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Abstract Tutoring systems that are sensitive to affect show considerable promise for
enhancing student learning experiences. Creating successful affective responses re-
quires considerable effort both to detect student affect and to design appropriate
responses to affect. Recent work has suggested that affect detection is more effective
when both physical sensors and interaction logs are used, and that context-sensitive
design of affective feedback is necessary to enhance engagement and improve learning.
In this paper, we provide a comprehensive report on a multi-part study that integrates
detection, validation, and intervention into a unified approach. This paper examines the
creation of both sensor-based and interaction-based detectors of student affect, produc-
ing successful detectors of student affect. In addition, it reports results from an
investigation of motivational feedback messages designed to address student frustra-
tion, and investigates whether linking these interventions to detectors improves out-
comes. Our results are mixed, finding that self-efficacy enhancing interventions based
on interaction-based affect detectors enhance outcomes in one of two experiments
investigating affective interventions. This work is conducted in the context of the
GIFT framework for intelligent tutoring, and the TC3Sim game-based simulation that
provides training for first responder skills.
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Introduction

Affect is critical to understanding learning. However, the interplay between affect and
learning is complex. Some affective states, such as boredom, have been shown to be
associated with reduced learning outcomes (Craig et al. 2004). Other affective states,
such as engaged concentration, have been found to serve beneficial roles (Pardos et al.
2014). Fundamentally, the ability to detect a learner’s affective state while she interacts
with an online learning environment is required for adaptive learning technologies that
aim to support and regulate learners’ affect through intervention (D’Mello et al. 2013;
Robison et al. 2009).

Research on affective learning environments has enabled the development of models
that automatically detect learner affect using a wide variety of data modalities; an
extensive review can be seen in Calvo and D'Mello (2010). Many researchers have
focused on physical sensors, because of their capacity to capture physiological and
behavioral manifestations of emotion. The potential of the physical sensors is that the
technology could be applicable to any learning system. Sensor-based detectors of affect
have been developed using a range of physical indicators including facial expressions
(Arroyo et al. 2009; Bosch et al. 2015), voice (Zeng et al. 2009), posture (D'Mello and
Graesser 2010; Grafsgaard et al. 2012), physiological data (Nasoz et al. 2004), smart
phone and wristband accelerometers (Garcia-Ceja et al. 2016; Gjoreski 2016) and EEG
(AlZoubi et al. 2009). Despite this promise, deploying physical sensors in real-world
settings is challenging (Baker and Ocumpaugh 2015), and efforts in this area are still
ongoing, with some researchers arguing that this type of affect detection has not yet
reached its full potential (D’Mello and Kory 2015).

In recent years, efforts have also been made towards the development of comple-
mentary affect detection techniques that recognize affect solely from logs of learner
interactions with an online learning environment (Pardos et al. 2014; Paquette et al.
2014). Initial results in this area have shown considerable promise. As both sensor-
based and interaction-based affect detectors continue to mature, efforts are needed to
compare the relative advantages of each approach. An early comparison was seen in
D’Mello et al. (2008), and a more recent comparison was offered in Kai et al. (2015),
but there remains surprisingly little attention to this important area.

In this paper, we report on the findings of a three-year project that included three
successive studies. These studies include 1) a baseline study to develop sensor-based
and interaction-based detectors for the detection of frustration, 2) a subsequent study to
verify these interaction-based affect detectors while evaluating the effects of three
distinct motivational intervention feedback messages, and 3) a study that compares
interventions based on sensor-based detectors, interaction-based detectors, and yoked
interventions given to all students.

Project Overview

In this project, we develop and leverage automated detectors to infer the affect of
trainees learning through TC3Sim, a serious game for training tactical combat casualty
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care skills. Within this project, we combined interaction-based methods for detecting
student frustration (e.g., models making inferences solely from the trainee’s interaction
history within the game-based simulation) with scalable sensor-based methods for
detecting affect, with the eventual aim of developing affect models that can leverage
sensor information when it is available, but which can still assess trainee affect even
when sensors are not available (e.g. Bosch et al. 2015). The automated detectors were
developed and validated for accuracy when applied to new trainees.

The automated detectors were then integrated with the TC3Sim training environ-
ment to drive run-time feedback messages for trainee affect. This integration was
realized through the Generalized Intelligent Framework for Tutoring (GIFT)
(Sottilare et al. 2012), a software framework that includes a suite of tools, methods,
and standards for research and development of intelligent tutoring systems and affective
learning environments. TC3Sim had previously been integrated into GIFT for use on
studies of feedback source modality effects (Goldberg and Cannon-Bowers 2015) and
authoring tools (Mall and Goldberg 2014).

Several candidate types of feedback were tested for efficacy on enhancing affect and
learning compared to a control condition. The best of these interventions was then used
to test whether sensor-based or interaction-based triggers for affective feedback were
more effective than simply administering interventions to all students.

TC3Sim Combat Medic Training Simulation

The research discussed here was conducted within the context of TC3Sim, a serious
game used to train US Army combat medics and combat lifesavers (i.e., nonmedical
soldiers with training on providing lifesaving care) on tasks associated with dispensing
tactical combat casualty care, including care under fire (Sotomayor 2010) (see Fig. 1).
Also known as vMedic, TC3Sim has been integrated with the Generalized Intelligent
Framework for Tutoring (GIFT). The training system, as well as many of the scenarios
used throughout this paper, has been made publicly available in an effort to promote
further study.1

Serious games enable a broad range of problem scenarios for learning (Baker et al.
2012; Pardos et al. 2014). For example, game-based learning environments such as
EcoMUVE (Metcalf et al. 2011) and Crystal Island (Rowe et al. 2009) provide learners
with considerable agency to explore virtual worlds as they see fit. These open-world
games encourage learners to choose their own problem-solving paths and self-regulate
learning. They can be contrasted with games that encourage learners to adhere to
specific problem-solving sequences, as well as environments that utilize game features
to Breward^ learner performance. Problem scenarios in TC3Sim are structured linearly,
presenting a fixed series of events regardless of the learner’s actions. However, learners
can freely navigate the 3D virtual environments in TC3Sim, as well as choose how to
administer casualty care under fire. While TC3Sim supports a considerable amount of
learner agency, its training scenarios are designed to direct players towards the game’s
objectives (e.g., administering care), guiding the learner toward key learning objectives.
Players experience these learning objectives through simple care-based scenarios where
an injured Soldier and instructor/tutor are the only items of interest in an otherwise

1 A downloadable version of TC3Sim is available at: https://www.gifttutoring.org/projects/gift/files
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barren clearing, as well as through scenarios where the participant witnesses the
wounding of a Soldier who needs care.

Background

Sensor-Free, Interaction-Based Detectors of Learner Engagement and Affect

In recent years, there has been increasing work on developing automated online
detectors of students’ behaviors associated with engagement and affect, inferring these
constructs solely from students’ patterns of interaction with educational software.
Following early work using data mining methods to infer a student’s disengaged
Bgaming the system^ behavior (e.g. Baker et al. 2004), models have been developed
which can infer the following behaviors associated with engagement or disengagement:
off-task behavior (Baker 2007a, b; Cetintas et al. 2009), self-explanation— an engaged
behavior (Shih et al. 2008; Baker et al. 2011), carelessness (San Pedro et al. 2011a, b;
Hershkovitz et al. 2011), and WTF (Bwithout thinking fastidiously^) behavior, actions
within a learning system not targeted towards learning or successful performance
(Wixon et al. 2012; cf. Rowe et al. 2009).

In terms of affect, sensor-free models have been developed that can infer confusion
(Pardos et al. 2014; Liu et al. 2013), boredom (Baker et al. 2012; D’Mello et al. 2008;
Sabourin et al. 2011), frustration (D’Mello et al. 2008; Baker et al. 2012; Liu et al.
2013; Pardos et al. 2014; Paquette et al. 2014), and engaged concentration (Baker et al.
2012; D’Mello et al. 2008; Sabourin et al. 2011). These automated detectors have been
used to conduct basic research on the conditions and impacts of engagement and affect
on learners, including research on the relationship between these constructs and
learning (Baker et al. 2004; Cocea et al. 2009; Pardos et al. 2014), student goal
orientation (Baker 2007a, b; Baker et al. 2008; Hershkovitz et al. 2013), and student
attitudes towards mathematics (Arroyo et al. 2009; Baker 2007a, b; Baker et al. 2008).
Once a detector is developed and validated, it can be applied at scale to additional data,
potentially enabling very large-scale analyses (see discussion in Hollands and Bakir
2015).

These automated detectors have been embedded into educational software, identi-
fying situations where automated interventions are appropriate. For example, D'Mello

Fig. 1 TC3Sim, a serious game for tactical combat casualty care training
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and Graesser (2010) conducted a study comparing an affect-sensitive version of Auto-
Tutor with a non-affective Auto-Tutor. The affect-sensitive Auto-Tutor detected and
responded to students’ affective states of boredom, confusion, and frustration by
monitoring dialogue, body language, and facial features. The results included improved
learning for students with comparatively lower domain knowledge who needed more
support, than students with comparatively more knowledge. The authors further state
that there should be consideration of the appropriate timeliness for providing affect-
sensitive feedback to avoid irritating students who have more domain knowledge and
do not seem to need affective support in the same way as low-domain knowledge
students.

Arroyo et al. (2009) used an interaction-based sensor-free automated detector of
gaming to deliver metacognitive messages, also resulting in improved engagement and
learning. In a follow up study by Arroyo et al. (2010), three types of intervention
messages were used to reduce gaming behavior: attribution interventions, effort-
affirmation interventions, and strategic interventions. While these interventions resulted
in less gaming the system, less frustration, and more interest as compared to a control
condition, there was no impact on learning.

Sensor-Based Detectors of Learner Engagement and Affect

Several research labs have investigated sensor-based affect recognition in learning
environments over the past decade, including work with facial expression (Bosch
et al. 2015), eye tracking (Jaques et al. 2014), and posture (Cooper et al. 2009;
Grafsgaard et al. 2014). In this work, we focus primarily on posture sensor-based
models of affect recognition. To date, posture-based affect recognition models have
been induced with data from pressure-sensitive chairs (Cooper et al. 2009; D'Mello and
Graesser 2010), as well as motion sensors, such as Microsoft Kinect (Grafsgaard et al.
2014). These two data streams, drawing from distinct types of sensors, are superficially
different, but can be distilled into analogous predictor features that have similar
relationships with affective states such as engagement, boredom, frustration, and
confusion. Features can be distilled from both types of data to indicate leaning forward,
leaning backward, sitting upright, and fidgeting (D'Mello and Kory 2015).

D'Mello and Graesser (2010) utilized posture data from the Body Pressure
Measurement System (BPMS), a type of pressure-sensitive seating device, to predict
judgments of student affect during learning with Auto-Tutor. In their study, participants
were video recorded, and several judges analyzed the video using freeze frame analysis
in order to code participants’ affective states retrospectively. Findings indicated that the
models, averaged across judges, explained approximately 11% of the variance in
students’ affective states, with affect states such as delight and flow coinciding with
forward leaning, boredom coinciding with a tendency to lean back, and states such as
confusion and frustration coinciding with an upright posture.

Cooper et al. (2009) used a suite of sensors to collect data on student affect in
Wayang Outpost, an intelligent tutoring system for high school geometry. The
sensors included a skin conductance bracelet, pressure sensitive mouse, pressure
sensitive chair, and mental state camera, which provided data on student posture,
movement, grip tension, arousal, and facial expression. Step-wise linear regression
models were induced to predict students’ emotion self-reports. Results indicated
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that posture-based features were significantly predictive of self-reported excitement
during learning, although they were not part of the best-performing models for other
emotional states.

Grafsgaard et al. (2014) have investigated postured-based affect prediction using
Microsoft Kinect sensors with an intelligent tutoring system for introductory program-
ming. Posture features were distilled from depth image recordings by tracking the
distance between the depth camera and the participant’s head, upper torso, and lower
torso. The posture-based predictor features were combined with features distilled on
facial expressions and facial movements to induce multiple regression models for
predicting students’ retrospective self-reports of engagement and frustration. Findings
indicated that posture features were predictive of both self-reported affective states:
leaning forward was predictive of both higher engagement and higher frustration, and
postural movement was associated with increased frustration and reduced learning.

Building upon this foundation, we set out to distill similar predictor features from the
data we collected at the United States Military Academy (USMA) at West Point and
apply similar machine learning methods in order to produce affect recognition models
for predicting field observations of affect through a series of experiments. As the data
from Experiment 1 yielded a negative correlation between the measures of frustration
and learning gains, it was decided that the team would focus on how best to intervene
with feedback messages within TC3Sim upon the detection of frustration.

Intervening to Address Learner Frustration with Motivational Feedback
Messages

Some affective states have relatively uncomplicated relationships with student learning
outcomes – for example, engaged concentration appears to be positively associated
(Craig et al. 2004; Pardos et al. 2014) while boredom is negatively associated (Craig
et al. 2004; Pardos et al. 2014). However, research has shown that the affective state of
frustration is more complex, where brief periods of frustration are not problematic, but
extended frustration – of, for example, one minute or more (Liu et al. 2013) is
associated with worse learning outcomes (D'Mello and Graesser 2011; Liu et al.
2013; Robison et al. 2009). It is important to understand how ITSs can respond to
learner frustration for future affect-sensitive learning environments (Picard et al. 2004).
Frustration has been related to positive, null, negative, and mixed learning outcomes in
ITSs (McQuiggan and Lester 2007 – negative outcomes; Pardos et al. 2014 – positive
outcomes; D’Mello et al. 2013 and Rodrigo et al. 2012 – null outcomes; Liu et al. 2013
– mixed outcomes). Given the range and complexity of the impact of frustration on
learning outcomes, then, further research was required to unpack the impact of
frustration on learning and, equally important, how best to respond to an individual’s
frustrated state in an intelligent tutoring system; when to do so and how.

When a learner is in a frustrated state in ITSs, the range of solutions to address this
frustration includes changing the elements in a system that elicits frustration, and
supporting the learner in their ability to recover, manage, and persist in their task
(Klein et al. 2002; Kapoor et al. 2007). Amsel’s (1992) frustration theory supports the
notion that goal attainment includes overcoming emotional conflict rather than
avoiding emotional conflict. Therefore, to encourage a learner to overcome frustration,
while not changing the nature of the system elements nor providing outright explicit
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feedback, requires finding ways to help the learner recover, manage, and persist
through frustration to persist in their learning tasks (Kapoor et al. 2007).

One such approach to designing feedback intervention messages has been motiva-
tionally designed feedback messages (Narciss, 2008). We can contextualize this within
the theories of self-regulated learning, where the primary function of this feedback rests
in guiding the learner to successfully regulate his or her learning process (Butler &
Winne, 1995; Narciss, 2008). However, another consideration for this particular study
was the target population: USMA cadets. When designing motivational feedback
messages for a military population, the theoretical constructs used to ground these
designs should reflect the unique profile of this particular group. Therefore, after a
review of the literature, the strategies of designing motivational feedback for a military
population included the following three theoretical constructs: motivation based on
control-value, social identity, and self-efficacy. Experiment 2, then, examined what
motivational feedback condition yielded statistically significant positive learning gains.
From this experiment, the best condition (self-efficacy messages) were subsequently
used in the culminating Experiment 3, which compared multiple detectors for triggering
messages. This experimental series is summarized in the below table, each of which is
described in the coming sections (see Table 1).

Experiment 1: Multimodal Affect Detection Corpus Collection

Overview

The first experiment of this project took place in September 2013 and was conducted
with a group of first-year cadets at USMA to investigate the relationship between affect,
behavior, and learning within a modified version of the Tactical Combat Casualty Care

Table 1 Overview of three studies between September 2013–March 2016

Studies Demographics Conditions

Experiment 1: Fall 2013, Baseline and
Detector Development

Male: n = 99
Female: n = 20

One condition for all participants

Experiment 2: Fall 2015, Motivational
Feedback Experiment

Male: n = 110
Female: n = 14

Condition 1, Control-Value Motivational
Messages: n = 26

Condition 2, Social Identity Motivational
Messages: n = 26

Condition 3, Self-Efficacy Motivational
Messages: n = 24

Condition 4, Non-Motivational Feedback
Messages: n = 25

Condition 5, No Messages: n = 23

Experiment 3: Spring 2016, Integrated
Detectors and Interventions

Male: n = 77
Female: n = 13

Condition 1, Interaction-Based,
Sensor-free Detectors: n = 31

Condition 2, Kinect-Based Sensor
Detectors: n = 31

Condition 3, Fixed Schedule Feedback
Control: n = 28
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(TC3Sim) training course developed by the US Army (Sotomayor 2010), as delivered
by GIFT. The experiment was conducted in a sensor-rich classroom environment: each
cadet was assigned to a research station that consisted of a laptop and several affect
sensors. Throughout the study, field observers made regular observations of participant
affect and behavior by following a quantitative field observation protocol, BROMP
(Ocumpaugh et al. 2012, 2015a). The study yielded results identifying a negative
correlation between frustration and student learning outcomes (among a set of affective
states studied). Further, this study provided the baseline data needed to create the
sensor-based and interaction-based affect detectors to address frustration while partic-
ipants used TC3Sim. The resulting interaction-based and sensor-based frustration
detectors were utilized in subsequent experiments conducted in the following years
of the project.

Sensor-Rich Classroom Setup

During the first study, ten separate research stations were configured to collect data
simultaneously; each station was used by one cadet at a time. Each station consisted of
an Alienware laptop, a Microsoft Kinect for Windows v1.0 sensor, and an Affectiva
Q-Sensor, as well as a mouse and pair of headphones.

Kinect sensors recorded participants’ physical behavior during the study, including
head movements and posture shifts. Each Kinect sensor was mounted on a tripod and
positioned in front of a participant. For detailed information on Kinect interaction and
algorithms please refer to Paquette et al. (2015).

Q-Sensors recorded participants’ physiological responses to events during the study.
The Q-Sensor is a wearable arm bracelet that measures participants’ electrodermal
activity (i.e., skin conductance), skin temperature, and its orientation through a built-in
3-axis accelerometer. However, Q-Sensor logs terminated prematurely for a large
number of participants due to a logging issue. For this reason, we omit Q-Sensor data
from the remainder of this work.

Sample

There were 119 cadets from USMA who participated in the study (83% male, 17%
female). The participants were enrolled in either USMA’s PL100: General Psychology,
PL 150: Advanced General Psychology, or PL300: Military Psychology courses and
recruited throughWest Point’s SONA System. The age of the cadets ranged between 18
and 22.

Method

All participants completed the same training module. The tasks in this experiment were
related to standard, simulated combat medic training. The training materials provided to
the participants pertained to the knowledge and procedures of hemorrhage control
during care under fire and tactical field care, which are all components of TC3Sim
(Parsons and Mott 2005). The specific content that participants interacted with was
edited content from the TC3Sim training program which consisted of several scenarios.
The first scenario was an easy-to-solve scenario about leg amputation and tourniquet
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usage. The second scenario was a more complex village scenario with added elements
of enemy fire and loud explosions, including a straight-forward leg amputation task and
a chest bullet-wound task. The last scenario was newly devised for the set of studies,
and was dubbed the Kobayashi Maru. The Kobayashi Maru scenario involved a fallen
soldier with multiple hemorrhages who required immediate medical attention.
Irrespective of the actions taken by the participant, the soldier expired quickly.

Additional study materials consisted of pre-tests, training materials, and post-tests,
all of which were administered through GIFT. At the onset of each study session,
learners completed a content pre-test on tactical combat casualty care. Afterward,
participants were presented with a PowerPoint presentation about tactical combat
casualty care (see Fig. 2). After completing the PowerPoint, participants completed a
series of training scenarios in the TC3Sim serious game where they applied skills,
procedures, and knowledge presented in the PowerPoint. In this study, a standard set of
scenarios was used (a custom set was used in the following study).

In TC3Sim, the learner adopts the role of a combat medic faced with a situation
where one (or several) of her fellow soldiers has been seriously injured. The learner is
responsible for properly treating and evacuating the casualty, while following appro-
priate battlefield doctrine. After the TC3Sim training scenarios, participants completed
a post-test, which included the same series of content assessment items as the pre-test.
This design decision was made due to the lack of feedback on performance on the pre-
test, and the challenge of identifying items of identical difficulty in order to counter-
balance two exams. In addition, participants completed two questionnaires about their
experiences in TC3Sim: the Intrinsic Motivation Inventory (IMI) (Ryan 1982) and
Presence Questionnaire (Witmer and Singer 1998; Witmer et al. 2005). All combined
study activities lasted approximately one hour; participants typically spent 17–25 min
within the TC3Sim training scenarios.

In addition to pre-tests, post-tests and survey data, interaction data was collected
while students used the TC3Sim learning environment. This data contains a list of all
actions executed by the student when completing scenarios in TC3Sim, such as
checking the casualty’s vitals, applying a tourniquet or requesting evacuation, as well
as relevant events that occurred during the scenario, such as changes in the casualty’s

Fig. 2 Screenshot of TC3Sim course PowerPoint material
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blood volume and heart rate. In this data, each event and action also have a timestamp
associated to indicate the precise moment at which each action or event occurred.

Quantitative Field Observation Protocol

We obtained ground-truth labels of affect using quantitative field observations collected
using the Baker-Rodrigo-Ocumpaugh Monitoring Protocol (BROMP) (Ocumpaugh
et al. 2012, 2015a).

Affect Detector Model Construction

The BROMP observations collected while cadets were using TC3Sim were used to
develop machine-learned models to automatically detect the cadet’s affective states. In
this section, we discuss our work to develop affect detectors based on cadets’ interac-
tions logs and sensor traces.

In total, 3066 BROMP observations were collected by two coders. Those observa-
tions were collected over the full length of the cadets’ participation in the study,
including when they were completing the pre and post-tests, reviewing the
PowerPoint presentation, and using TC3Sim. For this study, we used only the 755
observations that were collected while cadets were using TC3Sim. Of those 755
observations, 735 (97.4%) were coded as the cadet being on-task (M across partici-
pants = .974, SD = .092, Max = 1), 19 (2.5%) as off-task (M across participants = 0.025,
SD = .092, Max = 1), 1 (0.1%) as Without Thinking Fastidiously (M across partici-
pants = .001, SD = .006, Max = .05), and 0 as intentional friendly fire. 99.4% of
participants were on-task at least once, 35.1% of participants were off-task at least once,
and 1.3% of participants were acting Without Thinking Fastidiously at least once.
Similarly, 435 (57.6%) of the affect labels were coded as concentrating (M across
participants = .576, SD = .239, Max = 1), 174 (23.1%) as confused (M across
participants = .231, SD = .185, Max = 1), 73 (9.7%) as bored (M across partici-
pants = .097, SD = .161, Max = 1), 32 (4.2%) as frustrated (M across participants = .042,
SD = .182, Max = 1), 29 (3.8%) as surprised (M across participants = .038, SD = .045,
Max = .227) and 12 (1.6%) as anxious (M across participants = .016, SD = .089,
Max = 1). 96.8% of participants demonstrated concentration at least once, 77.3% of
participants demonstrated confusion at least once, 64.3% of participants demonstrated
boredom at least once, 33.1% of participants demonstrated frustration at least once,
24.0% of participants demonstrated surprise at least once, and 16.9% of participants
demonstrated anxiety at least once.

Interaction-Based Affect Detectors

Trainee actions within the software were synchronized to BROMP field observations
collected using the HART application (Ocumpaugh et al. 2015b) to generate training
data for interaction-based affect detectors.

Thirty-nine features of learner interaction with TC3Sim were distilled, including
representations of the player’s state such as whether the player was taking cover,
whether the player was under fire, and whether the player was with their unit or had
separated from them. Representations of the patient’s state (which degrades over time
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as no action or incorrect action is taken) were also included, such as the patient’s
change in systolic blood pressure and heart rate, whether the patient had an exposed
wound, the patient’s lung volume, and the patient’s remaining blood volume and rate of
bleeding. Features were distilled for player actions such as whether the player was
checking the patient’s vitals, whether the player applied a bandage or tourniquet,
whether the player checked the patient’s breathing, whether the player conducted a
blood sweep, whether the player communicated with the patient, whether the player
requested a security sweep, whether the player requested a case evacuation, and
whether the player fired their weapon. Finally, we distilled features of time such as
the time since the last player action or within-game event.

Detectors were built separately for each affective state. Each detector was validated
using 10-fold participant-level cross-validation. In this process, the trainees are ran-
domly separated into 10 groups of equal size and a detector is built using data for each
combination of 9 of the 10 groups before being tested on the 10th group. By cross-
validating at this level, we increased confidence that detectors will be accurate for new
trainees. Oversampling (through cloning of minority class observations) was used to
make the class frequency more balanced during detector development. However,
performance calculations were made with reference to the original dataset.

Detectors were fit in RapidMiner 5.3 (Mierswa et al. 2006) using six machine
learning algorithms that have been successful for building similar detectors in the past
(Baker et al. 2012; Pardos et al. 2014): J48, JRip, NaiveBayes, Step Regression,
Logistic Regression and KStar. The detector with the best performance was selected
for each affective state. Detector performance was evaluated using two metrics:
Cohen’s Kappa (Cohen 1960) and A’ computed as the Wilcoxon statistic (Hanley
and McNeil 1982). Cohen’s Kappa assesses the degree to which the detector is better
than chance at identifying the modeled construct. A Kappa of 0 indicates that the
detector performs at chance, and a Kappa of 1 indicates that the detector performs
perfectly. A’ is the probability that the algorithm will correctly identify whether an
observation is a positive or a negative example of the construct (e.g., is the learner
bored or not?). A’ is equivalent to the area under the ROC curve in signal detection
theory (Hanley and McNeil 1982). A model with an A’ of 0.5 performs at chance, and a
model with an A’ of 1.0 performs perfectly. A’ was computed at the observation level.

When fitting models, feature selection was performed using forward selection on the
Kappa metric. Performance was evaluated by repeating the feature selection process on
each fold of the trainee-level cross-validation in order to evaluate how well models
created using this feature selection procedure perform on new and unseen test data. The
final models were obtained by applying the feature selection to the complete dataset.

Posture-Based Affect Detectors

The second set of affect detectors were built using data on cadet posture during training
with TC3Sim. Kinect sensors produced data streams that were utilized to determine
learner posture. Using machine learning algorithms, models were trained to recognize
affective states based on postural features.

GIFT’s Sensor Module was responsible for managing all connected sensors and
associated data streams. This includes Kinect sensor data, which is comprised of four
complementary data streams: face tracking, skeleton tracking, RGB channel, and depth

Int J Artif Intell Educ



channel data. Face- and skeleton-tracking data were written to disk in CSV format, with
rows denoting time-stamped observations and columns denoting vertex coordinates.
RGB and depth channel data were written to disk as compressed binary data files. To
analyze data from the RGB and depth channels, one must utilize the
GiftKinectDecoder, a standalone utility that is packaged with GIFT, to decompress
and render the image data into a series of images with timestamp-based file names.
Data from all four channels can be accessed and analyzed outside of GIFT. For the
present study, we utilized only vertex data to analyze participants’ posture. Each
observation in the vertex data consisted of a timestamp and a set of 3D coordinates
for 91 vertices, each tracking a key point on the learner’s face (aka face tracking) or
upper body (aka skeletal tracking). The Kinect sensor sampled learners’ body position
at a frequency of 10–12 Hz.

It was necessary to clean the Kinect sensor data in order to remove anomalies from
the face and skeletal tracking. Close examination of the Kinect data revealed periodic,
and sudden, jumps in the coordinates of posture-related vertices across frames. These
jumps were much larger than typically observed across successive frames, and they
occurred due to an issue with the way GIFT logged tracked skeletons: recording the
most recently detected skeleton, rather than the nearest detected skeleton. This ap-
proach to logging skeleton data caused GIFT to occasionally log bystanders standing in
the Kinect’s field of view rather than the learner using TC3Sim. In these studies, such a
situation could occur when a field observer walked behind the trainee.

In order to identify observations that corresponded to field observers rather than
participants, Euclidean distances between subsequent observations of a central vertex
were calculated. The distribution of Euclidean distances was plotted to inspect the
distribution of between-frame movements of the vertex. If the Kinect tracked field
observers, who were physically located several feet behind participants, the distribution
was likely to be bimodal. In this case, one cluster would correspond to regular posture
shifts of a participant between frames, and the other cluster corresponded to shifts
between tracking participants and field observers. This distribution could be used to
identify a distance threshold for determining which observations should be thrown out,
as they were likely due to tracking field observers rather than participants. Although the
filtering process was successful, the need for this process reveals a challenge to the use
of BROMP for detectors eventually developed using Kinect or video data.

In addition to cleaning the face and skeleton mesh data, a filtering process was
applied to remove data unnecessary for the creation of posture-based affect detectors. A
majority of the facial vertices recorded by the Kinect sensor were not necessary for
investigating trainees’ posture. Of the 91 vertices recorded by the Kinect sensor, only
three were utilized for posture analysis: top_skull, head, and center_shoulder. These
vertices were selected based on prior work investigating postural indicators of emotion
with Kinect data (Grafsgaard et al. 2012).

Finally, BROMP observations were synchronized with the data collected from the
Kinect sensor. As was the case for our interaction-based detector, the Kinect data
provided by GIFT was synchronized to the same Network Time Protocol time server
as the BROMP data. This allowed the association of field observations with observa-
tions of face and skeleton data produced by the Kinect sensor.

We used the Kinect face and skeleton vertex data to compute a set of predictor
features for each field observation. The engineered features were inspired by related
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work on posture sensors in the literature on affective learning environments, including
work with pressure-sensitive chairs (Cooper et al. 2009; D'Mello and Graesser 2009)
and, more recently, Kinect sensors (Grafsgaard et al. 2012).

We computed a set of 73 posture-related features. The feature set was designed to
emulate the posture-related features that had previously been utilized in the aforemen-
tioned posture-based affect detection work (D'Mello and Graesser 2009; Grafsgaard
et al. 2014). For each of three retained skeletal vertices tracked by the Kinect (head,
center_shoulder, and top_skull), we calculated 18 features based on multiple time
window durations. These features are analogous to those described in Grafsgaard
et al. (2012), and were previously found to predict learners’ retrospective self-reports
of frustration and engagement.

Specifically, we calculated the following features for each vertex:

& Most recently observed distance (i.e., Euclidean distance of vertex from Kinect
sensor)

& Most recently observed depth (i.e., Z coordinate of vertex only)
& Minimum observed distance observed thus far
& Maximum observed distance observed thus far
& Median observed distance observed thus far
& Variance in distance observed thus far

We also calculated the minimum distance, maximum distance, median distance, and
variance in distance observed during the past 5 s, 10 s, and 20 s. Next, we induced
several net_change features, which are analogous to those reported by D'Mello and
Graesser (2009), as well as Cooper et al. (2009), using pressure-sensitive seat data:

net dist change t½ � ¼
head dist t½ �−head dist t−1½ �þ

cen shldr dist t½ �−cen shldr dist t−1½ �þ
top skull dist t½ �−top skull dist t−1½ �

������
������ ð1Þ

net pos change t½ � ¼
head pos t½ �−head pos t−1½ �þ

cen shldr pos t½ �−cen shldr pos t−1½ �þ
top skull pos t½ �−top skull pos t−1½ �

������
������ ð2Þ

These features were calculated from Kinect vertex tracking data, as opposed to seat
pressure data. Specifically, the net_dist_change feature was calculated as each vertex’s
net change in distance (from the Kinect sensor) over a given time window, and then
summed together. The net_pos_change feature was calculated as the Euclidean distance
between each vertex’s change in position over a given time window, and then summed
together. Both the net_dist_change feature and net_pos_change feature were calculated
for 3 s and 20 s time windows.

We also calculated several sit_forward, sit_back, and sit_mid features analogous to
Cooper et al. (2009), and Grafsgaard et al. (2012). To compute these features, we first
calculated the average median distance of participants’ head vertex from each Kinect
sensor. This provided a median distance for each of the 10 study stations. We also
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calculated the average standard deviation of head distance from each sensor. Then,
based on the station-specific medians and standard deviations, we calculated the
following features for each participant:

sit forward ¼ 1 if head dist≤median dist−st dev
0 otherwise

�
ð3Þ

sit back ¼ 1 if head dist≥median dist þ st dev
0 otherwise

�
ð4Þ

The sit_mid feature was the logical complement of sit_forward and sit_back; if a
learner was neither sitting forward, nor sitting back, they were considered to be in the
sit_mid state. We also computed predictor features that characterized the proportion of
observations in which the learner was in a sit_forward, sit_back, or sit_mid state over a
window of time. Specifically, we calculated these features for 5, 10, and 20 s time
windows, as well as over the entire session to-date.

Posture-based detectors of affect were built using a process analogous to the one
used to build our interaction-based detectors. As such, separate detectors were, once
again, built for each individual affective state and behavioral construct. All observa-
tions labeled as ‘?’ were removed from the training set as they represent observations
where the cadet’s affective state could not be determined.

Each detector was validated using 10-fold participant-level cross-validation.
Oversampling was used to balance class frequency by cloning minority class instances,
as was the case when training our interaction-based detectors. RapidMiner 5.3 was used
to train the detectors using several different classification algorithms: J48 decision trees,
naïve Bayes, support vector machines, logistic regression, and JRip. When fitting
posture-based affect detection models, feature selection was, once again, performed
through forward selection using a process analogous to the one used for our interaction-
based detectors.

Affect Detector Results

As discussed above, each of the interaction-based and posture-based detectors of affect
were cross-validated at the participant level (10 folds) and performance was evaluated
using both Kappa and A’. Results from the best-performing models for each affective
state are shown in Tables 2 and 4. Results from all of the classifiers are shown in
Tables 3, 4 and 5. Performance of our interaction-based detectors was highly variable
across affective states. The interaction-based detector of boredom achieved the highest
performance (Kappa = 0.469, A’ = 0.848) while some of the other detectors achieved
very low performance. This was the case for the confusion detector that performed
barely above chance level (Kappa = 0.056, A’ = 0.552). Detectors of frustration and
surprise achieved relatively low Kappa (0.105 and 0.081 respectively), but good A’
(0.692 and 0.698 respectively). Performance for engaged concentration achieved a
Kappa closer to the average (0.156), but below average A’ (0.590).
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In general, posture-based detectors performed only slightly better than chance, with
the exception of the surprise detector, which actually performed worse than chance. The
boredom detector, induced as a logistic regression model, achieved the highest predic-
tive performance (Kappa = 0.109, A’ = 0.528), induced as a logistic regression model.
The frustration detector, built as a support vector machine, achieved Kappa = 0.061,
A’ = 0.518.

Following these analyses, Pearson correlations were computed between the frequen-
cies of each affective state and learning. Pearson correlations were used after first
verifying that the data was approximately normally distributed, with skewness and
kurtosis well under maximum limits. In general, there was a limited degree of learning
(mean = −0.04). The relationships between learning outcomes and confusion and
surprise and engaged concentration were not observed to be statistically significant
(confusion, r = −0.107, n = 100, p = 0.286; surprise, r = −0.134, n = 100, p = 0.180;
engaged concentration, r = 0.12, n = 100, p = 0.247). However, frustration was
marginally significant and negatively correlated with learning outcomes (frustration,
r = − 0.169, n = 100, p = 0.092). Unexpectedly, boredom was positively correlated with
learning outcomes (boredom, r = 0.200, n = 100, p = 0.046). Given the negative
correlation between our measures of frustration and learning gains, we decided to study
the effect of providing feedback to frustrated students in order to help them persevere
through the learning activity and mitigate the effects of frustration on learning gains.

Table 2 Performance of best interaction-based detectors of affect

Affect Classifier Kappa A’

Boredom Logistic Regression 0.469 0.848

Confusion Naïve Bayes 0.056 0.552

Engaged Concentration Step Regression 0.156 0.590

Frustration Logistic Regression 0.105 0.692

Surprise KStar 0.081 0.698

Table 3 Performance of all interaction-based detectors of affect

Eng. Conc. Boredom Frustration Confusion Surprise

J48 Kappa = 0.077
A’ = 0.517

Kappa = 0.312
A’ = 0.669

Kappa = 0.006
A’ = 0.504

Kappa = 0.053
A’ = 0.539

Kappa = −0.015
A’ = 0.491

JRip Kappa = 0.123
A’ = 0.539

Kappa = 0.273
A’ = 0.659

Kappa = −0.010
A’ = 0.494

Kappa = 0.030
A’ = 0.512

Kappa = 0.070
A’ = 0.543

NaïveBayes Kappa = 0.170
A’ = 0.542

Kappa = 0.434
A’ = 0.819

Kappa = 0.099
A’ = 0.709

Kappa = 0.056
A’ = 0.552

Kappa = 0.022
A’ = 0.527

Step Regression Kappa = 0.156
A’ = 0.590

Kappa = 0.409
A’ = 0.804

Kappa = 0.068
A’ = 0.637

Kappa = −0.011
A’ = 0.514

Kappa = 0.004
A’ = 0.515

Logistic Regression Kappa = 0.105
A’ = 0.567

Kappa = 0.469
A’ = 0.848

Kappa = 0.105
A’ = 0.692

Kappa = 0.031
A’ = 0.479

Kappa = −0.025
A’ = 0.532

KStar Kappa = 0.119
A’ = 0.546

Kappa = 0.395
A’ = 0.704

Kappa = 0.058
A’ = 0.661

Kappa = 0.050
A’ = 0.550

Kappa = 0.081
A’ = 0.698
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The interaction based detector of frustration, a logistic regression model, was based
on an equation using the following weight for each variable (with all variables in
reference to a 20 s time window, equivalent to the BROMP observation period):

w Sum of Systolic Change½ � ¼ 1:08
w Max of Heart Rate½ � ¼ 1:04
w Total Number of Blood Sweep Actions½ � ¼ –0:07
w Total Number of Times Player is Out of Cover½ � ¼ 0:131
w Total Number of Times Player is Safe From Ongoingð Þ Enemy Fire½ � ¼ 0:013

As theweights show, detection of player frustrationwas a function of whether the player
was being affected by enemy action (with the player being in danger more associated with
frustration than simply having active enemies), the status of the patient (with dangerously
high patient heart rate and worsening in patient status associated with frustration), and the
player’s actions to diagnose the patient (associated with less frustration).

Discussion of Initial Affect Detector Modeling Results

Across affective states, the posture-based detectors achieved lower predictive perfor-
mance than the interaction-based detectors. In fact, the posture-based detectors per-
formed only slightly better than chance, and in the case of some algorithms and

Table 4 Performance of posture-based detectors of affect

Affect Classifier Kappa A’

Boredom Logistic Regression 0.109 0.528

Confusion JRip 0.062 0.535

Engaged Concentration J48 0.087 0.532

Frustration Support Vec. Machine 0.061 0.518

Surprise Logistic Regression −0.001 0.493

Table 5 Performance of all posture-based detectors of affect

Eng. Conc. Boredom Frustration Confusion Surprise

J48 Kappa = 0.087
A’ = 0.532

Kappa = −0.019
A’ = 0.489

Kappa = −0.010
A’ = 0.494

Kappa = −0.010
A’ = 0.500

Kappa = −0.030
A’ = 0.480

JRip Kappa = 0.023
A’ = 0.518

Kappa = 0.033
A’ = 0.503

Kappa = 0.001
A’ = 0.494

Kappa = 0.062
A’ = 0.535

Kappa = −0.005
A’ = 0.495

Logistic
Regression

Kappa = −0.003
A’ = 0.490

Kappa = 0.109
A’ = 0.528

Kappa = 0.050
A’ = 0.512

Kappa = 0.011
A’ = 0.502

Kappa = −0.001
A’ = 0.493

Naïve Bayes Kappa = 0.005
A’ = 0.498

Kappa = 0.035
A’ = 0.522

Kappa = 0.006
A’ = 0.503

Kappa = 0.017
A’ = 0.507

Kappa = −0.024
A’ = 0.490

SVM Kappa = −0.026
A’ = 0.327

Kappa = 0.095
A’ = 0.534

Kappa = 0.061
A’ = 0.518

Kappa = 0.034
A’ = 0.462

Kappa = −0.008
A’ = 0.492
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emotions, worse than chance. This finding is notable, given that our distilled posture
features were inspired largely from the research literature, where these types of features
have been shown to predict learner emotions effectively in other contexts (Cooper et al.
2009; D'Mello and Graesser 2009; Grafsgaard et al. 2014).

There are several possible explanations for why the posture-based predictors were
not more effective. First, our use of BROMP to generate affect labels distinguishes our
work from prior efforts, which used self-reports (Cooper et al. 2009; Grafsgaard et al.
2012, 2014) or retrospective video freeze-frame analyses (D'Mello and Graesser 2009).
It is possible that BROMP-based labels of affect present distinct challenges for posture-
based affect detection. BROMP labels are based on holistic judgments of affect, and
pertain to 20-s intervals of time, which may be ill matched for methods that depend
upon low-level postural features to predict emotion. Similarly, much of the work on
posture-based affect detection has taken place in laboratory settings involving a single
participant at a time (D'Mello and Graesser 2009), especially prior work using Kinect
sensors (Grafsgaard et al. 2012, 2014). In contrast, our study was performed with up to
10 simultaneous participants, introducing potential variations in sensor positions and
orientations. This variation may have introduced noise to our posture data, making the
task of inducing population-general affect detectors more challenging than in settings
where data is collected from a single sensor. If correct, this explanation underscores the
challenges inherent in scaling and generalizing sensor-based affect detectors. One
direction for addressing these sources of variation in the future is to investigate alternate
positioning for the Kinect sensors, including use of side angles (Sanghvi et al. 2011).
Additional directions include engineering predictor features using standard units rather
than Cartesian space, as well features that account for individual differences in body
shape and size (Worsley et al. 2015).

Another possible explanation for the limited success of sensor-based detectors is that
there were population-specific norms of restraining non-verbal displays of emotion. Both
BROMP observers noted that the USMA cadets’ affective expressiveness was generally
different in kind and magnitude than the K-12 and civilian academic populations they were
more accustomed to studying. Specifically, they indicated that theUSMApopulation’s facial
and behavioral expressions of affect were relatively subdued, perhaps due tomilitary cultural
norms. While cadets did display noticeable shifts in posture during the study, displays of
affect via movement and body language may have been more difficult to recognize by this
type of sensor than would have otherwise been the case in other populations.

In general, we consider the study population, BROMP affect labels, and naturalistic
research setup to be strengths of the study. Indeed, despite the difference in how
military trainees display affect compared to the K-12 and civilian academic population,
human observers were able to achieve the inter-rater reliability required by BROMP
(Kappa > = 0.6) (Ocumpaugh et al. 2012, 2015a). Thus we do not have plans to change
these components in future work. Instead, it may be worth making efforts to revise and
enhance the data mining techniques that we employ to recognize learner affect, as well
as the predictor features engineered from raw posture data.

It is notable that our interaction-based detectors had a more varied performance than
had been seen in prior studies using this methodology; the detectors were excellent for
boredom, and varied from good to just above chance for other constructs. It is possible
that this too is due to the population studied, but may also be due to the nature of the
features that were distilled in order to build the models.
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It is also possible that some of the affective states for which interaction-based
detection was less effective and simply did not manifest consistently in the interactions
with the learning environment across different trainees. It is thus difficult to determine
whether poor performance of detectors was due to insufficient feature engineering or
inconsistent behaviors by the trainee. As such, the creation of interaction-based detec-
tors is an iterative process, where features are engineered, and models are induced and
refined, until performance reaches an acceptable level, or no improvement in perfor-
mance is observed, despite repeated knowledge-engineering efforts.

We aim to identify methods to improve the predictive accuracy of interaction-based
and posture-based detectors in future work. Notably, one advantage that posture-based
detectors possess relative to interaction-based detectors is that posture-based detectors
may be more generalizable, since they pertain to aspects of learner behavior that are
outside of the software itself. By contrast, much of the effort invested in the creation of
interaction-based detectors is specific to the system for which the detectors are created.
Features are built to summarize the learner’s interaction in the learning environment
and, as such, are dependent on the system’s user interface. Much of the creation of
interaction-based detectors must hence be replicated for new learning environments,
though there have been some attempts to build toolkits that can replicate features seen
across many environments, such as unitizing the time between actions by the type of
action or problem step (e.g., Rodrigo et al. 2012).

On the other hand, the process of creating predictor features for posture-based
detectors requires considerable effort when compared with building a set of features
for interaction-based detectors, such as elaborate efforts to adequately clean the
data, but at least in principle, it is only necessary to develop the methods for doing
so once. The same data cleaning and feature distillation procedures can be repeated
for subsequent systems. This is especially useful in the context of a generalized,
multi-system tutoring framework such as GIFT. Although different posture-based
affect detectors might need to be created for different tutoring systems—due to
differences in the postures associated with affect for different populations of
learners, environments and contexts—the posture features we computed from the
data provided by Kinect sensors will ultimately become available for reuse by any
tutor created using GIFT. This has the potential to considerably reduce the time
required to build future posture-based affect detectors for learning environments
integrated with the GIFT architecture.

A limitation of the study was usage of the same pre-test and post-test for assessing
cadet learning gains. The study drew upon a pre-existing bank of assessment questions
on tactical combat casualty care, which were limited in number and scope. The
question bank was sufficient for generating a single test, but there were not enough
distinct items to populate several balanced assessments with distinct questions. A
potential future direction for this work is devising an expanded bank of assessment
questions, as well as investigate complementary techniques for assessing knowledge
gains in the tactical combat casualty care domain (e.g., stealth assessments).

In sum, the first experiment yielded sensor-free, interaction based affect detectors as
well as posture sensor-based detectors. With these two models of frustration detectors
built, the next phase of the project included devising the feedback messages that that
would be delivered to participants while engaged with TC3Sim and triggered by these
detectors that were subsequently built into GIFT.
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Experiment 2: Testing Frustration Feedback in Gift

The next phase of the multi-study project was realized in a second experiment run in
September 2015. In this experiment, the interaction based frustration detectors were
integrated into GIFT in order to respond to participants’ frustration while engaged in
TC3Sim. Three distinct motivational feedback interventions were tested in the exper-
iment to determine which feedback intervention messages yielded the best learning
gains.

Addressing Frustration in ITSs

In a survey of the literature, it was noted that when a learner is in a frustrated state in
ITSs there are a range of solutions that can be employed to address this affective state.
These solutions include changing the elements in a system that elicit frustration, as well
as supporting the learner in their ability to recover, manage, and persist in their task
(Klein et al. 2002; Kapoor et al. 2007).

Amsel’s (1992) frustration theory supports the notion that goal attainment includes
overcoming emotional conflict rather than avoiding emotional conflict. This theory
supports the idea of forgoing explicit feedback interventions that would quickly relieve
the frustration of the participant, and instead providing motivational feedback that
would support participants’ efforts to persist through frustration (de Wit and
Dickinson 2015; Marien et al. 2015). As such, when considering developing motiva-
tional feedback messages to be used as an intervention upon the detection of frustration,
it was determined that messages should be meaningful, relevant, and support goal-
oriented efforts. Therefore, the intervention feedback messages were designed accord-
ing to three theories of motivation. These theories were: control-value messages
(Pekrun et al. 2006) which would indicate the value of the activity, i.e., playing
TC3Sim to learn combat medic skills; social identity messages (Tajfel and Turner
1979) which would target the military identity of the participants; and self-efficacy
messages (Bandura 1986) which would support the participants’ ability to achieve a
learning goal through effort.

A Theory-Based Approach to Reducing Student Frustration

The messages designed for this second experiment were devised and/or adopted
because they were linguistically congruent with one of the three motivational theories
adopted for the feedback interventions used to address participant frustration. Each of
the three interventions was also selected with the goal of being fail-soft, i.e. having
minimal negative impact if delivered based on a false positive from the detector. For the
full list of feedback messages used in this experiment, please refer to Appendix.

Control-value theory was developed by Pekrun et al. (2006) as a comprehensive,
integrative approach to understanding emotions in education. When individuals feel in
or out of control of achievement activities and outcomes that are subjectively important
to them, they experience specific achievement emotions (Frenzel et al. 2007). Control-
value motivational messages, then, were designed around the idea that achievement
emotions such as frustration can be influenced by changing the student’s subjective
perception of control and value within the learning environment. An example of the
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kind of message devised for this condition is as follows: BA 2008 study from a hospital
in Baghdad found an 87% survival rate with use of tourniquets.^

The social identity message design capitalized on Tajfel and Turner’s (1979)
social identity theory, which states our identities are formed through the groups to
which we belong, creating some degree of uniformity of perception and action that
exist among group members. Social identity is aligned with the situated social
cognition perspective that proposes cognition and action are not discrete entities
but dynamically shaped by each other (Schwarz 2007, 2009; Smith and Semin
2004, 2007). The social-identity condition messages, then, capitalized on the notion
that the cadets were members of the military, and under the social identity theory,
people prefer identity-congruent to identity-incongruent actions. These messages
suggest that appropriate responses to frustration are identity-congruent. An example
of the kind of message devised for this condition is as follows: BEvery single man in
this Army plays a vital role,^ said General Patton. BDon’t ever let up. Every man
has a job to do and he must do it.^

The third theory of motivation used to develop motivational feedback messages
involved creating messages framed by the theory of self-efficacy (Bandura 1986). Self-
efficacy includes how the learner seems themselves as an individual, and their ability to
succeed in a task if they persist (Bandura 1986). The self-efficacy condition messages,
subsequently, were designed to persuade the learner that they had the necessary skills to
succeed; an example of which is as follows: BDifficult doesn’t mean impossible. It
means work harder till your combat mission is achieved.^

There was also a fourth bank of messages devised for this study that served as one of
the two control conditions in the experiment. This fourth bank of messages were non-
motivational messages: factoids related to hemorrhage and bleeding control, as well as
control and use of tourniquets. An example of this non-motivational message is as
follows: BThe modern combat medic has its roots in the American Civil War, when
enlisted soldiers served as hospital stewards.^

Integration and Implementation of Interaction-Based Frustration Detector

In order to provide motivational feedback when frustration was detected during training
with TC3Sim, the interaction-based affect detector of frustration was integrated with
GIFT. This involved implementing the following mechanisms in GIFT: (1) accumulate
interaction data over a period of time; (2) compute a set of features summarizing the
interaction data; and (3) apply a classifier model created using RapidMiner to the
summary features (Paquette et al. 2015).

First, GIFT accumulates interaction data over a predetermined period of time. This is
achieved by having GIFT listen to the events broadcast by the learning environment,
identify the events related to student actions, and collect a list of those actions. In this
experiment, interaction data from TC3Sim was collected over periods of 20 s—a period
of time that is consistent with the observation time in BROMP.

Second, once GIFT has accumulated a 20-s record of student actions, it computes
summary features of the student’s behavior using a custom-authored Python script. In
our experiment, this script takes the list of actions executed by the participant in
TC3Sim and computes the value for each of the features that are required by the
frustration detection model.
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Third, GIFT instantiates a RapidMiner process that uses the set of computed feature
as an input. This RapidMiner process is responsible for applying the appropriate
classifier model to the set of computed features. In our experiment, a RapidMiner
process loads the frustration detector, applies it to the set of summary features, and
outputs the detector’s confidence of whether the student is currently frustrated or not.
This confidence value is interpreted by GIFT in order to determine whether the student
is likely to be in a state of high frustration. In this experiment, a confidence threshold of
0.50 was used to distinguish moments of high detected frustration. When frustration
was detected, a motivational feedback message was provided.

Overview of Experiment

The second experiment in this project focused on examining whether motivational
feedback messages delivered during TC3Sim training, and upon the detection of high
frustration, would positively impact the learning outcomes of USMA cadets. What
follows is the methodology employed to compare these motivational feedback inter-
ventions against two control conditions: the non-motivational message condition, and a
condition with no messages delivered at all.

Participants

Log files were extracted from GIFT from all 141 participants, and were examined to
ensure all files were complete data sets. 17 participants’ log files had a gap in the output
where the participant either did not have a pre-test or post-test – a result of failures of
the laptop and/or GIFT. Subsequently, these 17 participants were dropped from the data
analysis, as it was impossible to calculate learning gains from incomplete sets of data.

In total, the final data analysis was run on 124 participants: 26 participants were in
the first condition, 26 participants in the second condition, 24 participants in the third
condition, 25 participants were in the first control condition, and 23 participants in the
second control condition.

Method

Data collection was conducted over a three-day period at USMA. Experiment 2’s
methodology was similar to that of Experiment 1, with the following differences: (1)
addition of experimental conditions; (2) omission of Kinect and Q-Sensor data collec-
tion; (3) two additional scenarios in TC3Sim, which are next described; (4) adminis-
tration of Short-Grit Scale (Duckworth and Quinn 2009); (5) a longer pre- and post-test
using the same 10 questions from the pre and post-test used in Experiment 1, but
adding ten additional pre and post test questions. These changes to the pre- and post-
tests were made to see whether there would be an impact on the direction of learning
gains in the self-efficacy condition, as Slack (2014) had previously demonstrated a
positive correlation between the constructs of self-efficacy and the Short Grit Scale
(Duckworth and Quinn 2009). And more generally, we made these changes to deter-
mine whether there would be an overall interaction effect of grit on condition and
learning gains, giving some evidence as to whether the trait of grit functioned as a
moderator across motivational feedback conditions. In terms of the intervention, one
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feedback message was delivered per scenario for all conditions that were designed to
deliver feedback messages, upon the detection of frustration, irrespective of the amount
of times the frustration detectors detected frustration during the scenario. Only the
control condition of No Messages (control condition 2) did not deliver a feedback
message upon the detection of frustration. Lastly, while some BROMP data was
collected in this experiment, due to equipment failure the observations had to be
discontinued multiple times during the three-day experiment, and these measures were
not used in the final data analysis.

Equipment and Materials

The content that participants first interacted with was the same edited content from the
TC3Sim training program used in Experiment 1. However, some scenarios were
repeated multiple times. The first (same as study 1) scenario was an easy-to-solve
scenario: a leg amputation, which required the application of a tourniquet. The second
(third in study 1) scenario was the Kobayashi Maru (a multiple hemorrhage scenario
that was devised so that the fallen soldier that required medical attention had multiple
wounds and would expire quickly – no matter what actions the participant took). The
third (repeated) scenario was a repeat of the leg amputation scenario. The fourth
(second in study 1) scenario was a more complex village scenario with added elements
of enemy fire and loud explosions, with an easy, winnable leg amputation task, and a
chest bullet wound task. The final (repeated) scenario was again the Kobayashi Maru, a
no-win situation.

It was anticipated that laying out the scenarios in this manner would increase the
frequency of frustration among the participants. This increase of frustration would be a
result of the fact that while the first scenario would lead participants to believe that this
was a game that was winnable, the second no-win Kobayashi Maru scenario would
undermine those beliefs. Frustration would be further increased in the third scenario by
having a repeat of the easy winnable first leg-amputation scenario, followed with a
more challenging but again winnable (complex village) fourth scenario. However, the
repeat of the final no-win Kobayashi Maru scenario would have participants finish the
serious game task with an expected increase and more sustained frustrated state, as the
participants would have vacillated between confirming their beliefs about winning the
game and having those beliefs undermined irrespective of any efforts taken.

Results

The assumptions for normally distributed data for pre- and post-test were met, as were
assumptions for one-way analyses of variance (ANOVA) and repeated measures
analysis of variance (rANOVA) analyses.

Across all conditions, there was in increase in learning outcomes from pre to post
test (see Table 6 and Fig. 3).

The grand mean frequency of detected frustration across all conditions was 6.43
instances of frustration detected while participants engaged with TC3Sim. The condi-
tion with the greatest frequency of system-detected frustration was the no message
condition (full control condition 2), with a mean frequency of 6.70 instances of detected
high frustration. The two conditions with the lowest frequencies detected for high
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frustration were the control-value condition (condition 1), with a mean of 6.19 detected
high frustration events, and the self-efficacy condition (condition 3), with a mean of
6.33 detected high frustration events (see Table 7 and Fig. 4).

The Presence survey from the Intrinsic Motivation Inventory (IMI) (Witmer and
Singer 1994) was administered to assess a participants’ subjective experience in
vMedic. There was an overall (n = 124) mean presence score of 109.573 with a
standard deviation of 16.52 (see Table 8 and Fig. 5).

The Short Grit Scale (Duckworth and Quinn 2009) was administered to participants
during the experiment. The overall (N = 124) grand mean was 3.80 with a standard
deviation of 0.56. The range of means by condition was 3.67 (self-efficacy condition 3)
to 3.89 (control-value theory condition 1) (see Table 9 and Fig. 6).

Main Effects Two-way mixed design rANOVA analysis was run to determine if there
is a main effect when controlling for frustration and three-way interaction with frus-
tration. There was a significant main effect: (rANOVA): F(4, 114) = 3.68, p = .007,
ηp2 = .114 Then, a two-way mixed design rANOVA analysis was run comparing the
motivational conditions (conditions 1, 2, & 3) to the control conditions (conditions 4, &
5). This analysis indicated that motivational conditions had higher learning outcomes

Table 6 Means chart for pre and post test scores by condition

Conditions xPRE [SD] xPOST [SD] xDIFF

1_Control Value 13.115 1.966 13.731 2.219 0.61

2_Social Identity 13.885 1.904 14.231 2.286 0.35

3_Self-Effficacy 13.167 2.057 14.333 1.926 1.166

4_1c_NonMotivational 13.56 1.938 14.240 1.715 0.68

5_2c_NoMessages 13.87 1.632 14.304 1.820 0.434

Fig. 3 Means by condition of pre-post tests scores
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than the control conditions: (rANOVA): F(1, 120) = 5.627, p = .019. ηp2 = .045,
power = .653. Also, there was a statistically significant interaction between conditions,
frustration, and learning outcomes (rANOVA): F(1, 120) = 5.578, p = .020. ηp2 = .044,
power = .649.

Conducting a post-hoc, simple main analysis for a two-way rANOVA with a
significant interaction requires running separate rANOVA’s for factors under investi-
gation (Keselman 1998; Verma 2016; Weinberg and Abramowitz 2002). Therefore,
subsequent independent pairwise rANOVA’s were run comparing each motivational
condition separately to each control condition. This analysis indicated that the self-
efficacy condition (N = 24) had higher learning outcomes than the non-motivational
feedback control group (N = 25), (rANOVA): F(1, 45) = 9.945, p = .002, ηp2 = .181,
power = .870, (see Table 10). Using the Benjamini-Hochberg adjusted alpha post-hoc
test, these results are still significant: p = .002 < B-H α = .008 (see Table 10).

This analysis also indicated that the self-efficacy condition (N = 24) had
higher learning outcomes than the no message control group (N = 23), (rANOVA):
F(1, 43) = 7.355, p = .007, ηp2 = .159, power = .796 (see Table 10). Again, using the
Benjamini-Hochberg adjusted alpha post-hoc test, these results are still significant:
p = .007 < B-H α = .016 (see Table 10).

No other comparisons were significant when using the Benjamini-Hochberg
procedure.
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Fig. 4 Mean frequency of system detected frustration by condition

Table 7 Frequency mean, minimum, and maximum scores of system detected frustration

Condition N Mean Std. Deviation Min Max

1_Control-value 26 6.19 1.789 0 8.0

2_Social identity 26 6.65 0.936 4 8.0

3_Self efficacy 24 6.33 1.373 3 8.0

1c_ Non motivational 25 6.28 1.904 0 9.0

2c_No messages 23 6.70 1.222 4 9.0
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Presence To test whether presence (measured using the questionnaire discussed above)
had a moderating effect between conditions on learning outcomes, a two-way mixed
design rANOVA analysis was conducted. Using measures from the Presence question-
naire (Witmer and Singer 1998), presence did not have a statistically significant
association with learning outcomes, (rANOVA): F(1114) = 1.639, p = .203,
ηp2 = .014, power = .246, and there was not a statistically significant interaction
between presence and condition on pre-post test scores, (rANOVA): F(4114) = 0.162,
p = 0.957, ηp2 = .006, power = .083.

Grit To test whether grit (measured using the questionnaire discussed above) had a
moderating effect on learning outcomes across conditions, a two-way mixed design
rANOVA analysis was conducted (Table 11). Using measures from the short grit survey
(Duckworth and Quinn 2009), there was a statistically significant difference between
conditions and positive learning outcomes controlling for grit and interaction of grit by
condition and learning outcomes: (rANOVA): F(4114) = 2.631, p = .038, ηp2 = .085,
power = .721. There was also a statistically significant interaction effect of grit by
condition and learning outcomes (rANOVA): F(4114) = 2.903, p = .025, ηp2 = .092,
power = .768.

With this significant interaction, an analysis on the simple effects of grit by condition
were conducted, running simple main effect analyses separately at each level of
condition (Keselman 1998; Verma 2016; Weinberg and Abramowitz 2002). The anal-
ysis of the simple means showed that grit had a statistically significant effect on learning
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Fig. 5 Presence mean scores and standard error

Table 8 Presence mean scores and standard deviation by condition (max possible score: 165)

Condition N Mean Std. Deviation

1_Control-value 26 106.30 17.36

2_Social identity 26 110.27 17.68

3_Self efficacy 24 107.62 17.12

1c_ Non motivational 25 114.28 16.70

2c_No messages 23 109.40 13.26
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outcomes only within the control-value condition (condition 1), F(1, 24) = 7.304,
p = .012, ηp2 = .233, power = .737. However, when applying a Benjamini-Hochberg
alpha adjustment post-hoc control, this difference can instead be seen as marginal,
p = .012 > B-H α = 0.01 but p = .012 < B-H α*2 = 0.02 (Table 12).

Yet, in conducting a follow up analysis, splitting the data further into high and low
grit groups, using the mean grit value of 3.80, the analysis indicated that low grit
participants in the control-value theory condition (condition 1) had higher learning
outcomes than high grit participants in the control-value theory condition, (rANOVA):
F(1, 25) = 35.000, p = 0.001, ηp2 = .883, power = .999. After making Benjamini-
Hochberg alpha adjustments, this difference remained significant: p = .001 < B-H
α = 0.005 (Table 13).

In examining the means of the control-value condition (condition 1) between high
and low grit participants, the data revealed that the low grit group had positive learning
gains but the high grit group had negative learning gains, although they did not have a
statistically significant decline in performance (see Table 14 and Fig. 7).

A closer examination of the pre and post test scores were conducted for the control-
value condition, and while there were two participants who scores seem to make them
outliers (post test = 9 correct), these participants each had the same score of 9. These
participants’ data were not removed from the analysis as they were only one point

Table 9 Grit mean scores and standard deviation by condition (max score: 5 = extremely gritty)

Condition N Mean Std. Deviation

1_Control-value 26 3.89 .54

2_Social identity 26 3.84 .49

3_Self efficacy 24 3.67 .70

1c_ Non motivational 25 3.71 .62

2c_No messages 23 3.88 .42
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Fig. 6 Grit mean scores by condition
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outside of the normal range of post-test scores: 10–18 correct in the control-value
condition.

Specifically, participants with low grit averaged a positive learning gain of +2.495
points, whereas high grit participants had negative learning gains of −0.22 points,
(see Table 14). This seems to indicate that the control-value messages had a positive
impact on participants with low grit scores, perhaps encouraging them to see the value
in the experiment or the learning activity more broadly. For high grit participants, these
participants might have seen the messages as unnecessary, annoying, or even frustrating
– perhaps even causing some disengagement with the experiment/learning activity.

Discussion of Motivational Feedback Intervention Results

In conclusion, the results of this experiment support previous theories and empirical
research that have recognized the need to identify and address affective states that lead
to disengagement in learning (Baker et al. 2010; D'Mello and Graesser 2011; D’Mello
et al. 2013). These results also contribute to the body of research that has given
evidence that providing interventions in the form of feedback messages can positively
affect the learning of domain content in ITSs (Wagster et al. 2007; Roll et al. 2011).

Further, this work demonstrates that interaction-based, sensor-free detectors embed-
ded in technology-based learning environments (such as serious video games) can be
used to trigger interventions that can lead to better learning outcomes.

Table 10 Summary of pairwise analyses (rANOVA’s) between intervention conditions vs. control groups

Intervention Control group df F Sig B-H α ηp2 Power

Control-value Non motivational 1 .004 .948 0.033 .000 .050

Social identity Non motivational 1 .877 .354 0.041 .018 .151

*Self efficacy Non motivational 1 9.945 .002 0.008 .181 .870

Control-value No messages 1 2.290 .137 0.025 .048 .316

Social identity No messages 1 .352 .556 0.500 .008 .089

*Self-efficacy No messages 1 7.355 .007 0.016 .146 .755

*statistically significant after Benjamini-Hochberg correction

Table 11 Means chart rANOVA test with interaction of grit by condition

Conditions xPRE [SD] xPOST [SD] xDIFF

1 Control Value 13.115 1.966 13.731 2.219 0.61

2 Social Identity 13.885 1.904 14.231 2.286 0.35

3 Self-Efficacy 13.167 2.057 14.333 1.926 1.166

4 1c - NonMotivational 13.56 1.938 14.240 1.715 0.68

5 2c - NoMessages 13.87 1.632 14.304 1.820 0.434
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Overall, self-efficacy based motivational feedback interventions were associ-
ated with better learning when addressing frustration. While this current study
was limited to a military population, it is likely that this motivational approach
would work outside of a military population. In particular, over 80% of this
study’s sample population had not having previously served in the military,
rendering the identity of this group arguably closer to undergraduate population
of a comparable higher education institution than a population of active military
personnel.

A valuable area of future work might be to investigate how this difference
occurred. While the difference manifested primarily as differences in learning
rather than changes in the prevalence of affect, it might be valuable to study
(for example) whether the dynamics of affect change in the presence of these
interventions, and whether the changes in affective dynamics may explain the
differences in learning outcomes for the self-efficacy condition. Similarly, it may
be worth attempting in future work to identify cases where a student received an
affective intervention despite not having been frustrated (e.g. a false positive by

Table 12 Benjamini-Hochberg alpha adjustments pre-post-test scores by condition by grit

*Conditions p-value B-H α

Control value 0.012 0.01

Social identity 0.686 0.05

Self-efficacy 0.103 0.02

Non-motivational messages 0.679 0.04

No messages 0.119 0.03

*No condition reached significance after adjusting with Benjamini-Hochberg alpha; Control-value condition
was marginal

Table 13 Benjamini-Hochberg alpha adjustments for significance of pre-post-test scores by condition by
high/low grit

Conditions Grit level P- value B-H α

* Control-value Low .001 0.005

Control-value High .736 0.04

Social Identity Low .232 0.02

Social Identity High .865 0.045

Self-efficacy Low .376 0.03

Self-efficacy High .066 0.01

Non-motivational messages Low .235 0.025

Non-motivational messages High .403 0.035

No messages Low .122 0.015

No messages High .916 0.05

*significant after Benjamini-Hochberg alpha adjustments
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the detector), perhaps through triangulating BROMP with the affect detectors, to
study the impacts of false positives of affect dynamics and learning.

While presence did not interact with conditions to yield a difference between
learning outcomes by condition, there was an interactive effect of grit by
condition, providing some marginal evidence that motivational messages were
more effective for participants with comparatively low grit measures vs. high
grit measures in the control-value condition.

These results contribute towards the body of cognitive performance theory
and research by providing empirical evidence for effective approaches to ad-
dress motivation in simulated learning environments, considerations on the
moderating effect of frustration in relation to motivational feedback, as well
as evidence regarding tailoring motivational feedback according to trait charac-
teristics such as grit. Specifically, these results include evidence that the self-
efficacy motivational feedback messages used to intercede in instances of high
frustration can promote greater learning gains than control conditions, and
motivational messages based on the theory of control-value may be effective
for low grit populations, but may have a negative impact on high grit
populations.

Table 14 Means chart rANOVA analysis of high and low grit participants in control-value condition

Conditions N Mean Pre Std. Deviation Mean Post Std. Deviation Sig.

1 Low Grit 8 12.38 1.69 14.88 2.04 0.001

2 High Grit 18 13.44 1.81 13.22 2.24 0.736
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Fig. 7 Pre-post test comparing high /low Grit groups in the control-value condition
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Experiment 3: Investigating Affect Detector-Driven Frustration Feedback

Overview

The purpose of the third experiment was to study whether the different methods of
detecting frustration for the purpose of delivering self-efficacy feedback intervention
messages led to different learning outcomes.

Participants

101 cadets from the USMA participated in the study (85.6% male; 14.4% female).
Recruitment was congruent to that of Experiment 1 and 2. The age of the cadets ranged
between 18 and 24.

Participants were randomly placed in one of three conditions that all delivered the
same self-efficacy messages that were devised and employed in Experiment 2. As in
the self-efficacy condition of Study 2, each TC3Sim scenario was assigned a distinct
self-efficacy feedback message, and only one self-efficacy feedback message was
delivered per scenario. In total, participants spent approximately 15–20 min in the
TC3Sim scenarios.

The three conditions of this experiment were as follows:

(1) an interaction-based detector condition that delivered self-efficacy feedback mes-
sages upon detection of frustration (n = 31);

(2) a Kinect-based detector condition that delivered self-efficacy feedback mes-
sages upon the detection of frustration using the Kinect sensor-based detector
(n = 31);

(3) a control condition that delivered the self-efficacy feedback messages at a sched-
uled time, using the mean delivery times of detected frustration from Experiment 2
(n = 28). (In practice, this resulted in fairly similar delivery times between
conditions (1) and (3), as much of the frustration was triggered by specific events
in the game, such as the Kobayashi Maru scenarios.)

Method

Experiment 3 was held during the first week of March 2016, and it ran for four days.
Experiment 3’s design and methodology was similar to that of Experiments 1 and 2.
Aside from the differences in conditions, the only difference between Experiment 1
and Experiment 3 was the use of shorter pre-tests and post-tests in Experiment 1.
Experiment 3 used the same pre- and post-test items (10 items for each instrument),
but another ten items were added in order to increase the power of the two
assessment instruments. Experiment 3 and Experiment 2 also differ in terms of
the test length. Due to logistical limitations, Experiment 3 had the same three
scenarios as Experiment 1, rather than the larger number of scenarios seen in
Experiment 2. Also, while this study used the same interaction-based, sensor free
detectors as were employed in Experiment 2, this study added the integration of
posture-based frustration detectors.
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Integration and Implementation of Posture-Based Frustration Detector

To enable GIFT to utilize posture data to infer changes in student frustration during
TC3Sim training, a posture-based frustration detector that utilized Kinect data was
integrated with GIFT. The posture-based detector was implemented using RapidMiner
Studio 7.0. The detector was integrated with GIFT following an analogous procedure to
the one used for the interaction-based frustration detector.

Model induction involved training the model using the entire dataset collected from
Experiment 1—no cross validation was applied—and utilizing the same set of predictor
features as described in the previous section on Affect Detector Model Construction.
The posture-based detector consisted of a support vector machine (SVM) trained with
Weka’s implementation of sequential minimal optimization (W-SMO), and it provided
binary classifications about the presence (or absence) of student frustration during
training with TC3Sim.

In order to integrate posture-based frustration detection through GIFT’s Sensor
Module, GIFTwas configured to listen for, and accumulate, raw Kinect vertex position
data; no RGB or depth channel data from the Kinect was utilized for run-time
frustration detection, nor was any other type of sensor data. Similar to the
interaction-based detector, the posture-based detector involved accumulating a series
of vectors of Kinect vertex data over a 20 s window. This included XYZ-coordinate
data for all vertices that the Kinect tracked.

After 20 s of Kinect data had been accumulated, the data was provided to a Python
script that filtered and transformed the top_skull, head, and center_shoulder vertex data
into a vector of predictor features consistent with the format expected by the SVM
frustration classifier. The transformed data was returned to GIFT and passed to the run-
time RapidMiner process that applied the SVM frustration classifier to the posture
feature vector. It should be noted that the posture-based frustration detector was
implemented separately from the interaction-based frustration detector; the two models
did not work concurrently, nor in combination. GIFT does support run-time multi-
channel affect detection, but that was not part of the design for Experiment 3.

Challenges in use of Automated Detectors

An initial review of the GIFT log files of the frequency of system-detected frustration
for the interaction-based detector condition (condition 1) and Kinect-based detector
condition (condition 2) revealed that the interaction-based detectors intervened on
every student and delivered a self-efficacy message in the second and third scenarios
of TC3Sim for almost every student, although not the first scenario. It should be noted
that the control condition of fixed-schedule delivery (condition 3) was configured to
deliver self-efficacy messages at approximately the same time as the interaction-based
detector, using the mean time of the delivery from experiment time to inform the time
of message delivery.

However, upon close examination of the log files of the Kinect-based condition in
Experiment 3, it was determined that the Kinect-based detectors did not trigger the
delivery of any self-efficacy messages in any of the three scenarios of TC3Sim. This
was mostly likely due to small differences in the sensor setups of Experiment 1, which
yielded training data for inducing the posture-based detector, and Experiment 3, which

Int J Artif Intell Educ



served as the run-time test case for the posture-based detectors. The Kinect-based
detectors were confirmed to work during piloting before the study, as well as after
the study, but they were exceedingly conservative in detecting frustration and thus
difficult to trigger. Further, the SVM classifier for detecting posture-based frustration
was difficult to interpret, which made it challenging to identify postures and torso
movements that would reliably trigger the detector. These factors limited the team’s
ability to adjust thresholds and increase the sensitivity of the posture-based frustration
detectors prior to the study, particularly during the limited time that the team had access
to the study room prior to the study.

As such, the Kinect-based condition essentially functioned as a control condition
with no messages delivered to participants, rendering this part of the study a modified
replication of Experiment 2. This unplanned replication was not an exact replication, as
Experiment 2 had participants play five scenarios of TC3Sim, while Experiment 3 had
participants only play three scenarios.

Results

The assumptions for normally distributed data for pre- and post-tests were met, as were
assumptions for one-way ANOVA and rANOVA analyses. The BROMP measures of
frustration were used as a covariate in the one-way ANOVA and rANOVA analyses.
The determination to use this covariate was based on the results yielded in the second
experiment that gave evidence there was an interaction effect of frustration on learning
gains.

The first analysis run was to determine if there was a difference in learning gains
between conditions. There were positive learning gains across all three conditions
(see Fig. 8), but there was no significant difference in learning gains by condition,
F(2, 86) = .534, p = .588, ηp2 = .012.

Fig. 8 Pre- and post-test means by condition
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There was also no statistically significant difference in the frequency of field
observations of frustration between all conditions, F(2, 86) = 1.073, p = .346,
ηp2 = .024 (see Fig. 9). The highest proportion of frustration for any student in the
control condition was 13.04%; the highest proportion of frustration for any student in
the Kinect condition was 12.00%; the highest proportion of frustration for any student
in the interaction detector condition was 10.00%. 38.2% of students in the control
condition were never frustrated, 36.4% of students in the Kinect condition were never
frustrated, and 38.2% of students in the interaction detector condition were never
frustrated.

When adding the frequency of frustration field observations as a covariate in the
rANOVA analysis, there was no statistically significant difference in learning gains
between conditions, F(1, 85) = .673, p = .513, ηp2 = .016. Also, there were no
significant interactions between BROMP frustration measures and condition, with
learning gains F(2, 83) = .231, p = .734, ηp2 = .007.

Discussion of Affect Detector-Driven Frustration Feedback Study Results

This third experiment was designed to investigate whether there is a difference in
efficacy between interventions administered according to a Kinect-based detector, an
interaction-based detector and a fixed schedule designed to match the interaction-based
detector in aggregate. However, the Kinect-based detector failed to trigger interven-
tions, making the comparison actually between interventions administered according to
an interaction-based detector, a fixed schedule designed to match the interaction-based
detector in aggregate, and a no-intervention control. Our findings indicated that there
was not a statistically significant difference on learning gains between these three
conditions. Nor was there any statistically significant difference in frustration measured
through BROMP, or an interaction effect between observed (BROMP) frustration
measures and conditions on learning gains. These results contrast with the findings
from Experiment 2, which found a significant effect of detector-triggered self-efficacy
feedback messages on student learning gains.

Fig. 9 BROMP observed frustration by condition: percentage means
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While every student received a self-efficacy feedback message in the second and
third scenarios in both the interaction-based condition (condition 1) and the fixed-
schedule delivery condition (condition 3), these two conditions were not substan-
tively different as to the timing of the delivery of the messages. The reason for this
is that the control condition was a derivative of the interaction-based, sensor-free
condition times calculated from the second experiment (September 2015) when the
interaction-based detectors were employed. The mean times of delivered messages
in the self-efficacy message condition, delivered upon the detection of frustration
by the interaction-based frustration detectors, were calculated and these mean times
were used to configure a fixed schedule of message delivery in this third experi-
ment’s control condition (condition 3). Students became frustrated at similar times
in these scenarios designed to be frustrating, potentially reducing the usefulness of
the automated detectors.

The results of this experiment also revealed that the Kinect-based frustration
detectors did not get triggered in the second condition, and subsequently self-
efficacy messages were not delivered to participants in this condition, rendering
this essentially a second control condition. This condition was in turn associated
with similar learning outcomes to the other condition. One possible explanation of
the lack of difference between this control condition and the interaction-based
condition is that this study represents a failed replication of the second experiment
presented in this paper.

An alternate explanation is that the difference between the second and third exper-
iment reflects the impact of a seemingly subtle difference in design between the two
experiments. In specific, the second experiment was designed to be more frustrating
than the first or third experiments, out of a concern that the protocol was overall
insufficiently frustrating and a desire to magnify the impact of interventions while
investigating different types of interventions. Specifically, in the second experiment,
participants engaged in five scenarios—including two, no win Kobayashi Maru sce-
narios in between two scenarios that were actually winnable. The purpose behind this
sequence was to undermine the expectations of success that the participants might have
had and thereby increase the participants’ frustration when they tried to win the two
unwinnable scenarios.

This manipulation in the sequence of scenarios to elicit frustration suggests that
frustration may not arise as a discrete event, but rather a form of affect that has a
sustained, residual element. As such, the results imply that the lack of statistically
significant findings between conditions in the third experiment may have been due to
the choice of TC3Sim scenarios; perhaps the selected scenarios were insufficiently
frustrating, thus making ameliorative interventions unnecessary. Yet another possible
hypothesis is that the difference in results between the second and third experiments is
simply the result of a dosage effect—five scenarios gave greater opportunity for the
interventions to make an impact than three scenarios did.

Overall, several of these hypotheses suggest that the difference between Experiment 2
and Experiment 3 may have been due to the difference in scenarios the students
experienced. As such, it seems reasonable to suggest that it would be valuable in the
future to conduct a follow-up experiment comparing the self-efficacy interventions in the
abbreviated scenario sequence (as in Experiment 3) to those same interventions in the
extended scenario sequence (as in Experiment 2).
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Conclusions and Future Work

This three year, multi-study project sought to develop interaction-based sensor-free
affect detectors as well as sensor-based detectors, and then studying a range of
interventions administered according to these detectors. After conducting a baseline
study in September 2013 (experiment one), the results indicated that there was a
negative correlation of frustration to learning gains while participants engaged in a
modified TC3Sim, combat medic care training course. As such, the data collected from
this baseline study was then used to develop the aforementioned affect detectors.

The second experiment successfully integrated the interaction-based detectors into
TC3Sim by utilizing affect recognition functionalities provided by GIFT. This exper-
iment specifically sought to identify whether motivational intervention feedback mes-
sages would yield greater learning gains than control conditions that did not have
motivational feedback messages. The results of this second study demonstrated that
there was a statistically significant difference between motivational and non-
motivational conditions. Specifically, the self-efficacy feedback condition was found
to be more effective than the other conditions.

Lastly, the third experiment sought to compare feedback messages triggered by the
interaction-based, sensor-free detectors and the Kinect-based detectors. However, while
the Kinect-based detectors did not detect participant frustration, the study yielded
further data that contributes to the discussion of the complexity of identifying and
addressing frustration in ITSs. Specifically, there was no difference in learning between
interventions triggered by the interaction-based detector, interventions triggered on a
fixed schedule, and no interventions at all, a seeming failure to replicate the second
experiment. However, as discussed above, other differences in the design of the
experiments may also explain this failed replication. Indeed, prior research has shown
that the affective state of frustration is quite complex, where brief periods of frustration
are not problematic while extended frustration is associated with worse learning
outcomes (D'Mello and Graesser 2011; Liu et al. 2013; Robison et al. 2009). The
second experiment (September 2015) and third experiment (March 2016) from this
project support the notion that when addressing frustration, the duration and context of
a frustrating event, as well as the nature of the interventions, cannot be casually
addressed but rather require careful deliberation in the efforts to promote positive
learning gains within ITSs.

There is much future work regarding the creation and validation of affective models,
creation and validation of interventions, and better understanding how to use this type
of intervention in practice. One lesson learned—not new to this effort but worth
repeating—is that design efforts do not occur in a vacuum. Processing data from
sensors and from within-environment interactions can serve as evidence for models.
This model evidence can be refined through predictive metrics into student profile
information. Student profile information can be used to trigger interventions, which can
then be tested against other interventions to see which of them leads to better educa-
tional results, creating a single data point in a single domain for which approaches to
addressing student affect are effective. The domain, the population, the design of the
activity, the measures of learning, and the details of the detector feature engineering
each influence the success of a specific intervention in a specific situation and context.
There is certainly a large span of alternative interventions that could be considered for
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this research; an alternate option, for example, would be to propose to the learner
alternate steps that he or she could take to be successful in the simulation. While this
would not actually help the learner in the Kobayashi Maru scenarios, it might create the
perception that the player’s success was under their control and reduce frustration (cf.
Butterfield 1964).

The detectors presented here were moderately successful, but there was clearly room
for improvement. Affect detector development is advancing as a field, but perhaps a bit
more slowly and unevenly than one might hope. There are several possibly promising
future direction. One potential area for future research, based on Brawner (2013), is
using real-time model creation and query rather than creating a single group model for
use on a number of individuals at a later time. Future affect detectors may now be
compared to the models and results found here. Fundamentally, the use of the GIFT
framework allows for the creation of a tutoring system in a variety of domains,
integration of student modeling techniques, and the integration of RapidMiner-
created models. The authors believe that the changes made to GIFT as part of this
project—including support for integration between GIFT and RapidMiner—are valu-
able for future intelligent tutoring system creators to both develop and use.

The GIFT project is guided by the idea of creating generalized instructional strate-
gies which map to specific instructional tactics. However, practical, specific instruc-
tional tactics must be used inside of the context of a specific domain. This work shows
that, inside of the domain of TC3Sim, the strategy of swiftly responding to developed
affective states may be useful under certain conditions to boost learning gains. The
mechanism for how these messages had their impact is as yet uncertain; for example,
they may have led to greater effort or cognitive engagement, in turn leading to the
positive learning outcome seen. Beyond this, there are obviously other methods of
instruction which may prove more valuable, better suited to other domains, or better
suited to other categories of instruction. This task is a procedural task and it is
somewhat unknown whether similar techniques would prove beneficial in a situational
judgement of psychomotor type of task, or how modeling approaches can be changed
in order to make the experience more beneficial. Similarly, a range of individual
differences may play a major role in whether an intervention works for an individual
learner.

The vast majority of the programming and program which are part of this effort have
been made publicly available on www.gifttutoring.org. The first part of these changes is
the availability of a Python plugin in order to perform data stream feature distillation in
accordance with the features mentioned above. The second primary part of these
changes is the creation of a plugin to RapidMiner, which is able to take the offline
preprocessed data streams, make a model, and use that model at runtime in order to
detect various emotional states. The number and types of features in addition to the
number of types of states which can be acted on is limited only by the experimenter’s
ability to model.

Finally, GIFT provides placeholders for both recognized student states as well as
Bshort term predicted^ and Blong term predicted^ states. Eventually, it is anticipated
that instructional actions can be taken before frustration/boredom is a realized state,
rather than after it has been detected with confidence. The ability to take instructional
actions based on predicted future states is in its relative infancy as a research study area,
and is a valuable area of future study.
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Appendix: Feedback Messages For Experiment #2

Condition 1: Control-Value Theory

1. BStudies have shown that between 17%-19% of deaths in Vietnam could have been
prevented if tourniquets had been used,^ (DePillis 2013).

2. BA 2008 study from a hospital in Baghdad found an 87% survival rate with use of
tourniquets,^ (DePillis 2013).

3. BThere is no room for hesitation or consultation in facial injuries, and quick
action (3-10 minutes) is critical to the survival and recovery of injured soldiers,^
(Shuker 2011).

4. BThe number one cause of preventable deaths in active shooter events is blood
loss, and the best way to stop blood loss is to properly apply a tourniquet,^
(Jacobs et al. 2013).

5. BThe first U.S. casualty to die in the war from enemy fire was a Special Forces
Soldier, SFC Nathan Chapman, who died during medical air-evacuation on 4
January 2002 from isolated limb exsanguination without tourniquet use,^
(Kragh et al. 2013).

Condition 2: Social Identity Theory

1. As General Maxwell Thurman said, BMake good things happen for our Army."
2. Remember, solder, what General Patton said: BAn Army is a team. It lives, sleeps,

eats, and fights as a team.^
3. BEvery single man in this Army plays a vital role,^ said General Patton. BDon't

ever let up. Every man has a job to do and he must do it.^
4. General MacArthur once said: BDuty, Honor, Country, are three hallowed words

that dictate what you ought to be, what you can be, what you will be.^
5. General Patton said that the soldier is both a citizen and the Army, and the highest

obligation and privilege of citizenship is the bearing arms for one’s country.

Condition 3: Self-Efficacy Theory

1. In this important combat situation, your best outcomes will be achieved if you
persist.

2. You can succeed in this because you’ve been trained to succeed under all
conditions.

3. Tell yourself that you will succeed because failure is not an option in this high
stakes combat zone.

Int J Artif Intell Educ



4. Difficult doesn’t mean impossible. It means work harder till your combat mission
is achieved.

5. In all combat situations, success comes from overcoming the things you thought
you couldn’t.

Control Condition 1: Non motivational feedback messages

1. BBattlefield care emerged in Europe when Post-Revolutionary France established a
system of prehospital care that included a corps of litter-bearers to remove wound-
ed individuals from the battlefield,^ (Chapman et al. 2012).

2. BThe modern combat medic has its roots in the American Civil War, when enlisted
soldiers served as hospital stewards.^ (DeLorenzo 2001).

3. BAs of 10 September 2001, the unreliable, World War II–era U.S. Army tourniquet
was the only widely fielded tourniquet in the U.S. military,^ (Kragh et al. 2013).

4. BIn 2003, in the farmlands around Fort Bragg, Amanda Westmoreland became a
tourniquet maker by melting and bending plastic tourniquet components in her
living room, packaging and distributing thousands of assembled tourniquets early
in the war against Iraq,^ (Kragh et al. 2013).

5. BThe use of a tourniquet went from a means of last resort to a means of first aid and
became the prehospital medical breakthrough of the wars in Afghanistan and Iraq,^
(Kragh et al. 2013).

Control Condition 2: NO MESSAGES

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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