a visitor tapped on a 

particular location of the virtual environment to learn more about that region or make a 

change to the region’s environmental practices (e.g., add solar panels, introduce organic 

farming). The AOI-Interface category contained user interface elements for navigating 

the exhibit software (e.g., restart button). Leveraging an approach similar to related 

work on gaze-enhanced student modeling [29], we calculated the total time spent 

fixated on each category of in-game element and scaled by the total time spent engaging 

with FUTURE WORLDS. 

To extract features on visitor body movement, we focused on four skeletal vertices 

tracked by the Microsoft Kinect motion sensor: Head, SpineShoulder (upper-back), 

SpineMid (mid-back), and Neck. Selection of these vertices was informed by prior work 

on multimodal affect detection with motion-tracking sensor data [30]. For each skeletal 

vertex, we calculated the sum variance of its distance from the Kinect sensor across the 

visitor’s entire interaction with FUTURE WORLDS. Additionally, we utilized the four 

vertices to calculate the total posture change for each visitor based upon the sum 

movement of all vertices within the Kinect’s coordinate tracking space. 

For interaction log features, we calculated the total number of times the visitor 

tapped on the FUTURE WORLDS exhibit’s touch display (Total Taps) and the total 

number of times the visitor tapped to examine environmental sustainability imagery 

and labels (Total Info Taps). The two interaction log features were computed by scaling 

the above measures by the total dwell time for that visitor (i.e., taps per second), which 

measured how actively participants interacted with FUTURE WORLDS and its embedded 

environmental sustainability content. 

In sum, we extracted five facial expression features, five eye gaze features, five body 

movement features, and two interaction log features for a total of 17 multimodal 

features for this analysis. 

5 Bayesian Linear Models 

To predict visitor dwell time with the FUTURE WORLDS exhibit, we induced linear 

models using Bayesian Lasso regression. Lasso regression is a regression analysis 

method that privileges simpler models by forcing a subset of model coefficients to be 

set to zero, which serves as a form of feature selection and regularization [31]. We 

utilized a Bayesian framework to incorporate prior distributions for parameter 

estimation, account for uncertainty in modeling, and share information across groups 

of data. Because our dataset contained multimodal data from 86 participants, linear 

models provided a natural machine learning framework to prevent overfitting and 

support parameter interpretability. We implemented Bayesian linear models using 

double exponential prior distributions on all feature coefficients, serving as a form of 

L1 (Lasso) regularization to limit the number of features utilized in the induced models.  

In addition to utilizing prior distributions for model parameters, we also used a 

logarithmic link function in the regression model to better predict visitor dwell time. In 

standard Bayesian linear regression, a normal distribution is used to model the 

relationship between the predictor variables and the dependent variable. The mean of 
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this distribution is the linear combination of the input features and their coefficients. 

Due to use of the normal distribution, the predictions can be negative. In our case, dwell 

time cannot be a negative value, so we exponentiate the linear combination of features 

and coefficients before using it as the mean of the normal distribution. Varying the link 

function is a form of generalized linear modeling [31]. The formulation for the base 

linear regression used in our analysis is as follows: 

𝑌𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖 , 𝜎
2), where 𝑙𝑜𝑔(𝜇𝑖) = 𝛼 + ∑ 𝑋𝑖𝑘𝛽𝑘

𝑝
𝑘=1    (1) 

𝑌𝑖is the dwell time for visitor i. 𝛼 is a fixed intercept added to all predictions in the 

regression, 𝑋𝑖𝑘 is the value of the input feature k for student i, 𝛽𝑘 is the coefficient for 

feature k, p is the total number of features (of which there are 17), and 𝜎2is the fixed 

variance used for all predictions.  

5.1 Baseline Models 

We investigated two baseline models using the regression formula (Equation 1) 

described above for modeling visitor dwell time. First, we use a Pooled Model, where 

all visitor data was grouped together and treated equally. Second, we used a Group-

Specific model, where a separate linear model was trained on each visitor group. The 

Pooled Model loses information about the individual groups and does not characterize 

group-based differences in visitor interest, background, or demographics. This can lead 

to underfitting of the data. The Group-Specific model is a more specialized form of the 

regression model, where each visitor group has its own distinct set of model parameters. 

In comparison to the Pooled Model, this approach risks overfitting the data and is 

unlikely to generalize effectively due to the limited number of data samples per group 

and inherent differences between the visitor groups.  

5.2 Bayesian Hierarchical Model 

The regression formula (Equation 1) assumes that the residual variance for all visitor 

observations are the same. In many contexts this is a reasonable assumption, but in a 

museum setting, different groups of visitors may arrive with highly different socio-

cultural backgrounds, interests, knowledge levels, and learning objectives, among other 

relevant characteristics. Different groups of visitors may not only spend different 

amounts of time at exhibits, but their dwell times may have higher or lower variance 

depending on the group. Thus, it is important that the multimodal models of visitor 

engagement account for these differences, and therefore treat the error variances 

differently in the regression formulation. The assumption of equal variance by standard 

linear models, or homoskedasticity, can result in reduced model fit and information loss 

when the observations come from groups. We propose an extension to Equation 1 to 

incorporate a learned variance parameter that is unique to each visitor group to ensure 

that the variance of the residual errors is treated differently depending on the group 

from which the visitor came. To avoid overfitting to the visitor groups, we used a shared 

latent distribution to model the three groups’ variance parameters. This Bayesian 

hierarchical model is shown below: 

𝑌𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖 , 𝜎𝑔
2), where 𝑙𝑜𝑔(𝜇𝑖) = 𝛼 + ∑ 𝑋𝑖𝑘𝛽𝑘

𝑝
𝑘=1    (2) 
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The only difference in this regression formulation compared to Equation 1 is that the 

variance, 𝜎𝑔
2, varies based on the school group, g.  

6 Results 

The predictive models of dwell time were trained and compared using student-level 

leave-one-out cross-validation. We used cross-validation to compare the performance 

of the Pooled Model, the Group-Specific Model, and the Hierarchical Model. We report 

R2, root mean squared error (RMSE), and mean absolute error (MAE) averaged across 

each cross-validation fold. The performance of each model is reported on the entire 

dataset as well as the performance for each visitor group.  

Each model was trained using Markov chain Monte Carlo (MCMC) sampling in R 

using the JAGS framework [32]. To check the convergence of the sampling, we used 

the Gelman-Rubin diagnostic, which is commonly used for evaluating MCMC 

convergence [33]. For each of the models, we drew 3,000 MCMC samples after 

omitting the first 1,000 for burn-in. The process of burn-in is performed to ensure the 

convergence of the Markov chain in MCMC sampling. The final predictive models 

used the means of the 3,000 samples for each model parameter. Within each of the 

predictive models, the coefficients of the features, 𝛽s, are assigned a prior distribution. 

For each 𝛽, we used a double exponential prior with mean 0 to operate in the same 

manner as Lasso regression priors. This encouraged many of the feature coefficients to 

be as close to 0 as possible, resulting in only a few selected features as significant. The 

group-level variance parameters, 𝜎𝑔
2, also used a shared prior distribution to relate 

information across groups. We chose the Gamma distribution with shape and scale 

parameters equal to 0.1. Each of the prior distributions chosen for this work were 

relatively uninformative and thus weak. This forced the posterior distributions of the 

model parameters to be largely affected by the data rather than our prior beliefs.  

6.1 Predictive Accuracy 

We compared the accuracy of the three Bayesian linear models: the Pooled Model, 

Group-Specific Model, and Hierarchical Model. Table 1 shows the results for each 

model in predicting visitor dwell time (seconds). The Hierarchical Model outperformed 

both the Pooled and Group-Specific models for all visitor groups. For Group 1, the 

Pooled Model outperformed the competing models, but for Groups 2 and 3, the 

Hierarchical Model performed best with respect to the three evaluation metrics.  

The Group-Specific models were each trained on data from a single group, and then 

each model was evaluated only using data from that group. The total predictive 

performance of the Group-Specific Models was calculated by aggregating the 

predictions of each of the three models and calculating R2, RMSE, and MAE with the 

total data. An explanation for why this modeling approach performed relatively poorly 

its risk of overfitting to a specific group; each visitor group only consisted of 20–40 

visitors. Pooling the data and ignoring group-level characteristics yield good results but 

risks underfitting the data by losing group-specific information about the visitors. The 

Hierarchical Model takes advantage of both modeling approaches by incorporating 

group-level information but keeping all data instances pooled using a shared prior for 



9 

the group-level variance. An alternative approach to hierarchical modeling is to train a 

set of feature coefficients for each visitor group. However, this approach would 

multiply the number of model parameters by the number of visitor groups, which risks 

poor performance due to the limited size of the data sample. 

 
Table 1. Predictive performance of the three linear models. 

Model Type Context R2 RMSE MAE 

Pooled 

All Groups 0.514 93.720 68.334 

Group 1 0.425 85.846 72.532 

Group 2 0.727 70.429 47.583 

Group 3 0.370 118.319 82.637 

Group-Specific 

All Groups 0.285 110.882 81.457 

Group 1 0.303 96.270 74.216 

Group 2 0.685 75.616 54.567 

Group 3 -0.116 157.409 117.060 

Hierarchical 

All Groups 0.536 91.593 67.690 

Group 1 0.411 88.488 72.649 

Group 2 0.742 68.444 47.338 

Group 3 0.428 112.713 80.582 

6.2 Posterior Distributions of Model Parameters 

Bayesian models allow summarization and comparison of model parameters by using 

the MCMC samples that were directly taken from their posterior distribution. As the 

Hierarchical Model outperformed both the Pooled and Group-Specific models, we 

summarize the model parameters’ posterior distributions of the Hierarchical Model.  

 
Table 2. Posterior parameter distributions for Bayesian Hierarchical linear model. 

 Mean SD 

Intercept 5.344 0.046 

AU12 -0.197 0.050 

AOI-Interface -0.197 0.080 

Total Position Change -0.151 0.052 

AU7 -0.130 0.049 

Head Variance 0.082 0.095 

AOI-Labels 0.081 0.040 

AU2 -0.080 0.044 

Total Info Taps 0.068 0.056 

Total Taps -0.060 0.043 
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Table 2 displays the mean and standard deviation (SD) for each of the model parameters 

from the Hierarchical Model. Since each model induced double exponential priors on 

the feature coefficients, many of the features resulted in non-significant coefficients. 

We report the 10 features with the largest coefficients in terms of absolute value, 

including the model intercept, noting that features from each modality were chosen as 

being significant. The remaining features had posterior distributions that resulted in a 

mean of 0. The significant features for the posture modality were Total Position Change 

and Head Variance. For eye gaze, the significant features were AOI-Labels and AOI-

Interface. For facial expression, the features were AU12, AU7, and AU2. The features 

for the interaction log modality were Total Taps and Total Info Taps. 

7 Conclusion and Future Work 

Multimodal learning analytics offers significant potential to advance our understanding 

of museum visitor engagement. However, museums pose distinctive challenges for 

modeling learner engagement, including the brief duration of visitor dwell times, as 

well as visitor populations that range broadly in age, prior knowledge, and socio-

cultural background. To address these challenges, we have introduced a multimodal 

Bayesian hierarchical modeling framework for modeling visitor engagement with 

interactive science museum exhibits. Leveraging multimodal data on visitor 

interactions with an interactive game-based exhibit for environmental sustainability 

education across three diverse groups of visitors, we found that Bayesian hierarchical 

models outperform competing baseline methods. Furthermore, results indicate that 

features from each modality contributed significantly toward predicting visitor dwell 

time, underscoring the promise of multimodal learning analytic techniques for 

modeling visitor engagement. 

There are several promising directions for future research. First, extending 

multimodal models of visitor engagement beyond predicting visitor dwell time to 

capture patterns of visitors’ cognitive, affective, and behavioral engagement is a key 

next step. Furthermore, adapting multimodal learning analytic techniques to account 

for the “messiness” of free-choice learning, including fluid grouping at exhibits [12] 

and complex patterns of movement across the museum floor [10], is an important 

challenge. Extending this work to other science museums as well as other informal 

learning contexts (e.g., science centers, aquariums, zoos, and other public spaces) will 

help reveal and strengthen the generalizability of this approach. Finally, it will be 

critical to investigate how multimodal learning analytics can inform iterative cycles of 

design and development by exhibit designers, as well as best practices of museum 

educators to enhance high-quality visitor engagement in science museums. 
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