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Abstract. Mixed-initiative problem solving lies at the heart of knowledge-based learning environ-
ments. While learners are actively engaged in problem-solving activities, learning environments
should monitor their progress and provide them with feedback in a manner that contributes to achiev-
ing the twin goals of learning effectiveness and learning efficiency. Mixed-initiative interactions are
particularly critical for constructivist learning environments in which learners participate in active
problem solving. We have recently begun to see the emergence of believable agents with lifelike qual-
ities. Featured prominently in constructivist learning environments, lifelike pedagogical agents could
couple key feedback functionalities with a strong visual presence by observing learners’ progress
and providing them with visually contextualized advice during mixed-initiative problem solving. For
the past three years, we have been engaged in a large-scale research program on lifelike pedagogical
agents and their role in constructivist learning environments. In the resulting computational frame-
work, lifelike pedagogical agents are specified by (1) a behavior space containing animated and vocal
behaviors, (2) a design-centered context model that maintains constructivist problem representations,
multimodal advisory contexts, and evolving problem-solving tasks, and (3) a behavior sequencing
engine that in realtime dynamically selects and assembles agents’ actions to create pedagogically
effective, lifelike behaviors. To empirically investigate this framework, it has been instantiated in a
full-scale implementation of a lifelike pedagogical agent for DESIGN-A-PLANT, a learning environ-
ment developed for the domain of botanical anatomy and physiology for middle school students.
Experience with focus group studies conducted with middle school students interacting with the
implemented agent suggests that lifelike pedagogical agents hold much promise for mixed-initiative
learning.

Key words: Lifelike agents, pedagogicalagents, animated agents, knowledge-basedlearning environ-
ments, mixed-initiative interaction, intelligent tutoring systems, intelligent multimedia presentation,
intelligent interfaces, task models.

1. Introduction

Mixed-initiative problem solving lies at the heart of knowledge-based learning
environments. Since the birth of the field more than twenty-five years ago (Car-
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2 J. LESTER, B. STONE, AND G. STELLING

bonell, 1970), it has become apparent that developing computational models of
mixed-initiativity is critical to the learning environment enterprise. While learners
are actively engaged in problem solving activities, learning environments should
monitor their progress and provide them with feedback in a manner that contributes
to achieving the twin goals of learning effectiveness and learning efficiency. By
carefully monitoring a learner’s progress, learning environments should control
the course of the interaction in such a way that they maximize the quality of the
learning experience.

We have recently begun to see the emergence of believable agents with lifelike
qualities (Bates, 1994; Blumberg and Galyean, 1995; Kurlander and Ling, 1995;
Maes et al., 1995; André and Rist, 1996). By building on developments in these
intriguing interactive characters, we can create a new generation of knowledge-
based learning environments that are inhabited by animated lifelike pedagogical
agents. Featured prominently in learning environments, they could couple key feed-
back functionalities with a strong visual presence by observing learners’ progress
and providing them with visually contextualized problem-solving advice.

Lifelike pedagogical agents offer particularly significant potential for construc-
tivist learning environments. Constructivist learning (Piaget, 1954) has received
increasing attention in the education community in recent years because of its
emphasis on the active role played by the learner as he or she acquires new concepts
and procedures. A particularly intriguing form of the constructivist’s learning-by-
doing techniques is “learning-by-designing.” In the process of designing an artifact,
learners—by necessity—come to understand the rich interconnections between the
artifacts they devise and the environmental constraints that determine whether a
given design will meet with success. Because design tasks are inherently com-
plex, design-centered problem solving provides an excellent testbed for studying
mixed-initiative interactions that are contextualized in a learners’ problem-solving
activities.

To investigate these issues, we have been engaged in a large-scale research
program on lifelike pedagogical agents and constructivist learning environments
(Lester et al., 1996; Stone and Lester, 1996; Lester and Stone, 1997; Lester et al.,
1997a; Lester et al., 1997b; Lester et al., 1997c). The long-term goal of the project
is to create pedagogically effective computational mechanisms that contribute to
fundamental improvements in learning environments. To date, we have focused on
developing a pedagogical agent behavior sequencing engine that dynamically con-
trols the behaviors of lifelike pedagogical agents in response to the rapidly chang-
ing problem-solving contexts in constructivist learning environments. Applying
this framework to create an agent entails constructing a behavior space, a design-
centered context model, and a behavior sequencing engine that dynamically selects
and assembles behaviors:

1. Agent Behavior Space: A behavior space contains (a) animated behaviors of
an agent performing a variety of pedagogical behaviors including explanatory
and advisory actions, (b) animated behaviors of the agent engaged in a variety
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of “believability-enhancing” actions, and (c) narrative utterances spoken by the
agent, including verbal reminders and interjections.

2. Design-Centered Context Model: A model of a design-centered context con-
sists of (a) an environmental context representing the critical features of the
problem, (b) a multimodal advisory history representing the explanations and
advice that have been presented by the agent, and (c) an artifact-based task
model representing the features of the artifact being designed by the learner.
These are dynamically updated as problem-solving episodes unfold.

3. Behavior Sequencing Engine: At runtime, a behavior sequencing engine
orchestrates an agent’s behaviors in response to the changing problem-solving
context by exploiting the design-centered context model. A sequencing engine
selects an agent’s actions by navigating coherent paths through the behavior
space and assembling them dynamically to create global behaviors in which
the agent provides visually contextualized problem-solving advice.

To empirically investigate this framework, it has been instantiated in an imple-
mented lifelike pedagogical agent, Herman the Bug (Figure 1), who inhabits a
constructivist learning environment for the domain of botanical anatomy and phys-
iology for middle school students, DESIGN-A-PLANT.� The agent interactively pro-
vides contextualized advice to learners as they graphically assemble plants from a
library of plant structures such as roots and stems.

In DESIGN-A-PLANT, a learner’s goal in each problem-solving episode is to
design a plant that will thrive in a given natural environment with specified con-
ditions such as the amount of available sunlight. As learners solve problems by
constructing plants, the agent provides them with advice about botanical anatomy
and physiology. Together, Herman and the DESIGN-A-PLANT learning environment
constitute a proof-of-concept embodiment of the lifelike pedagogical agent behav-
ior sequencing framework and provide a “laboratory” for studying mixed-initiative
problem-solving interactions in constructivist learning environments.

Based on the experience of the first three years of the DESIGN-A-PLANT project,
this article provides an account of the representations and computational mecha-
nisms underlying the design and construction of lifelike pedagogical agents for
mixed-initiative problem solving in constructivist learning environments. It is
structured as follows. Section 2 sets forth design criteria for mixed-initiativity
in lifelike pedagogical agents, describes the DESIGN-A-PLANT learning environ-
ment testbed, and presents an extended mixed-initiative session to illustrate the
desired phenomena. Section 3 presents the design-centered context model used
to represent problem-solving and advisory contexts. Section 4 describes dynamic
behavior sequencing engines for lifelike agents, including the mechanisms for con-
trolling the initiative, for making intervention decisions, and for interjecting advice

� The DESIGN-A-PLANT learning environment project is a large-scale multidisciplinary project
involving computer scientists, animators, graphic designers, voice actors, curriculum and instruction
specialists, and cognitive scientists. For example, all of the 3D graphics and animations were designed,
modeled, and rendered by a twelve-person graphic design and animation team.
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Figure 1. The DESIGN-A-PLANT lifelike pedagogical agent

and explanations. Section 5 illustrates these computational mechanisms with an
extended example interaction. Section 6 puts the work in perspective by describing
the principle “lessons learned” from the experiences of iterative design, imple-
mentation, and evaluation via focus group studies with middle school students.
Section 7 concludes with a summary and a discussion of future directions.

2. Mixed-Initiativity in Lifelike Pedagogical Agents

Since their conception more than a quarter of a century ago, knowledge-based
learning environments (Hollan et al., 1987; Wenger, 1987; Lesgold et al., 1992;
Anderson et al., 1995) have offered significant potential for fundamentally chang-
ing the educational process. It has long been believed—and recently rigorously
demonstrated (Mark and Greer, 1995)—that presenting knowledgeable feedback
to students increases learning effectiveness. Despite this promise, few learning envi-
ronments have made the difficult transition from the laboratory to the classroom,
and the challenge of developing learning environments that are both pedagogically
sound and visually appealing has played no small part in this situation.

Lifelike animated agents could play a central communicative role in learn-
ing environments by providing visually contextualized problem-solving advice.
Although knowledge-based graphical simulations (Hollan et al., 1987) are virtual-
ly de rigueur in contemporary learning environments, and the problem of planning
multimedia presentations has been the subject of much study (André et al., 1993;
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Feiner and McKeown, 1990; Maybury, 1991; Roth et al., 1991; Mittal et al., 1995),
work on lifelike agents has begun in earnest but is still in its infancy (Bates, 1994;
Blumberg and Galyean, 1995; Kurlander and Ling, 1995; Maes et al., 1995;
André and Rist, 1996). Despite the promise of lifelike pedagogical agents, with the
exception of work on the DESIGN-A-PLANT project (Lester et al., 1996; Stone and
Lester, 1996; Lester and Stone, 1997; Lester and Stone, 1997; Lester et al., 1997b;
Lester et al., 1997c) (described in this article) and the Soar Training Expert for Vir-
tual Environments (STEVE) project (Rickel and Johnson, 1997), which focuses on
agents that provide instruction about procedural tasks, lifelike agents for pedagogy
have received little attention.

In the same manner that human-human tutorial dialogues are characterized by
changes in initiative (Smith and Hipp, 1994; Hale and Barsalou, 1995; Freedman,
1996), learner-agent interactions between a lifelike agent and a learner should be
characterized by problem-solving episodes where control of the initiative frequently
changes. Mixed-initiativity is such an extraordinarily complex phenomenon (Cohen
et al., 1998), that developing a computational model of mixed-initiative tutorial
interactions is especially challenging. Below we characterize the kinds of initiative
changes we target for tutorial interactions.

At the beginning of each episode, learners are unfamiliar with the problem,
so the agent should take control and introduce the problem. For example, in the
DESIGN-A-PLANT learning environment, the agent should open by describing the
environmental conditions that hold on the particular environment for which a plant
will be designed. Once learners begin solving problems, the initiative may change
frequently. Learners should be able to take control while they are performing
problem-solving actions, agents should regain control when it appears that learners
are experiencing difficulty or when learners request assistance, and control should
then be relinquished to learners so they may continue their problem solving. For
example, in the DESIGN-A-PLANT learning environment, the agent should monitor
students as they assemble plants and intervene to provide explanations about botan-
ical anatomy and physiology when they reach an impasse. In the same manner that
human interlocutors engaged in mixed-initiative interactions frequently generate
responses that include highly relevant information that was not specifically request-
ed (Green and Carberry, 1998), the agent should be prepared to provide learners
with assistance even though it may not be explicitly requested.

Once problem solving is successfully completed by the learner, the agent should
again regain control to complete the problem-solving transaction. This might
involve a simple statement that a correct solution has been constructed or perhaps
a more elaborate congratulatory utterance accompanied by a visually compelling
behavior. For example, at the end of each successful problem-solving episode in
DESIGN-A-PLANT, the agent might congratulate learners and cartwheel across the
screen.

Well designed intervention strategies are especially critical in constructivist
learning environments. The frequency and content of intervention should be appro-
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priate for the particular aspects of the design task on which the learner is focusing,
and advice should be relevant to the problem-solving goals currently being pur-
sued. In the same manner that coherence plays a critical role in assisting readers’
comprehension of text (Grimes, 1975), the behaviors of an animated pedagogical
agent should be molded by considerations of pedagogical coherence.

Perhaps most central among these requirements is that an agent’s advisory and
explanatory interjections be situated (Brown et al., 1989): all of its explanatory
behaviors—not merely its advisory actions but also its communication of fun-
damental conceptual knowledge—should take place in concrete problem-solving
contexts. For example, learners interacting with the DESIGN-A-PLANT environment
should learn about leaf morphology in the context of selecting a particular type of
leaf as they design a plant that will thrive in particular environmental conditions.
Moreover, agents’ behaviors should obey prerequisite relationships and include
transitions (both verbal and visual) that are the hallmark of spoken discourse.

Creating agents that intervene appropriately requires inferring the learner’s
intentions. However, diagnosis should be conducted as non-invasively as possible
because continually interrupting learners to determine their current intent and to
ferret out their misconceptions would interrupt constructivist learning. For example,
it would go against the spirit of constructivist learning to prevent the learner from
pursuing his or her design activities in order to issue a number of probes to detect
precisely which misconceptions were active at a given time.

To achieve mixed-initiative interaction with lifelike agents, believability (Bates,
1994) is a key feature of these agents. We define the believability of lifelike agents
as the extent to which users interacting with them come to believe that they are
observing a sentient being with its own beliefs, desires, intentions, and personality.
Although it is possible that increasing believability may yield substantial rewards
in learners’ motivation, when learners have the initiative, agents must exhibit
believability-enhancing behaviors such as standing up and sitting down in such
a manner that they do not distract from problem solving. Some behaviors such
as moving from one location to another have high visual impact, while others,
such as small head movements, have low visual impact. In general, the higher the
visual impact, the more interesting a behavior will be, but agents must control the
visual impact of their behaviors in such a manner that they do not divert a learner’s
attention at critical junctures.

In short, agents’ behaviors should be sequenced in such a way that, in the normal
course of a learner’s problem-solving activities, the transfer of initiative between the
learner and the agent plays out as smoothly as possible, interventions are provided in
a timely and topical manner, diagnosis is non-invasive, and believability-enhancing
behaviors do not interfere with but rather enhance the learning experience.
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2.1. A TESTBED LEARNING ENVIRONMENT FOR MIXED-INITIATIVITY

To empirically investigate mixed-initiative interaction with lifelike pedagogical
agents, we have implemented an animated agent, Herman the Bug (Figure 1), who
interacts with learners solving problems in the DESIGN-A-PLANT learning envi-
ronment. Herman and DESIGN-A-PLANT are the central computational artifacts of
a long-term project.� The implemented behavior sequencing engine operates in
realtime to dynamically monitor and update the environmental context, advisory
history, and task model and to select and compose the agent’s behaviors approxi-
mately once every 200 milliseconds.��

The agent is a talkative, quirky insect with a propensity to fly about the screen
and dive into the plant’s structures as he provides problem-solving advice. In the
process of explaining concepts, he performs a broad range of activities includ-
ing walking, flying, shrinking, expanding, swimming, fishing, bungee jumping,
teleporting, and acrobatics. His behavior space was designed to “stress-test” the
behavior sequencing algorithms and representations. Containing more than 50 ani-
mated behaviors and approximately 100 verbal behaviors, the behavior space hous-
es a variety of pedagogical and believability-enhancing behaviors. The pedagogical
behavior space includes a variety of advisory and explanatory behaviors pertaining
to botanical anatomy, physiology, environmental constraints, and their interactions.
The believability-enhancing behavior space includes re-orientation behaviors (e.g.,
standing up, lying down), restrictive body behaviors (e.g., back scratching, head
scratching, toe tapping, body shifting), prop-based behaviors (e.g., glasses clean-
ing), and full-screen celebratory behaviors (e.g., bungee jumping, cartwheeling).

Learners interact with the agent as they graphically assemble customized 3D
plants (pre-rendered on an SGI) from a library of plant anatomical structures.�Their
goal in each design episode is to create a plant that will survive under a specific set
of environmental conditions. Each environment (visualized as a different imaginary
planet) is rendered as an intriguing landscape. Specific environmental factors are
depicted iconically, and the roots, stems, and leaves in the artifact component

� The first three years of the project have been devoted to iteratively designing and building
the animated agent and its “laboratory” (the DESIGN-A-PLANT ENVIRONMENT for studying mixed-
initiative human-agent interactions). The second three years will be devoted to empirical investigations
of the cognitive processes and the results of constructivist human-agent learning.
�� The behavior sequencing engine runs on a Power Macintosh 9500/132.
� A general goal of the DESIGN-A-PLANT project is creating learning episodes that revolve around

learners’ active design-centered problem solving. Although constructivism has come to dominate
contemporary theories of learning, arriving at a clear definition of it has proved challenging indeed.
Two closely related approaches to learning are that of constructionism and constructive learning.
Constructionist theories emphasize that learning “happens especially felicitously in a context where
the learner is consciously engaged in constructing a public entity, whether it’s a sand castle on the
beach or a theory of the universe” (Papert, 1991). Constructive learning, unlike the above, places no
emphasis on authenticity or the social environment in which learning plays out. Hence, though we
refer to learning in DESIGN-A-PLANT as “constructionist,” we acknowledge the important differences
between constructivism, constructionism, and constructive learning and intend no philosophical
claims.
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library are 3D objects. “Rollover” definitions are provided for all environmental
factors and components. The DESIGN-A-PLANT testbed is a fully functional learning
environment containing the following elements:
� Environments: 16 environments (4 types of environments, each with 4 com-

plexity levels)
� Artifact component library: 8 types of roots, 8 types of stems, and 8 types of

leaves.
� Domain model: 31 constraint packets that relate 6 environmental factors to the

anatomical structures and physiological functions.
All interactions between learners and the agent take place in DESIGN-A-PLANT’s

design studio. To make progress on issues of mixed-initiativity without awaiting
solutions to the natural language understanding problem, the DESIGN-A-PLANT

learning environment operates without an NLU component, just as the collaborative
interface agent in the COLLAGEN system does (Rich and Sidner, 1998). The design
studio is an interactive workbench (Figure 1) that was crafted to enable learners
to attack design problems flexibly: they have the freedom to begin working on a
sub-task, effortlessly move to new sub-tasks, revise design decisions in light of
the agent’s advice, and return to previously considered sub-tasks with ease. To
simultaneously achieve this flexibility and to enable the system to monitor their
tasks non-invasively, the interface state and its functionalities are tightly coupled
to the task model.

Learners design plants in the design studio’s “plant bubble.” They graphically
assemble their designs by first positioning the component task bar vertically on
the screen. This requires only a single mouse click. When the component task bar
is in the bottom-most position, the root library is displayed; when it is mid-level,
stems are displayed; and when it is at the top, leaves are displayed. Learners then
indicate design decisions by choosing a component of the selected type. This also is
accomplished by a single mouse click. Because all workbench actions are directly
mapped to their corresponding sub-tasks, learners (perhaps unknowingly) signal
their intent to the behavior sequencing engine during the natural course of the
design process. When they believe their design is complete and correct, they click
on the Done button at the bottom of the screen, and the system evaluates their plant
with respect to the given environment by searching for violations of constraints in
the underlying domain model.

2.2. SAMPLE MIXED-INITIATIVE TUTORIAL INTERACTION

To illustrate the nature of the desired mixed-initiative interactions we seek, consider
the following series of exchanges in a DESIGN-A-PLANT learning session. A learner
has watched Herman’s overview of elementary plant anatomy and has visited two
planets. The first had a simple, high rainfall, environment which required her to
choose thin leaves, for flexibility. In the second environment, a planet with dim
sunlight and a low watertable, she needed assistance twice. She has now been
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Figure 2. The learner visits a new environment and undertakes root design

escorted to a planet with low rainfall and high temperature (Figure 2).� In this
environment, roots and leaves are both in the environmental focus.

The agent first takes the initiative to introduce the learner to the problem.

Animated Agent: Whoa! I’m feeling hot, hot, hot! Too bad there’s no raindrops to fall
upon my head. Well, the roots better be well chosen to soak up all the water they
can. The stem and leaves still need to store as much water as possible, but at these
high temperatures, they also need to be able to use some of that water to stay cool, by
transpiration.

Initiative is then transferred from agent to the learner who begins her problem
solving. In general, learners can begin with any sub-task they wish.

Learner: Opts to begin plant construction with roots.

To avoid distracting the learner while she addresses difficult problems, the agent
stands quietly, attentively looking at the transparent chamber in which the learner
is designing her plant.

� To emphasize artifacts and environmental variables that exercise concepts with which the learner
is experiencing difficulty, some versions of DESIGN-A-PLANT dynamically select environments. By
inspecting the task model, they not only present types of problems that have proved difficult for
the learner in the past, but they also control the level of complexity (as measured by the number
of constraints) that the environment will exhibit. To do so, they exploit an environment matrix,
where each element of the matrix is an environment (Lester et al., 1997c). Each column represents a
particular environmental “intent,” i.e., a particular sub-task to be exercised, and each row represents
additional complexity. By navigating the environment matrix, these versions of DESIGN-A-PLANT
select environments that produce customized, challenging design experiences.
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Learner: Spends a while considering the rollover descriptionsof the environment elements
and roots settings icons, but cannot make a decision.

Because the learner has made limited progress, the agent takes the initiative and
provides verbal advice about the relevant features of the component on which the
learner currently focuses.

Animated Agent: Because of the light rain in this environment, one of the choices you have
to make is between branching and non-branching roots. Which type would increase
the roots’ contact with the scarce moisture?

Animated Agent: After a slight pause, raises a similar question about deep and shallow
roots.

After offering the advice, the agent returns the initiative to the learner.

Learner: Speculating that branching roots are more efficient and, deciding that shallow
roots will, in Herman’s words, “gather up the moisture as it soaks into the ground,”
chooses roots that are branching and shallow.

Because the learner’s design decision will yield an artifact that will flourish in the
given environment (assuming all of the remaining design decisions are reasonable),
the agent takes the initiative to issue a verbal congratulation for the intermediate
success.

Animated Agent: Congratulates the learner.

Learner: Raises the task bar to choose a stem.

Learner: Mindful of Herman’s comment about storing water in the stem and leaves,
chooses a thick stem that is also short and covered with bark.

Although some aspects of the learner’s design decision are reasonable, others are
not. The agent intervenes to offer verbal advice about the particular aspects on
which she requires assistance.

Animated Agent: Whoo-eee! If the plant’s in a hot area, there’s a danger it could overheat.
Like me, I’m so hot! To avoid this, the plant transpires, losing water through the
stomata. Which will allow the plant to transpire more freely, a stem with bark on it or
a stem with no bark?

Because the learner has demonstrated that she has understood some of the critical
features of the current sub-task, the agent can now be more visually active. Even so,
he waits a respectable amount of time before performing an interesting behavior,
such as polishing his glasses or deploying a yo-yo, to remind the learner of his
presence. The learner retains the initiative.

Learner: Correctly concludes that a stem with no bark will “transpire more freely.”

The agent takes the initiative to issue congratulations on this successfully com-
pleted sub-task and then returns the initiative to the learner.

Animated Agent: Expresses his congratulations.

Learner: Shifts the focus to the leaves sub-task.
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When the learner was working on the preceding two tasks, Herman remained
standing on the task bar. However, because the task bar is now high on the screen
as the learner shifts to the leaves sub-task, Herman sits down as the taskbar rises
so as not to bump his head on the top of the screen.

Learner: Knows to choose thick leaves for their ability to store the scarce moisture, but
has not yet generalized her understanding of maximizing cooling by transpiration to
choosing “thin-skinned” leaves; selects thick, large, thick-skinned leaves.

Because one of the features of the component currently under consideration will
result in an artifact that cannot satisfy the current environmental constraints (the
learner has made a design decision that is valid with respect to the leaves’ overall
thickness feature but not with respect to their skin thickness), the agent will
intervene to provide advice about the specific problematic features.

Animated Agent: In a hot climate, a plant needs to release excess water as vapor to
cool itself off. Huh-huh. Basically it’s sweating, just as we do, to prevent itself from
overheating. Choose between those leaves which have a thick skin and those with a
thin skin; which is better to keep the plant from overheating?

The agent returns the initiative to the learner.

Learner: Makes a second incorrect design decision of thick, small leaves with thick skin.

The learner has again demonstrated that she may have a misconception about the
relationship between skin thickness and the active environmental attributes. The
agent therefore intervenes. He first takes advantage of the opportunity to provide
an animated explanation about external leaf anatomy. Then, because it appears that
the learner was unable to operationalize the abstract verbal advice provided above,
he visually advises the learner about the anatomical requirements imposed by
this particular environment. The intervention begins with a verbal meta-comment
about the upcoming interjection, after which the agent lies down on the task bar
prior to presenting the explanations and advice. At their conclusion he returns to
his original orientation.

Animated Agent: OK, OK, so we’re having some difficulty. But, that’s OK, we’re here to
learn. I tell you what, see if this helps.

Animated Agent: Stretches out on the task bar to watch the animations (“home movies”
of himself interacting with the plant) along with the learner.

Animated Agent: Provides the learner with her first task-specific background information
about plant anatomy, flying in with his jetpack to point out major parts of the leaf.

Animated Agent: Watches grimly as a leaf bursts open in the intense heat, while he
explains, “Well, thick-skinned leaves just won’t be able to give off enough water vapor
to cool the plant in this hot climate. In order for the plant to transpire freely, the leaves
should be thin-skinned.” He then sits up and returns the initiative to the learner.

Learner: Considers the agent’s advice but again proposes thick, thick-skinned leaves.

Because the learner has now repeatedly experienced difficulties with the abstract,
conceptual advice, the agent determines that more direct advice is warranted and
intervenes.
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12 J. LESTER, B. STONE, AND G. STELLING

Animated Agent: Thin, thin, thin! Choose thin-skinned leaves.

Learner: Follows this direct advice then clicks on the Done button.

If the learner instead had made another inappropriate leaf design decision, the agent
would have taken the problem-solving initiative. After first exclaiming empathet-
ically, “I know, sometimes this plant construction stuff can be really frustrating.
But, that’s when I help! Why don’t you let me get this choice so we can move on
to the next task. We may see hazards like this later on, on some other planet,” he
would then have performed an appropriate problem-solvingaction himself, and the
leaves he created would have then been displayed in the design chamber. A final
check is made to determine whether all tasks have been accomplished correctly,
since the learner always has the option of shifting her attention from an incomplete
task to work on one of the others. If there had been unresolved suboptimal design
decisions on other sub-tasks, Herman would have offered advice at the appropriate
level as described above, just as he would have done had the sub-task not been
interrupted. Because all is well, the behavior sequencing engine directs the agent
to exhibit an episode-completing congratulatory behavior.

Animated Agent: Cartwheels across the screen, teleports to the edge of the cliffs for a
spectacular bungee jump, and then returns to introduce the next environment.

This article presents the computational mechanisms required to achieve pre-
cisely this style of mixed-initiative problem-solving interaction between lifelike
pedagogical agents and learners.

3. Context Modeling for Mixed-Initiative Interaction

To facilitate mixed-initiative problem-solving, lifelike pedagogical agents must
have access to a well-represented model of the problem-solving context. Specifi-
cally, to make decisions about which behaviors a pedagogical agent should perform,
when they should be exhibited, and how they should be sequenced, the agent behav-
ior sequencing engine maintains a dynamically updated design-centered contextual
representation of mixed-initiative design episodes (Figure 3). In the figure, each Vi
is an environmental variable, e.g., the amount of sunlight; each Ci is a component
type of the artifact being designed, e.g., the roots; and each SubTaski is that of
determining particular features for a given component type, e.g., selecting large,
thin, and thick-skinned leaves. The arrows within the learning environment module
represent the links between each component type and its related sub-task in the
learner’s current design episode. As the learner makes her design decisions, the
behavior sequencing engine monitors the activity, updates the task model, selects
behaviors from the behavior space, and assembles them into a multimodal behavior
stream (as described in a section below). The design-centered context representa-
tion consists of an environmental context, a multimodal advisory history, and a task
model:
� Environmental Context: Critical features of the environment which have been

presented to the learner:
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� Current Environment: Environmental factors (and their values) in the current
design episode.

� Environmental Intent: Set of component types from the artifact library which
that environment is intended to exercise.

� Environmental Complexity: Associated with every environment is an envi-
ronmental complexity that indicates the expected difficulty that learners will
experience with problems in that environment.

� Sub-Task Complexity: Associated with each sub-task for every environment
is a complexity rating.

� Multimodal Advisory History: Critical features of the advisory dialogue, where
each entry consists of:
� Topic: Indicates environmental factors, artifact components, and constraint

packets.
� Frequency Annotations: Indicate the number of times that the learner has

been advised about the topic(s).
� Media Annotations: Indicate the media that were employed to communicate

the advice.
� Task Model: Critical features of the task performed by the learner:

� Artifact-based Task Model: Represents selection of component instances for
the current artifact under construction, as well as a focused component.

� Design Evaluation: When the learner completes a design, the artifact is
evaluated as successful or not successful in the current environment.

� Problem-Solving Idle Time: Time elapsed since the learner’s last action.

3.1. ENVIRONMENTAL CONTEXT

Design-centered problem solving revolves around a carefully orchestrated series
of design episodes. To illustrate, consider design episodes in the domain of botan-
ical anatomy and physiology. Learners are given an environment that specifies
biologically critical factors in terms of qualitative variables. Environmental speci-
fications, for example, might include the average incidence of sunlight, the amount
of nutrients in the soil, and the height of the water table.

Learners consider these environmental conditions as they inspect components
from a library of plant structures that is segmented into roots, stems, and leaves.
Each component is defined by its structural characteristics such as length and
amount of branching. Employing these components as building blocks, learners
work in a “design studio” to graphically construct a customized plant that will
flourish in the environment. Each iteration of the design process consists of the
learners inspecting the library, selecting plant components to design a complete
plant, and determining how the plant would then fare in the given environment. If
they find that the plant would not survive, learners modify their plant’s components
to improve its suitability and the process continues until they have developed a
robust plant that prospers in the environment.
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Figure 3. The Behavior Sequencing Engine, Design Studio and Artifact-Based Task Model

The environmental context guides the behavior sequencing engine’s problem-
solving advice by providing it with knowledge about the current environment and
the pedagogical import of this environment. The current environment is encoded
as a feature vector of active environmental features and their qualitative values.
To illustrate, Table I depicts four representative environments from DESIGN-A-
PLANT. The environmental intent represents the types of components the current
environment is intended to exercise. For example, several of the environments
in DESIGN-A-PLANT are intended to exercise learners’ knowledge of leaves and
the relation of leaf attributes to the features of the current environment, e.g., the
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Table I. Sample environments from DESIGN-A-
PLANT

Environment Feature Value

Desert Canyon sunlight low
rain low
wind high
water table low

Alpine Meadow water table high
temperature low
rain low
wind high

Tropical Cliffs rain low
temperature high
nutrients low
water table low

Southern Marsh rain high
sunlight low
water table high
temperature high

amount of available light. The environmental complexity represents an estimate
of the expected relative difficulty that curriculum designers expect learners will
experience in solving problems of that environment. Finally, each environment
also includes sub-task complexity ratings which indicate expected difficulty levels
for each sub-task; computationally, this is the number of component features for
that sub-task which must be correctly selected to design a component for the
environment. For example, in low rainfall environments, designing successful roots
requires the learner to grapple with both depth and branchiness issues. All
aspects of the environmental context are used in determining topics of advisory
interventions.

To relate features of the environmental context to problem-solving actions, a
constraint-based domain model can furnish the essential representational structures
to support mixed-initiative pedagogical dialogue. For example, DESIGN-A-PLANT’s
domain model was developed for middle school students learning about botanical
anatomy and physiology. It consists of constraint packets that relate environmental
factors to plant components and the roles they play in plant physiology. In particular,
these constraint packets encode the relationships between binary-valued environ-
mental factors (e.g., incidence of sunlight, temperature, amount of nutrients in the
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16 J. LESTER, B. STONE, AND G. STELLING

soil), binary-valued features of the plant structures (roots, stems, and leaves), and
the primary physiological processes (respiration, photosynthesis, osmosis, nutrient
transport, water transport, and transpiration).

3.2. MULTIMODAL ADVISORY HISTORY

To enable agents to provide learners with advice that is timely, that is delivered at
appropriate levels of abstraction, and that employs appropriate media, the behav-
ior sequencing engine requires a multimodal advisory history. Accordingly, the
advisory history consists of a temporally ordered set of advice entries, which is
updated the moment the agent provides advice. Each entry in the advisory context
encodes three aspects of the advice. First, the topic of the advice represents the
environmental factors, artifact components, and constraint packets about which
the agent communicates. Second, agents need to take into account difficulties that
the learner may be experiencing with a particular topic. Hence, frequency anno-
tations indicate the number of times that the agent has advised the learner about
the given topic(s) of the entry. Annotations on particular topics are suggestive of
marks on an overlay user model (Carr and Goldstein, 1977); overlay marks indicate
which subskills a learner has mastered, while frequency annotations indicate the
topics about which the agent has advised the student.� Frequency annotations are
used by the behavior sequencing engine to assess the level of abstraction at which
advice should be provided, as discussed below. Third, because some advice is com-
municated with large-scale animated behaviors while others (e.g., reminders) are
communicated primarily with verbal behaviors, the agent needs to be able to reason
about the media that were employed to communicate the particular advice. Media
annotations on each entry enable the behavior sequencing engine to reason about
appropriate modes of expression. Together, the components of the multimodal
advisory history are used to determine which topics of explanation and advice have
been covered previously by the agent.

3.3. TASK MODEL

Finally, of the three components of the design-centered context representation,
the task model is the most critical to agents’ pedagogical effectiveness. To make
appropriate decisions about initiative control and behavior sequencing, the behav-
ior sequencing engine requires an up-to-date representation of the task performed
by the learner. The task model provides this knowledge by tracking the learner’s
problem-solving activities with an artifact-based task model, continuous evalua-
tions of the viability of design decisions, and a problem-solving clock.

Dynamically providing goal-specific interventions requires the system to rec-
ognize learners’ intent, but plan recognition is a notoriously difficult problem (Car-

� Higher frequency annotations are produced for topics with which the learner has experienced
the most difficulty.
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Table II. Instance of the Artifact-Based Task Model
for DESIGN-A-PLANT

Subtask Design Current
History Subtask?

Leaf
Subtask

Large, Thick, Woody
Stem Small, Thick

p

Subtask Small, Thin
Small, Thin, Green

Root Deep, Thick
Subtask Deep, Thin

Shallow, Thick

berry, 1989; Chu-Carroll and Carberry, 1994; Hill and Johnson, 1995). To address
the problem, artifact-based task models exploit (1) a well designed interface, e.g.,
learners interacting with the DESIGN-A-PLANT design interface (described below)
signal their intentions through the normal course of problem solving, and (2) the
“nearly decomposable” property of problems (Simon, 1981) to segment design
tasks into sub-tasks SubTask1 � � �SubTaskn, where each SubTaski represents
the sub-task of making a decision about components of a particular type, e.g.,
choosing between different types of leaves. Artifact-based task models encode
three features:
� Each SubTaski records a history of design decisions made by the learner for

that aspect of the design.
� Each completed SubTaski records the most recent design decision with the

selected component (from Ci).
� Some sub-task SubTaskf on which the learner is currently focused (the

focused component) is marked.
To illustrate, suppose a learner interacting with DESIGN-A-PLANT has begun to

solve the problems of which types of roots and stems to incorporate in her design
for a particular environment. Furthermore, suppose she is currently considering
issues bearing on stems, but has not yet begun to make decisions about leaves.
The task model will be configured as shown in Table II, with the design history
for each sub-task recorded in temporal order (most recent first).� Here, the learner
has completed the root sub-task and the stem sub-task is currently in focus. The
task model indicates that in considering this sub-task, her most recent decision was
large, thick, woody stems.

� The top-to-bottom order of Leaf, Stem, and Root in Table II mirrors the spatial relation of tasks
in the interface; in fact, the actual order in which the sub-tasks are performed is under the learner’s
control.
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18 J. LESTER, B. STONE, AND G. STELLING

The artifact-based task model serves the critical function of providing a dynam-
ically maintained design history, which informs the behavior sequencing engine’s
initiative control decisions. However, these decisions must take into account the
quality of the learner’s proposed designs and some measure of the learner’s rate of
progress and her engagement with the process. This supporting information is pro-
vided by (1) the design evaluation, which is supplied by a simple constraint system
underlying the learning environment that determines whether a proposed design
is appropriate for the given environmental conditions, and (2) the problem-solving
idle time, which is computed by a running clock that tracks the amount of time that
has elapsed since the learner’s last design decision.

4. Dynamic Agent Behavior Sequencing for Mixed-Initiativity

Given a rich behavior space, the behavior sequencing engine (Figure 3) exploits
the representations of the environmental context, the multimodal advisory history,
and the task model to dynamically navigate through the behavior space, select
agent behaviors, and assemble them in realtime, thereby enabling agents to engage
in pedagogically effective mixed-initiative problem-solving episodes. Behavior
sequencing for pedagogical agents is analogous to the topic sequencing that must
be performed by pedagogical planners (Woolf and McDonald, 1984; Peachey and
McCalla, 1986; Murray, 1990; Brusilovsky, 1992). Just as, for example, a discourse
management network makes decisions about when to introduce a new problem,
which topic to pursue next, and when to intervene, the behavior sequencing engine
must also track learners’ progress. Hence, behavior sequencing engines can exploit
solutions to classic problems studied in the ITS community such as curriculum
sequencing (Wescourt et al., 1981), simulation-based learning (Hollan et al., 1987;
White and Frederiksen, 1987) and student modeling (Brown and Burton, 1978;
Burton, 1982; Carr and Goldstein, 1977). However, behavior sequencing engines
must also address new problems in orchestrating the agents’ visual behaviors, coor-
dinating visual behaviors with verbal behaviors, keeping the agent “alive” onscreen,
and determining when visual, verbal, or both types of modes of intervention are
appropriate. Below we describe the initiative control and intervention methods that
address both the verbal and the visual modes of mixed-initiativity.

As learners solve problems, the behavior sequencing engine inspects the envi-
ronmental context to identify the design criteria that the learner is attempting to
satisfy and to determine which aspects of the design are most critical from a ped-
agogical perspective. It inspects the advisory history to track previously presented
advice, and it inspects the task model to monitor the learner’s progress and to note
possible impasses. By extracting key features from these context models, using
them together with ontological, intentional, and rhetorical indices to index into the
behavior space, and dynamically sequencing the resulting behaviors, the behavior
sequencing engine weaves together “local” behaviors from the behavior space to
create “global” behaviors. These resulting behaviors enable the agent to share the
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initiative with the learner, to achieve pedagogical and visual coherence, and to
appear lifelike.

At all times, the behavior sequencing engine maintains the agent’s visual pres-
ence by keeping him� onscreen, visually immersed in the learning environment,
and on or near the artifact which the learner is designing. In response to the learner’s
problem-solving activities, it directs the agent to provide problem-solving advice
and to communicate fundamental knowledge of the domain to learners as they
interactively design artifacts. After describing the types of behaviors critical for
mixed-initiative interaction, the strategies and algorithms for controlling initiative,
handling interventions, and selecting and assembling advisory, explanatory, and
transition behaviors are presented below.��

4.1. PEDAGOGICAL AGENT BEHAVIOR CATEGORIES

To provide an agent with the flexibility required to respond to a broad range of
mixed-initiative problem-solving contexts, its behavior space must be populat-
ed with a large, diverse set of animated and narrative pedagogical behaviors. In
contrast to the linear storyboarding approach employed in traditional animation
(Noake, 1988), the pedagogical and visual connectivity of behavior spaces requires
a networked storyboarding approach. Posing significant pedagogical and aesthetic
challenges, the design of a networked storyboard is a complex, labor-intensive task
requiring a multidisciplinary team of computer scientists, graphic artists, animators,
and voice actors. Networked storyboarding consists of designing specifications for
several animated and audio-primary behaviors and imposing a coherence structure
on them.

Pedagogical agents must be able to engage in a variety of explanatory, advisory,
and believability-enhancing behaviors. Constructing a networked behavior space
for an animated pedagogical agent capable of facilitating mixed-initiative problem
solving entails specifying the following categories of behaviors:
� Conceptual Explanatory Animated Behaviors: The agent explicates the

structures and functions of the artifact which is the subject of learning episodes.
For example, the DESIGN-A-PLANT agent’s behavior space contains an ani-
mated behavior of the agent explaining how root hairs absorb water through
osmosis.

� Problem-Solving Advisory Animated Behaviors: The agent provides abstract,
principle-based advice. Students must then operationalize this advice in their
problem solving activities. For example, one animated behavior of the DESIGN-
A-PLANT agent depicts him pointing out the relation between leaf size and low
sunlight. (Plants in limited sunlight often have larger leaves.)

� Because the agent inhabiting the DESIGN-A-PLANT learning environment appears more mascu-
line than feminine, we employ the masculine pronoun. Agents of course may be masculine, feminine,
or indeterminate.
�� Each of the algorithms described below has been employed in one or more versions of the

implemented agent.
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� Problem-Solving Advisory Verbal Behaviors: The agent provides abstract,
principle-based advice as above, but in a verbal form.

� Animated Transition Behaviors: These portray the agent moving from one
keyframe� to another keyframe, or performing an action that will set the stage
for several upcoming behaviors.

� Audio-Primary Problem Overviews: The agent introduces a learner to a new
problem. For example, the DESIGN-A-PLANT agent’s behavior space contains
audio clips of the agent describing environmental conditions. These utterances
are played at the beginning of problem-solving episodes.

� Audio-Primary Advisory Reminders: The agent briefly reminds a learner
about principle-based advice that was presented earlier. For example, an audio
clip in the DESIGN-A-PLANT agent’s behavior space is a voiceover of the agent
stating, “Remember that small leaves are struck by less sunlight.”

� Audio-Primary Direct Suggestions: The advice presented by the agent is
immediately operationalizable. For example, the DESIGN-A-PLANT agent’s
behavior space contains a voiceover of the agent stating, “Choose a long
stem so the leaves can get plenty of sunlight in this dim environment.” The
agent makes this type of suggestion when a learner is experiencing serious
difficulties.

� Audio-Primary Interjections: The agent remarks about the learner’s progress
and makes off-the-cuff comments. For example, the DESIGN-A-PLANT agent’s
behavior space includes Audio-Primary Interjections in which the agent con-
gratulates the learner about the successful completion of a plant design.
Because a large repertoire of interjections contributes significantly to an agent’s
believability, a behavior space should include a variety of Audio-Primary Inter-
jections.

� Audio-Primary Transitions: The agent makes meta-comments that signal
an upcoming behavior. For example, the DESIGN-A-PLANT agent’s Audio-
Primary Transitions include his stating, “It seems we’re having some difficulty.
Let’s see if this helps � � �”

� Believability-Enhancing Behaviors: To enhance believability, the agent should
perform a variety of physical actions. For example, the DESIGN-A-PLANT

agent’s Believability-Enhancing Behaviors include full motions such as re-
orientation (e.g., standing up, lying down) and smaller motions such as micro-
body movements (e.g., toe tapping, slight body shifts) and prop-based move-
ments (e.g., glasses cleaning).

Informal empirical evidence from interactions of students with a variety of versions
of the implemented agent suggests that each of the above behavior categories is
necessary. For example, in the absence of Audio-Primary Advisory Reminders, the
agent is forced to repeat (perhaps lengthy) advice again and again, rather than being

� A keyframe is a frame of an animation that represents a “still” of a character that serves as a
reference position.
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in a position to issue a less verbose reminder. While no claims are made about the
sufficiency of these categories, it appears that each is necessary.

4.2. MIXED-INITIATIVE PEDAGOGICAL AGENT BEHAVIOR SEQUENCING

4.2.1. Initiative Control

To foster effective learning, we believe a key desirable feature of interaction of
learners with pedagogical agents is that learners should be able to take control
while they are performing problem-solving actions, and the agent should be able to
take control when it appears that learners are experiencing difficulty or when they
ask a question. After providing assistance, the agent should then relinquish control
to learners so they may continue their problem solving.

To enact initiative transfers, the behavior sequencing engine operates in the
following manner to transfer control back and forth from the agent A to the student
S:

1. Session Introduction: At the beginning of a problem-solving session, the
behavior sequencing engine directsA to introduce the learning environment. A
problem-solving session consists of a series of problem-solving episodes. For
example, in DESIGN-A-PLANT, learners travel from planet to planet, each with
different environmental conditions for which they will design a plant.

2. Episode Introduction: At the beginning of each problem-solving episode, the
behavior sequencing engine directs A to introduce the current problem.

3. Relinquishing Control for Problem Solving: Control is then transferred from
A to S who undertakes problem-solving actions. Although S retains the ini-
tiative here, A may, nonetheless, perform Believability-Enhancing behaviors
unless S is grappling with problems with high complexity.

4. Yielding and Taking Advisory Initiative: At any time, S may either request
assistance or perform a problem-solving action. If (a) S requests assistance
or (b) the intervention monitor determines that an intervention is warranted
(see below), initiative is transferred to A, which becomes more alert visually,
e.g., by sitting up or standing up, and then provides assistance according to the
pedagogical behavior sequencing algorithms (described in detail below).

5. Yielding and Taking Problem-Solving Initiative: If after repeated attempts
S demonstrates that she cannot solve the problem, A takes the initiative and
performs the problem-solving action itself.

6. Learner Problem-Solving Control Transfer: After A has delivered relevant
advice and explanations (or performed the problem-solving action), initiative
control is returned immediately to S for continued problem solving.

7. Episode Completion: When S completes a problem-solving episode, the
behavior sequencing engine directs A to exhibit a high-visual-impact con-
gratulatory behavior. For example, in the DESIGN-A-PLANT environment, the
agent cartwheels across the screen when learners successfully design a plant
for an environment.

paper.tex; 14/06/1998; 17:35; no v.; p.21



22 J. LESTER, B. STONE, AND G. STELLING

The pedagogical motivation underlying this initiative control scheme is straight-
forward. We wish to empower the learner to the greatest extent possible while at
the same time providing a dialogue/problem-solving structure in which she may
be the most successful. Hence, in contrast to a more didactic approach, we cede
control to the learner immediately after the initial problem-solving introductions
have been made and we intervene (see below) only when the problem-solving has
reached an impasse.

4.2.2. Task-Oriented Intervention

A critical feature of controlling mixed-initiative interactions—particularly those
that are to support learning—is intervention, where one of the interlocutors proac-
tively takes control from another. Intervention decisions consist of determining the
conditions under which an intervention should be performed and, if needed, deter-
mining the content of the intervention. The behavior sequencing engine monitors
the state of the task model to assess when the learner requires assistance. If the
learner makes an incorrect design decision (as indicated by her partial solutions),
or if the problem-solving idle time exceeds a threshold, then the agent is direct-
ed to intervene. Empirical evidence with middle school students interacting with
the DESIGN-A-PLANT learning environment indicates that the maximum period of
“impasse” time without intervention for this age group should be approximately
forty-five seconds.

In the general case for mixed-initiative design-centered problem-solving, the
behavior sequencing engine must determine which component in artifact design its
advice should address. This component selection strategy is especially significant
for the “least invasive” learning environments. For example, in versions of the
DESIGN-A-PLANT system in which the learner is free to make a number of design
decisions before committing, the agent must determine which design decision
to focus on. Hence, when the behavior sequencing engine determines that the
agent should take the initiative, it determines the component C about which an
interjection of advice (and possibly of explanations) should be provided according
to the following prioritized strategy:

1. If the artifact-based task model’s problem-solving idle time has exceeded its
threshold, indicating the learner may be experiencing difficulty with the focused
component Cf , the behavior sequencing engine directs the agent to provide
advice about Cf .

2. If the task model indicates that the learner has just made an incorrect decision
about a single component C, the behavior sequencing engine directs the agent
to provide advice about C.

3. If the task model indicates that the learner has made incorrect decisions about
multiple componentsC1 � � �Cn of the artifact, the behavior sequencing engine
inspects the focused component Cf (the component to which the learner is
currently attending). If Cf is incorrect, the behavior sequencing engine directs
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the agent to provide advice about it. (This clause comes into play in versions
of DESIGN-A-PLANT when the learner is free to begin addressing other com-
ponents before the component to which she was previously attending has been
completed correctly.)

4. Otherwise, the behavior sequencing engine inspects the environmental intent�

of the current environment and determines if one of the inappropriate compo-
nents C1 � � �Cn is the subject of the environmental intent. If so, it will provide
advice about that Ci.

5. If no component satisfies any of these criteria, then the behavior sequencing
engine randomly selects one of the inappropriate components Ci.

The design of the initiative control scheme and the prioritized intervention
strategy were motivated by the desire to ensure that problem-solving episodes
remain as coherent and “on-task” as possible. Hence, although there are numerous
situations in which a more aggressive intervention strategy could seize the initiative,
the alternate approach taken here seeks to strike a balance between the benefits of
clearly (though perhaps verbosely) explaining fundamental domain knowledge on
the one hand, and providing the learner the opportunity to absorb this knowledge
in appropriate problem-solving contexts on the other hand. Therefore, with the
exception of introductions to problems, the initiative control scheme strongly favors
initiative being held for the most part by the learner.

4.2.3. Advice Interjection

Once the decision to intervene has been made and the component C on which the
intervention will focus has been determined, the behavior sequencing engine must
then determine how to provide the learner with appropriate advice: it must carefully
orchestrate the agent’s behaviors to ensure that the advice is properly constructed for
the current problem-solving context. To do so, it inspects the current environment
and the artifact-based task model to determine the active environmental features
and the relevant artifact components. It then uses an intentional index structure to
identify advisory topics that are germane to the current problem-solving situation.
To do this, it employs the intentional indices to map the following problem-solving
context variables onto relevant advisory topics T1 � � �Tn:
� C: The component selected above, e.g., leaves.
� EnvtComplexity: Associated with every environment is an environmental

complexity that indicates the expected difficulty that learners will experience
with problems in that environment. The EnvtComplexity for a particular envi-
ronment is determined by curriculum designers by determining the number of
active constraints in that environment. For example, one level 2 environ-
ment requires plant designs to work under the conditions imposed by both a
high watertable and a low ambient temperature.

� Recall that the environmental intent is the set of component types from the artifact library which
that environment is intended to exercise, such as stems.
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� EnvtType: Also associated with every environment is an EnvtType indicat-
ing the type of the environment, e.g., alpine.

Each of these problem-solving context variables is critical for identifying appro-
priate topics of advice. C and EnvtType guide the selection of advice that is rele-
vant to the current design component. UsingEnvtComplexity assists the behavior
sequencing engine in finding advice whose degree of sophistication (or simplicity)
is appropriate. Indexing on these yields the relevant advisory topics T1 � � �Tn.

Finally, the value of DesignEval, which is the learning environment’s evalua-
tion of the particular componential solution proposed in the current sub-task, is used
to select all of the relevant Ti that are helpful. DesignEval indicates not merely
a binary correctness vs. incorrectness evaluation, but also the correctness of indi-
vidual features of the proposed solution. For example, leaves in the alpine envi-
ronment in DESIGN-A-PLANT must have three correct features: (size small),
(thickness thick), and (skin-thickness thick). DesignEval for
a learner’s proposed leaf structure in the alpine environment indicates correct-
ness for each of these features. By employing this “feature-specific” variable
DesignEval, we enable the agent to provide advice that is as specific as possible
for the particular features of the learners’ design decisions that may be problematic
and, therefore, deserving of the agent’s (and the learners’) further attention.

4.2.4. Selecting Stratified Problem-Solving Advice Levels

A particularly critical decision to be made is to determine the level at which the
advice should be delivered. Adopting the knowledge compilation view of learning,
e.g., (Anderson, 1983; Newell, 1990), the pedagogical behavior sequencing algo-
rithm is designed to provide learners with advice at a level appropriate for their
mastery of the domain. An agent’s high-level (indirect) advice provides assistance
couched in terms of the knowledge contained in constraint packets, i.e., the func-
tional relation between environmental factors and artifact components. An agent’s
low-level (direct) advice provides assistance couched in terms of very specific
design decisions. While direct advice is easily operationalized, the opportunity for
learning is reduced, so the algorithm gives preference to indirect advice.

This adaptive advisory strategy is captured in a stratification of advisory behav-
iors into four levels that represent varying degrees of directness. After the behavior
sequencing engine has determined that the agent should provide advice about a
particular topic T , it uses the following stratification of advisory behaviors relevant
to T to interject advice that is cast at the appropriate level L. When it has been
determined that advice about T should be delivered, it consults the multimodal
advisory history to determine the previous L at which advice on T was delivered
and then selects advisory behavior(s) A at L� 1:�

� Note that at runtime, the behavior sequencing engine first attempts the most abstract advice
(level 4) and, if the learner continues to experience difficulty, gradually proceeds downwards
through these stratification levels toward more direct advice and, eventually, action (level 1).
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1. Direct Action

� Role: After commenting about the difficulty of the problem, the agent per-
forms the optimal problem-solving action himself.

� Features: Selected as a last resort only after all problem-solving advice has
failed.

� Example: Herman intervenes by first explaining, “Wait, I know this one! Let
me make this choice so we can get on to the next task. And, you may get a
chance at this hazard again in some other environment.” He then performs
the problem-solving action himself.

2. Direct Verbal

� Role: The agent provides verbal advice that is direct and immediately oper-
ationalizable.

� Features: Terse and does not require deduction; only provided after both
forms of abstract advice have failed.

� Example: In a low sunlight environment, Herman might say, “Make those
leaves large.”

3. Abstract Animated

� Role: The agent provides advice that is abstract and requires operationaliza-
tion by the learner.

� Features: Animated but indirect; provided only after abstract verbal advice
proved ineffective. More visually distracting but clearer.

� Example: In a low sunlight environment, Herman can appear suspended by
his jetpack next to a small leaf. He can explain, “A plant with small leaves in
dim sunlight cannot conduct enough photosynthesis and will have, ugh, no
food!” With a wide smile, he demonstrates stretching the leaf out to a much
larger surface area and tells the learner, “We can help this plant by giving it
larger leaves; then it can do more photosynthesis and have plenty of food to
eat.”

4. Abstract Verbal

� Role: The agent provides the most abstract advice possible so the learner is
required (if possible) to operationalize it.

� Features: Terse and verbal, thereby requiring the greatest deduction and
having a minimal visual distraction.

� Example: In environments with low sunlight, which require learners to pro-
vide for increased photosynthesis, Herman might say, “In this environment,
there’s not much sunlight. Remember that photosynthesis, the plant’s way of
making food, occurs mostly in the leaves. Think about what types of leaves
are gonna allow the plant to still make plenty of food even though there’s
not much sunlight; large leaves or small leaves?”
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4.2.5. Explanation Interjection

In addition to providing problem-solving advice, pedagogical agents can also
facilitate learning by providing explanations of fundamental knowledge about the
domain. By opportunistically interjecting explanations of domain phenomena that
are relevant to (but not absolutely critical for) problem solving activities, pedagog-
ical agents can broaden learners’ knowledge in a situated manner. However, it is
critical to interject this knowledge in a way that (a) is topical, (b) temporally dis-
tributes fundamental knowledge explanations in an even manner across the entire
problem-solving session, and (c) obeys prerequisite requirements. If the behavior
sequencing engine opted for abstract animated advice above, unless the current
intervention was triggered by a problem-solving idle time violation—if a problem-
solving idle time violation occurred, it is inferred that the learner is experiencing
great difficulty and, therefore, that her attention should not be diverted by includ-
ing auxiliary explanations—the behavior sequencing engine determines relevant
animated explanatory behaviors EP by performing the following computations:

1. Select explanatory behaviors E that are relevant to the current problem-
solving context. Using an ontological index structure, it maps the selected
component C to candidate explanatory behaviors E (Conceptual Explanatory
Animated Segments) that are currently relevant.

2. Compute m, the number of explanatory behaviors to exhibit. This quantity
is computed by bb�fc. The quantity b is the number of explanatory behaviors
that have not yet been exhibited. The function f , which is determined from
empirical data, is the predicted number of future problem-solving situations
in which explanatory behaviors can be exhibited.� The floor is taken for non-
integer results to be conservative—representing the number of Conceptual
Explanatory Animated Segments that should be exhibited.

3. Select the subset EP of not more than m explanatory behaviors E that are
pedagogically viable. We say that an explanatory behavior is pedagogically
viable if (a) it has not been exhibited previously in this problem-solving session
and (b) all of its prerequisite behaviors have already been exhibited. Explana-
tory behaviors are organized in a prerequisite structure, where prerequisite
relations impose a partial order on explanatory behaviors: a behavior can be
performed only if all its (immediate and indirect) prerequisite behaviors have
been performed. In general, prerequisites should be imposed conservatively;
by imposing only those relations that are clearly mandated by the domain,
greater flexibility is provided to the sequencing engine because the number of
behaviors it may select at any given time will be greater.

4. Mark the explanatory behaviorsEP . Record in the multimedia dialog history
that the selected behaviors have been exhibited.

� For example, f in the behavior sequencing engine of the current version of DESIGN-A-PLANT
considers the efficiency with which the learner has reached the current level of environmental com-
plexity (EnvtComplexity) and, from the number of remaining levels, estimates the number of
environments left to be visited.
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Each of the steps in the explanation interjection algorithm plays an important role
in ensuring that the most relevant fundamental knowledge is presented. Step (1)
eliminates explanations of fundamental knowledge that are not germane to the
current component. Employing m in step (2) has the effect of evenly distributing
these explanations over the course of the entire learning session. Because many
domains and tasks are highly complex and learning time is limited, step (3) allows
agents to take into account temporal resources to provide the greatest coverage of
the domain in the given time. Finally, step (4) ensures that the multimedia dialogue
history remains up-to-date.

To illustrate, the DESIGN-A-PLANT agent’s behavior space currently includes
five explanatory behaviors which the agent can exhibit to progressively reveal the
rationale of the constraint relationships that drive leaf design. These are orga-
nized in a prerequisite ordering from explanations of macro-level leaf anatomy to
micro-level leaf anatomy. For example, in one of the macro-level leaf anatomical
explanations, he describes the blade of the leaf, the lamina, the petiole, and the
midrib. In other leaf anatomy explanations he dives into the leaf, using his laser
and a magnifier to show finer details. At deeper levels he takes the learner on a tour
of cell anatomy, and at the deepest level, he provides a molecular explanation of
photosynthesis chemistry.

Assuming that C was selected to be leaf, the behavior sequencing engine
would first determine the relevant E (the Conceptual Explanatory Animated Seg-
ments) by identifying the leaf explanatory behaviors. Next, it would compute m
by considering pedagogical factors in the following way: if the learner first has
problems with leaf design at the pedagogical behavior sequencer’s second level of
complexity, the calculation of how many explanatory behaviors for the agent to
exhibit uses the total number of explanatory behaviors in E (five), the learner’s
progress (three environments visited to date) and the number of levels remaining
(two) to decide to request the agent to exhibit just one of the five. It chooses
the subset EP by identifying a behavior in E whose prerequisite behaviors have
already been exhibited, which in this case is the first, most macro-level, explanatory
behavior about gross leaf anatomy.

It is important to note that explanatory behaviors are invoked only when ani-
mated advice is invoked. Because explanatory behaviors typically involve visually
sophisticated animations, they can convey more complex knowledge than purely
verbalized advice; they are more powerful, but they are also more visually distract-
ing. Consequently, the behavior sequencing engine is designed to maximize usage
of bandwidth while simultaneously minimizing visual interruptions.

4.2.6. Verbal and Visual Transitions

In the same manner that coherence plays a critical role in assisting readers’ compre-
hension of text (Grimes, 1975), the behaviors of lifelike pedagogical agents should
be molded by considerations of both verbal and visual coherence. To achieve this,
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the behavior sequencing engine introduces both audio and visual transitions. Ver-
bal transitions TA are provided in the form of meta-comments about the learning
episode and the agent’s intention to set the stage for upcoming advice and explana-
tions. Since all verbal behaviors are organized by rhetorical indices—in the current
implementation, these are fairly coarse-grained and include Audio-Primary Prob-
lem Overviews, Audio-Primary Direct Suggestions, Audio-Primary Interjections,
and Audio-Primary Transitions—the behavior sequencing engine notes that a ver-
bal transition is called for and selects a verbal transition. For example, if by using
the mechanisms above it has been deemed that advice is called for, Herman might
first say, “OK, we’re having some trouble here, but we’re here to learn. Maybe this
will help � � �”

Visual transitions are equally critical, both to help focus the learner’s atten-
tion on animated explanations and to contribute to believability. Depending on the
agent’s current physical state within the learning environment (described below),
the behavior sequencing engine will optionally select a prefixing visual transition
TVpre to anticipate animated explanations and a postfixing visual transition TVpost
to conclude an animated explanation and yield the initiative to the learner. To
determine whether TVpre and TVpost behaviors are warranted and, if so, which ones,
the behavior sequencing engine maintains spatial knowledge about the agent and
adheres to physical constraints on movement for visual continuity. Spatial knowl-
edge about the agent’s current state is represented with a locational pair �P�O�,
where P symbolically (rather than geometrically via a coordinate-based repre-
sentation) represents the agent’s screen position and O represents its orientation,
e.g., (mid-bar-left, reclining), and physical constraints stipulate con-
tinuity relationships between behaviors. For example, the DESIGN-A-PLANT agent
employs an orientation constraint: if the agent is standing, he cannot perform the
lying down behavior; rather, he must first sit down before lying down.

Hence, if the behavior sequencing engine has determined that animated explana-
tory behaviors will be exhibited, it will also include visual and verbal transition
behaviors. While adhering to the physical constraints, the behavior sequencing
engine prepares a learner for an animated explanation by selecting a TVpre that
re-orients the agent into a more relaxed state (i.e., sitting if it is currently
standing, reclining if it is currently sitting). In a similar fashion, it
selects a TVpost by reversing this state. The net visual effect of these actions is
that the agent appears to be relaxing to watch the animated explanations with the
learner.

4.2.7. Behavior Assembly and Presentation

As it assembles the final set of behaviors determined above, the behavior sequencing
engine must create a “global” behavior from each of the “local” behaviors in a
manner that produces visually and pedagogically coherent actions in the learning
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context. It must transition the agent from a state of observing the learner’s problem-
solving, to a state of taking the initiative, to a state of holding the initiative during
the intervention by exhibiting relevant explanatory and advisory behaviors, to the
final state of returning the initiative to the learner. To accomplish these transitions,
it imposes the following temporal ordering on the selected behaviors:

1. Verbal (audio) transition behavior TA.
2. Prefixing visual transition behaviors TVpre.

3. Pedagogically viable explanatory behaviors EP relevant to the selected com-
ponent C, where jEP j � m and the behaviors are ordered by prerequisite
structure.

4. Advisory behavior A about topics T1 � � � Tn, each with appropriate levels Li
and, consequently, each with appropriate mode (visual and/or auditory), that is
relevant to the selected component C.

5. Postfixing visual transition behavior TVpost.

The inclusion and ordering of each type of behavior play a critical role in
the overall intervention. Introducing TA behaviors first paves the way for upcom-
ing explanations and advice; without them, the agent’s behavior appeared abrupt.
InsertingTVpre behavior plays a similar role, but for the visual mode. IncludingEP

before A is very important. Pilot studies with learners interacting with different
versions of the behavior sequencing engine suggested revealed that some arrange-
ments of behaviors are considerably more effective than others. For example, in an
earlier version of the system, the agent exhibited the A behaviors before the EP

behaviors: this ordering turned out to be problematic since learners tended to forget
the advice offered inA because, we hypothesize, there were intervening conceptual
explanations. The sequencing engine’s assembly mechanism was therefore modi-
fied to present advisory behaviors after the explanatory behaviors. Finally, TVpost
behaviors play an important role in visually signalling that the initiative has again
shifted back to the learner.

The behavior sequencing engine directs the agent to immediately exhibit the
resulting behaviors in the learning environment, and the process is repeated—
monitoring followed by sequencing and assembly—as the learner continues to
interactively solve problems in the environment. In addition, the agent continues to
be attentive to the learner’s activities through its physical positioning. For example,
when learners interacting with the DESIGN-A-PLANT environment move the compo-
nent task bar on which the agent is standing to the top level, the behavior sequencing
engine directs the agent to shift to an orientation in which he does not bump his
head on the top of the interface. The net effect of the sequencing engine’s activities
is rich problem-solving sessions where learners perceive they are interacting with
an intriguing lifelike character who is attentively observing their problem-solving
activities and actively providing customized multimedia advice.
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5. Mixed Initiative Interaction: A Detailed Example

To illustrate the operation of the behavior sequencing algorithms, consider the
DESIGN-A-PLANT learning scenario introduced earlier. A learner has watched Her-
man’s Session Introduction, in which he presented explanations of elementary
plant anatomy, and she has visited two planets. The first had a simple, high rain-
fall, environment which required her to choose thin leaves, for flexibility. In the
second environment, a planet with dim sunlight and a low watertable, she needed
assistance twice. She has now been escorted to a planet with low rainfall and high
temperature.

EnvtType is now tropical cliffs, and EnvtComplexity is level 2,
indicating that the learner must attend to two environmental constraints during
her problem solving here, and, because this environment focuses equally on all
three tasks, the environmental intent includes roots, stems, and leaves.
Because we have reached the beginning of a new problem-solving episode, the
behavior sequencing engine directs the agent to introduce the current problem.
Herman therefore exhibits the Audio-Primary Problem Overview associated with
the current environment:

Animated Agent: Whoa! I’m feeling hot, hot, hot! Too bad there’s no raindrops to fall
upon my head. Well, the roots better be well chosen to soak up all the water they
can. The stem and leaves still need to store as much water as possible, but at these
high temperatures, they also need to be able to use some of that water to stay cool, by
transpiration.

Initiative is then transferred from agent to the learner who begins her problem
solving. In general, learners can begin with any sub-task they wish.

Learner: Opts to begin plant construction with roots.

Since the roots task is fairly complicated, as indicated by the sub-task complexity of
roots in this environment, Herman is directed to avoid performing any potentially
distracting Believability-Enhancingbehaviors; rather, he stands quietly, attentively
looking at the transparent chamber in which the learner is designing her plant.

Learner: Spends a while considering the rollover descriptionsof the environment elements
and roots settings icons, but cannot make a decision.

Throughout learning sessions, the behavior sequencing engine tracks the problem-
solving idle time, which has just reached 45 seconds. Because this period of time
exceeds the threshold, the behavior sequencing engine directs Herman to take the
initiative. To perform a task-oriented intervention, the behavior sequencing engine
determines that the focused component (roots) is the component C about which
advice should be provided. The behavior sequencing engine now uses the value
of C, together with the current values of EnvtType and EnvtComplexity to
index into the behavior space to determine the relevant advisory topics T1 � � �Tn.
In this case, it determines that advice should be provided about two topics: T1
will be advice about the effects of low rainfall on branchiness; T2 will be advice
about the effects of low rainfall on root depth. Next, it determines the level L
at which to provide the advice. Because no advice has been provided before, it
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gives advice at level 4, which is Abstract Verbal. Finally it determines that
no explanatory advice should be provided because no explanatory behaviors are
exhibited in response to an “exceeded problem-solving idle time” intervention.
Because the advisory mode is verbal, no verbal transitions or visual transitions are
needed.

Animated Agent: Because of the light rain in this environment, one of the choices you have
to make is between branching and non-branching roots. Which type would increase
the roots’ contact with the scarce moisture?

Animated Agent: After a slight pause, raises a similar question about deep and shallow
roots.

After completing his exhibition of the advisory behaviors, the agent returns the
initiative to the learner.

Learner: Speculating that branching roots are more efficient and, deciding that shallow
roots will, in Herman’s words, “gather up the moisture as it soaks into the ground,”
chooses roots that are branching and shallow.

After the learning environment determines that the learner has made a valid design
decision for the roots sub-task,DesignEval is updated, and the behavior sequenc-
ing engine directs the agent to exhibit a congratulatory Audio-Primary Interjection
for successful completion of the current sub-task and then returns the initiative to
the learner.

Animated Agent: Congratulates the learner.

Learner: Raises the task bar to choose a stem.

The environment remains the same as above, but now the sub-task complexity is
updated to indicate the difficulty of the stem task.

Learner: Mindful of Herman’s comment about storing water in the stem and leaves,
chooses a thick stem that is also short and covered with bark.

DesignEval is now updated to reflect the fact that the learner has made a design
decision that is valid with respect to the stem’s thickness feature but not with respect
to the bark decision. Because one of the features of the component currently under
consideration will result in an artifact that cannot satisfy the current environmental
constraints, the behavior sequencing engine takes the initiative from the learner and
gives it to the agent. To perform a task-oriented intervention, it determines that the
component C about which advice should be provided is the focused component,
stems.
The behavior sequencing engine now uses the value ofC, together with the current
values of EnvtType and EnvtComplexity to index into the behavior space to
determine the relevant advisory topics T1 � � �Tn. In this case, it determines that
advice should be provided about a single topic T2, namely, the environmental
factors governing the presence or absence of bark on stems. Next, it determines
the level L at which to provide the advice. Because no advice has been provided
before, it gives advice atlevel 4, which is Abstract Verbal. Finally it determines
that no explanatory advice should be provided (explanatory behaviors are exhibited
only when the advice is animated) and therefore that no transitions are required.
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Animated Agent: Whoo-eee! If the plant’s in a hot area, there’s a danger it could overheat.
Like me, I’m so hot! To avoid this, the plant transpires, losing water through the
stomata. Which will allow the plant to transpire more freely, a stem with bark on it or
a stem with no bark?

Because the learner has demonstrated that she has understood one of two critical
features of the current sub-task, the sub-task complexity is reduced. Noting this
development, the behavior sequencing engine leaves the initiative with the learner
but permits the agent to be more active. Even so, he waits a respectable amount
of time before performing a self-absorbed behavior, such as polishing his glasses
or deploying a yo-yo, as if to say “Don’t forget I’m here to help, but you can take
more time if you need to � � � ” Later, he will exhibit a random fidget or a toothy
grin, as if to encourage the student to make a choice.

Learner: Correctly concludes that a stem with no bark will “transpire more freely.”

After the learning environment determines that the learner has made a valid design
decision for the stem sub-task,DesignEval is updated, and the behavior sequenc-
ing engine directs the agent to exhibit a congratulatory Audio-Primary Interjection
for successful completion of the current sub-task and then returns the initiative to
the learner.

Animated Agent: Expresses his congratulations.

Learner: Shifts the focus to the leaves task.

When the learner was working on the preceding two tasks, Herman remained
standing on the task bar. However, because the task bar is now high on the screen
as the learner shifts to the leaves sub-task, the behavior sequencing engine leaves
the initiative with the learner but at the same time directs Herman to sit down as the
taskbar rises so as not to bump his head on the top of the screen. The environment
remains the same as above, but now the sub-task complexity is updated to indicate
the difficulty of the leaves task.

Learner: Knows to choose thick leaves for their ability to store the scarce moisture, but
has not yet generalized her understanding of maximizing cooling by transpiration to
choosing “thin-skinned” leaves; selects thick, large, thick-skinned leaves.

DesignEval is now updated to reflect the fact that the learner has made a design
decision that is valid with respect to the leaves’ overall thickness feature but not
with respect to the leaves’ skin thickness decision. Because one of the features of
the component currently under consideration will result in an artifact that cannot
satisfy the current environmental constraints, the behavior sequencing engine takes
the initiative from the learner and gives it to the agent. To perform a task-oriented
intervention, it determines that the component C about which advice should be
provided is the focused component, leaves.
The behavior sequencing engine now uses the value ofC, together with the current
values of EnvtType and EnvtComplexity to index into the behavior space to
determine the relevant advisory topics T1 � � �Tn. In this case, it determines that
advice should be provided about a single topic T3, namely, the environmental
factors governing leaf skin thickness. Next, it determines the level L at which to
provide the advice. Because no advice has been provided before, it gives advice
at level 4, which is Abstract Verbal. Finally it determines that no explanatory
behaviors should be provided (explanatory behaviors are exhibited only when the
advice is animated) and therefore that no transitions are required.
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Animated Agent: In a hot climate, a plant needs to release excess water as vapor to
cool itself off. Huh-huh. Basically it’s sweating, just as we do, to prevent itself from
overheating. Choose between those leaves which have a thick skin and those with a
thin skin; which is better to keep the plant from overheating?

The behavior sequencing engine returns the initiative to the learner.

Learner: Makes a second incorrect design decision of thick, small leaves with thick skin.

DesignEval is now updated to reflect the fact that the learner has made a design
decision that is valid with respect to the leaves’ overall thickness feature but not
with respect to the leaves’ skin thickness decision. Because one of the features
of the component currently under consideration will result in an artifact that can-
not satisfy the current environmental constraints, the behavior sequencing engine
takes the initiative from the learner a second time by performing a task-oriented
intervention about C, which is still leaves. It uses this value, together with
the EnvtType and EnvtComplexity to index into the behavior space as before
to determine that the relevant advisory topic, which is again T3, skin thickness.
However, this time the advisory level L is decremented to level 3, which is
Abstract Animated. As a result, it now has an opportunity to interject animated
explanatory behaviors.
Before it is ready to do so, however, it first selects explanatory behaviorsE that are
relevant to the selected component C (leaves), namely, all of the explanations
of leaf anatomy. Next, it computes the m, the number of explanatory behaviors
to exhibit. Because the number of environments remaining to be visited is high,
the behavior sequencing engine determines that significant opportunities remain
for providing explanations of leaf anatomy, so it chooses m to be 1. Pedagogical
viability of the candidate behaviors is assessed by examining which explanations
have both (a) not yet been exhibited (as indicated in the multimodal dialog history)
and (b) have all of their prerequisites met. The explanatory behavior that satisfies
these requirements EP is the one in which the agent provides an introduction to
external leaf anatomy, and finally EP is then marked in the multimodal dialog
history as having been exhibited.
Next, because animated advisory behaviors will be exhibited, an Audio-Primary
Transition TA is selected by choosing an introductory meta-comment. Finally,
a prefixing visual transition TVpre is selected in which the agent will sit down
to watch the animations and a postfixing visual transition TVpost is selected in
which the agent returns to his previous orientation. These behaviors are ordered
as follows: TA, TVpre , EP , T3, and TVpost.

Animated Agent: OK, OK, so we’re having some difficulty. But, that’s OK, we’re here to
learn. I tell you what, see if this helps.

Animated Agent: Lies down on the task bar to watch the animations along with the learner.

A somber variation on the musical theme of this environment is playing.�

� Learning sessions in DESIGN-A-PLANT are accompanied by a context-sensitive soundtrack. In
several experimental versions of the learning environment, the soundtrack composer provides thematic
consistency of voicing and melody within a problem-solving episode and thematic consistency across
problem-solving episodes. It exploits the task model to adapt its tempo, mood, and number of
instrumental voices to the learner’s progress.
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Animated Agent: Provides the learner with her first task-specific background information
about plant anatomy, flying in with his jetpack to point out major parts of the leaf.

Animated Agent: Watches grimly as a leaf bursts open in the intense heat, while he
explains, “Well, thick-skinned leaves just won’t be able to give off enough water vapor
to cool the plant in this hot climate. In order for the plant to transpire freely, the leaves
should be thin-skinned.” He then sits up and returns the initiative to the learner.

Learner: Considers the agent’s advice but again proposes thick, thick-skinned leaves.

DesignEval is now updated to reflect the fact that the learner has yet again
made a design decision that is valid with respect to the leaves’ overall thickness
feature but not with respect to the leaves’ skin thickness decision. It indexes into
the advisory behavior space as before. This time, however, having exhausted the
high-level, more abstract hints, the agent is forced to give more direct advice.
Computationally, this is accomplished by decrementing the advisory level L to
level 2, which is Direct Verbal. Because this advice is verbal, no auxiliary
explanations are provided to accompany it and no transitions are required.

Animated Agent: Thin, thin, thin! Choose thin-skinned leaves.

Learner: Follows this direct advice then clicks on the Done button.

If the learner instead had made another inappropriate leaf design decision, the
behavior sequencing engine would have given control to the agent, who would
then take the problem-solving initiative. This would have been accomplished by
decrementing L to level 1, which is Direct Action. The agent would have been
directed to say, “I know, sometimes this plant construction stuff can be really
frustrating. But, that’s when I help! Why don’t you let me get this choice so we
can move on to the next task. We may see hazards like this later on, on some
other planet.” The agent would then make the leaf design decision himself, and
appropriately chosen leaves would then be displayed in the design chamber. A final
check is made to determine whether all tasks have been accomplished correctly,
since the learner always has the option of shifting her attention from an incomplete
task to work on one of the others. If there had been unresolved suboptimal design
decisions on other sub-tasks, Herman would have offered advice at the appropriate
level as described above, just as he would have done had the sub-task not been
interrupted. Because all is well, the behavior sequencing engine directs the agent
to exhibit an episode-completing congratulatory behavior.

Animated Agent: Cartwheels across the screen, teleports to the edge of the cliffs for a
spectacular bungee jump, and then returns to introduce the next environment.

6. Discussion

Lifelike pedagogical agents hold much promise for constructivist learning environ-
ments. Because of agents’ potential pedagogical benefits and their lifelike qualities,
they can play a critical role in mixed-initiative problem solving. However, assess-
ing agent design decisions in the absence of a large body of empirical evidence is
exceptionally difficult. Although we can abstractly formulate hypotheses about how
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to design behavior spaces, how to create representational structures for construc-
tivist problem-solving contexts, and how to develop computational mechanisms
for behavior sequencing engines, such conjecturing is unlikely to yield informative
theories.

While work on lifelike pedagogical agents has just begun and our understanding
of their design is therefore limited, during the past three years a number of “lessons
learned” have begun to emerge from experiences with the DESIGN-A-PLANT agent.
Through a series of iterative refinements consisting of design, implementation, and
empirical evaluation, the agent has evolved from a stationary creature capable of
providing only rudimentary assistance to a much more intriguing, lifelike charac-
ter that monitors learners’ progress, gives them helpful feedback, and gracefully
intervenes in appropriate problem-solving contexts.

The primary impetus for the agent’s successful evolution has been the findings
of focus group studies. Conducted with more than twenty middle school students
from Martin Middle School in Raleigh, North Carolina and with the Raleigh
Chapter of the Women in Science Mentoring Program, these informal studies
consisted of learners interacting with the agent for forty-five minutes to one hour.
As each learner traveled with Herman from planet to planet, he or she solved
design problems in DESIGN-A-PLANT environments. Learners were confronted with
problems of varying levels of difficulty; some were very simple, involving only a
single constraint, while others were complex, requiring learners to address multiple
constraints simultaneously. As they designed plants for a variety of environmental
conditions, the agent introduced problems, explained concepts in botanical anatomy
and physiology, provided problem-solving advice, and interjected congratulatory
and off-the-cuff remarks.

In general, Herman was unanimously well received by the students. His ped-
agogical and visual coherence, together with his immersive property—the fact
that he inhabits the scenes of the environments to which learners travel—were
perceived as strikingly lifelike behaviors. Herman’s visual behaviors seemed to
flow so well that no learner commented or displayed surprise during transitions.
Because of the use of visual transition behaviors, initiative changes were for the
most part visually flawless. His verbal reminders enabled learners to continue with
their problem solving uninterrupted, and during the study learners made frequent
(and unprompted) positive comments about his physical actions and remarks. The
variety of his behaviors maintained their interest throughout the sessions, and most
learners commented positively about the continuously updated score. Perhaps not
surprisingly considering the middle-school audience, Herman’s quirky asides were
well received.

These studies suggest that lifelike pedagogical agents whose behaviors are
selected and assembled with a well-designed sequencing engine can effectively
guide learners through a complex subject in a manner that exhibits both pedagogical
and visual coherence. The primary lessons gleaned from the studies are summarized
below.
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6.1. RICH BEHAVIOR SPACES FOR MIXED-INITIATIVITY

To create mixed-initiative interactions, it is critical to populate an agent’s behav-
ior space with at least the nine types of behaviors identified earlier. Concep-
tual Explanatory Animated Behaviors and Problem-Solving Advisory Animated
Behaviors constitute the core of an agent’s repertoire. They provide the central
means for communicating explanations of fundamental conceptual knowledge and
for providing advice when interventions are required. Animated Transition Behav-
iors provide visual continuity, and an agent’s verbal behaviors complement the
visual behaviors. Audio-Primary Problem Overviews are important for introduc-
ing problems; without them, learners who have limited experience with a new
learning environment may become confused. Audio-Primary Advisory Reminders
and Audio-Primary Direct Suggestions provide multiple levels of advice. Audio-
Primary Transitions provide rhetorical coherence. Agents’ verbal meta-comments
such as bridging phrases can also usher in topic transitions, and without them,
agents’ actions appear “choppy” and unmotivated. Audio-Primary Interjections
and Believability-Enhancing Behaviors are essential for achieving the illusion of
life.

6.2. POPULATION-SPECIFIC INTERVENTION STRATEGIES

With appropriate intervention strategies, lifelike pedagogical agents can engage
in effective mixed-initiative problem-solving interactions. By tracking changes
in a task model representing the crucial problem-solving activities, the behavior
sequencing engine can share the initiative with learners, enable them to interact
freely with a learning environment to solve problems, take the initiative when
assistance is warranted, and then relinquish the initiative as dictated by learners’
progress. Intervention strategies should be motivated by an understanding of target
user populations, problem-solving tasks, and domains. For example, observations
of the students interacting with Herman during the focus group studies suggest that
a relatively aggressive intervention strategy is perhaps most appropriate for design
tasks for this user group. Although the agent told learners that they could ask for
his help by clicking on him, in practice very few of the students in the focus group
studies took advantage of the functionality, almost never requesting assistance.
To address this, the intervention monitor was designed to be very sensitive to
problem-solving difficulties. When learners make design decisions that violate
environmental constraints, the agent immediately intervenes to assist them. In
general, creating population-specific intervention strategies is critical to the whole
mixed-initiative tutorial enterprise. Some target learner populations may need to
be encouraged to explore the domain at their leisure, as in the classic work on
microworlds where experimentation is a key component of the learning process
(Cauzinille-Marmeche and Mathieu, 1988; Lawler and Lawler, 1987; Thompson,
1987). In contrast, in many training applications, concerns of efficiency prevail,
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so intervention must be conducted considerably more aggressively. Analogous
differences obtain in different age groups as well. For example, adults can frequently
help themselves after initially reaching an impasse, but children learning a new task
sometimes get stuck in problem-solving “local minima” and require assistance in
extricating themselves. We expect that it is for this reason that Herman’s help was
warmly received, but whether such an aggressive strategy is generally desirable is
a subject for future studies.

6.3. LIGHTWEIGHT TASK MODELS

To enable lifelike pedagogical agents to exhibit the flexibility required to assist
learners in constructivist problem-solving, they must be provided with an up-to-
date model of the problem-solving context. Perhaps no result from the last three
years’ experience is stronger than the following: without dynamically maintained
task models that accurately reflect learners’ problem-solving progress, lifelike ped-
agogical agents would be unable to engage in meaningful mixed-initiative problem-
solving interactions. However, this does not imply that unusually expressive task
models are required. In fact, the artifact-based task models employed in DESIGN-
A-PLANT are of the “lightweight” variety. The task models are “lightweight” in
somewhat the same sense that the user models in the PHELPS just-in-time training
system (Collins et al., 1997) are lightweight: while they are not particularly expres-
sive, they are in practice highly accurate and can provide essential problem-solving
tracking knowledge. Moreover, they permit non-invasive diagnosis. Because learn-
ers signal their intentions through interface actions that are observable by the
task modeller, learners’ problem solving can proceed uninterrupted. However, it is
important to note that as the complexity of design tasks increase, the fairly simple
non-invasive diagnostic techniques here may very well need to be replaced by those
that are more invasive. For example, as we increase the degrees of freedom of the
design tasks, the ability to create an interface that so clearly signals learners’ intent
may be reduced, and this may have the effects of, first, requiring a more “heavy-
weight” task model, and, second, forcing the agent to intervene more aggressively
to ascertain learners’ misconceptions.

6.4. INTERVENING WITH MULTI-LEVEL, MULTIMODAL ADVICE

The problem-solving advice provided by lifelike pedagogical agents should have
three interrelated properties: (1) it should be delivered at multiple levels of abstrac-
tion, (2) it should be delivered with media that are determined in a context-sensitive
fashion, and (3) it should be carefully structured. The first property, multi-level
advice, is a capability that is critical for agents which are intended to support
knowledge compilation approaches to learning. High-level advice provides assis-
tance that is couched in terms of more abstract domain concepts, e.g., the DESIGN-
A-PLANT agent’s high-level advice discusses the contents of constraint packets,
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while low-level advice is immediately operationalizable. By providing advice at
these multiple levels, agents can attempt to foster knowledge compilation but will
also have a fallback technique when learners experience difficulty with abstrac-
tions. The second property, context-sensitive media allocation, enables agents to
effectively use both visual and auditory channels. They can perform more visually
oriented behaviors for explaining new (and perhaps complex) concepts and more
verbal behaviors for simple reminders. The former permits them to be significant-
ly more expressive when needed, and the latter permits them to interject brief
reminders and asides without distracting or disorienting learners. The third and
final property, delivering advice that is carefully structured, was revealed by early
focus group studies. In one of its early incarnations, the behavior sequencing engine
first directed the agent to provide advice (advisory behaviors) and then to provide
more conceptual explanations (explanatory behaviors) immediately prior to relin-
quishing the initiative so learners could return to their tasks. Because it was found
that learners were confused by the agent first providing advice in response to a par-
ticular problem-solving impasse and then providing more conceptual knowledge,
the initial behavior sequencing algorithms were modified to correct this problem
by reversing the behavior orderings so that they conclude with advice.

6.5. SCALING UP MIXED-INITIATIVE TUTORIAL INTERACTIONS

An important open issue in lifelike pedagogical agents is scalability. At this early
stage in the research program, creating a lifelike pedagogical agent requires a fairly
large investment in labor in terms of designing the entire approach to its behaviors,
creating the behavior space, and building a behavior sequencing engine. While it is
not conceivable that this effort could be reduced to zero in creating lifelike pedagog-
ical agents for new tasks and domains, it has become clear that several techniques
will contribute to scalability in the future. First, it has taken considerable effort to
investigate, construct, and experiment with different intervention strategies, advice,
and explanation. While this has been and will continue to be a critical research
question, our understanding of how to create the overall design for lifelike agents
has improved to a considerable degree from when the DESIGN-A-PLANT project
began (hence, the current article). As we learn more about how mixed-initiative
human-human tutorial interactions work in practice, the labor required for this
aspect of the enterprise will be reduced substantially. Second, on a related topic,
much of the early work on the DESIGN-A-PLANT agent was spent experimenting
with different types of behavior spaces. While it seems that other types of behav-
iors will need to be identified to fill gaps not yet anticipated, much of this early
exploratory work is now complete. Third, the behavior sequencing engine itself is
a fairly complex system that currently requires an enormous amount of effort to
iteratively design, construct, and refine. Although for “pedagogically sophisticat-
ed” lifelike agents, behavior control is likely to be an issue for some time to come,
we expect that high-level tools for creating behavior sequencing engines will begin
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to appear in the not too distant future. In the same manner that a broad range of
animation tools have brought multimedia to the general public, it seems likely that
analogous authoring tools for lifelike pedagogical agents will enable instructional
designers to create agents for mixed-initiative interaction on a cost-effective basis.
Precisely what form these tools take and when they arrive remains to be seen.

7. Conclusions and Future Work

Lifelike pedagogical agents offer significant potential for mixed-initiative problem
solving. Because they combine context-sensitive advisory behaviors with great
visual appeal and they proactively assist learners performing exploratory problem-
solving activities, they hold much promise for constructivist learning environments.
In addition to their educational benefits, pedagogical agents with a strong lifelike
presence may capture learners’ imaginations and play a critical motivational role
to keep them deeply engaged in problem solving.

We have proposed a computational framework for lifelike pedagogical agents
that enables them to control the initiative in problem-solving interactions, achieve
pedagogical and visual coherence, and exhibit believability. With a rich behavior
space of animated and verbal behaviors, a behavior sequencing engine can exploit
an environmental context, a multimodal advisory history, and an artifact-based
task model to dynamically select and assemble an agent’s behaviors in realtime.
Focus group studies with middle school students interacting with an implemented
agent in a fully functional constructivist learning environment suggest that lifelike
pedagogical agents can contribute in important ways to constructivist learning. By
taking advantage of a behavior space with ontological, intentional, and rhetorical
indices and of dual pedagogical and believability-enhancing sequencers, a behavior
sequencing engine can enable agents to provide context-specific multimedia advice
while at the same time appearing lifelike and entertaining.

We believe that this work represents a promising first step toward creating life-
like pedagogical agents and that it consequently suggests a number of directions for
future research. In particular, three lines of investigation are especially compelling:
conducting formal empirical studies of pedagogical agents’ effectiveness in learn-
ing environments; investigating the full spectrum of mixed-initiative interactions;
and endowing pedagogical agents with full-scale realtime natural language gener-
ation and speech synthesis capabilities. These possibilities are discussed below.

First, as with all new learning environment technologies, full exploitation of
lifelike pedagogical agents calls for a comprehensive research program to formal-
ly study their pedagogical and motivational effects. Results from initial studies
of learner-agent interactions that were conducted with cognitive scientists have
begun to emerge and are encouraging (Lester et al., 1997a; Lester et al., 1997b),
but a significant body of work needs to be undertaken to determine precisely
which intervention strategies, what types of behavior space representations, what
task model representations, and which behavior sequencing algorithms are most
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effective in real-world classroom conditions. While the space of possible strate-
gies, representations, and algorithms is enormous, we are optimistic that controlled
empirical studies with learners interacting with multiple versions of the agent will
demonstrate which design decisions are most effective in which situations. The
DESIGN-A-PLANT agent and its learning environment will serve as a testbed for
these types of studies.

Second, investigating the full spectrum of mixed-initiative interaction will reap
important benefits for learner-agent problem solving. With significant advances
in computational models of conversation-based, task-oriented dialogue (Walker,
1993; Smith and Hipp, 1994; Traum, 1994; Guinn, 1995; Freedman, 1996), we can
expand the types of mixed-initiativity in which learners and agents can participate.
For example, while the DESIGN-A-PLANT agent can provide a variety of types of
explanations and advice, it cannot participate in complex dialogues requiring turn-
taking, back channeling, or even rudimentary discourse segmentation. Extending its
discourse functionalities to enable it to engage in “justification dialogues” in which
learners could justify their design decisions would significantly improve its utility.
As the discourse community continues to build a firm foundation for these capa-
bilities and the quality of off-the-shelf speech recognition technologies increases,
pedagogical agents can be extended to support considerably more sophisticated
interactions with commensurate increases in pedagogical effectiveness.

Finally, providing pedagogical agents with full-scale realtime natural language
generation and speech synthesis capabilities could significantly improve their flex-
ibility in mixed-initiative interaction. For example, if the DESIGN-A-PLANT agent,
which now employs vocal behaviors created by a voice actor, could employ the
full arsenal of natural language generation techniques, it could exploit the gener-
ativity of natural language to provide advice whose content, discourse structure,
phrase structure, lexicalizations, and prosody were carefully tailored to individu-
al learners in much the same manner that human-tutorial dialogues are. Creating
these capabilities will entail incorporating state-of-the-art explanation generation
techniques (Suthers, 1991; Cawsey, 1992; Hovy, 1993; Mittal, 1993; Moore, 1995;
Lester and Porter, 1997) and surface generators (Elhadad, 1991) and then extending
them to take into account conversational, gestural, and deictic aspects of discourse
(Cassell et al., 1994; Towns et al., 1998).

In summary, it appears that lifelike pedagogical agents have much to offer and
that much remains to be done to bring them to fruition.
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