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Abstract: Lifelike pedagogical agents offer significant promise for addressing a
central problem posed by learning environments: detecting and correcting students’
misconceptions.  By designing engaging lifelike avatars and introducing them into
task-oriented 3D learning environments, we can enable them to serve a dual
communication role.  They can serve as students’ representatives in learning
environments and simultaneously provide realtime advice to address their
misconceptions.  We describe a three-phase avatar-based misconception correction
framework in which (1) as students navigate their avatars through 3D learning
environments, a misconception detector tracks their problem-solving activities by
inspecting task networks, (2) when they take sub-optimal or incorrect actions, a
misconception classifier examines misconception trees to identify the most salient
misconceptions, and (3) the avatars employ a misconception corrector to intervene
with tailored advice.  The framework has been implemented in a misconception
system for the lifelike avatar of CPU CITY, a 3D learning environment testbed for
the domain of fundamentals of  computer architecture.  In CPU CITY, students direct
their lifelike avatar to navigate a 3D world consisting of a virtual computer, to
transport data and address packets, and to manipulate computational devices.
Informal studies with students interacting with CPU CITY suggest that the
framework can is an effective tool for addressing students’ misconceptions.

1.   Introduction

Research on lifelike pedagogical agents has been the subject of increasing attention in the AI &
Education community [1,12,14,19,21].  Because of the immediate and deep affinity that children seem
to develop for interactive lifelike characters, their potential benefits to learning effectiveness are
substantial.  By creating the illusion of life, animated agents offer much promise for increasing both
the quality of learning experiences as well as the time that children seek to spend with learning
environments.   Moreover, recent advances in affordable graphics hardware are beginning to make the
widespread distribution of realtime 3D animation software a reality.

Lifelike pedagogical agents have significant potential for addressing a central problem posed by
learning environments: detecting and correcting misconceptions.  From the classic work on student
modeling [6,7] plan recognition [9], and plan attribution [13], researchers have endeavored to
unobtrusively track learners’ problem-solving activities and dialogues and correct their
misconceptions [17].  Lifelike pedagogical agents can enable us to recast these problems into a
solvable form.  By designing task-oriented 3D learning environments, representing detailed
knowledge of their 3D models and layout, and introducing lifelike avatars into these worlds, we can
craft engaging educational software that effectively addresses learners’ misconceptions.



For the past several years our laboratory has been investigating these issues by iteratively
designing, implementing, and evaluating avatar-based 3D learning environments.  Previously, we
have reported results on task-sensitive cinematography planning for 3D learning environments [2], the
habitable 3D learning environments framework [3], and performing student-designed tasks [15].  In
this paper, we describe a three-phase avatar-based misconception correction framework:
1. Misconception Detection:  As the learner solves a problem in a 3D learning environment by

directing her avatar to navigate through the world and to manipulate objects within it, a
misconception detector tracks her problem-solving actions by inspecting a task network.

2. Misconception Classification:  When she takes sub-optimal actions, a misconception classifier
examines a misconception tree to identify the most salient misconception.

3. Misconception Correction:  Finally, a misconception corrector directs the avatar to address
conceptual problems by examining a curriculum information network [24], intervening with
verbal advice, and providing tailored responses to follow-up questions she poses.

By enabling the avatar to serve in the dual capacity of student representative and advice-giving agent,
it tightly couples problem-solving to misconception correction.  In short, avatar-based misconception
detection and correction provide a critical link between task-oriented conceptual development and
addressing learners’ misconceptions directly in problem-solving contexts. This framework has been
implemented in a lifelike avatar, WHIZLOW, who inhabits the CPU CITY 3D learning environment
testbed (Figure 1) for the domain of computer architecture for novices.  Given “programming
assignments,” learners direct WHIZLOW to pick up, transport, and insert data packets into registers to
execute their programs.  A formative study with students interacting with WHIZLOW suggests that the
framework can be an effective tool for addressing misconceptions.

2. Lifelike Avatars in 3D Environments

A particularly promising line of work underway is that of lifelike animated intelligent agents.
Because of these agents’ compelling visual presence and their high degree of interactivity, there has
been a surge of interest in believable intelligent characters [1,4,5,8].  As a result of these
developments, the AI & Education community is now presented with opportunities for exploring new
technologies for lifelike pedagogical agents.  Work in this direction is still in its infancy, but progress
is being made on two fronts.  First, research has begun on a variety of pedagogical agents that can
facilitate the construction of component-based tutoring system architectures and communication
between their modules [22,23], provide multiple context-sensitive pedagogical strategies [18], reason
about multiple agents in learning environments [11], provide assistance to trainers in virtual worlds
[16], and act as co-learners [10].  Second, projects have begun to investigate techniques by which
animated pedagogical agents can behave in a lifelike manner to communicate effectively with learners
both visually and verbally [1,14,19,21]. It is this second category, lifelike animated pedagogical
agents, that is the focus of the work described here.  In particular, we investigate the marriage of
avatar-style problem-solving functionalities with misconception correction functionalities.

Over the course of the past few decades, educators and learning theorists have shifted from an
emphasis on rote learning to constructivist learning.  The latter emphasizes learning as knowledge
construction, which is reflected in the design requirements we impose on avatar-based misconception
detection and correction:
•  Situated problem-solving: Because of constructivism’s focus on the learner’s active role in

acquiring new concepts and procedures [20], problem solving should play a central role in
learning.  For example, to learn procedural tasks, a 3D learning environment could enable
students to perform the task directly in the environment.   Hence, rather than memorizing an
abstract procedure, students should be able to actively solve problems, perhaps by immersively
interacting with rich 3D models representing the subject matter.

•  Non-invasive task monitoring: Although continuously querying the student about her moment-
to-moment activities would provide up-to-date information about her knowledge and intentions—
this would significantly simplify the problems posed by student modeling [6,7], plan recognition
[9], and plan attribution [13]—such an invasive technique would distract the learner from her
activities and likely result in substantially reduced learning effectiveness.



•  Embodied advice: The traditional approach to introducing explanation facilities into learning
environments has been with text-based dialogues.  However, given the motivational benefits of
lifelike agents  [1,12,14], “embodying” explanations in onscreen personae would enable learning
environments to provide avatars that were (1) visually present in the world, e.g., immersed in a
3D learning environment, (2) able to exhibit navigational and manipulative behaviors in the
world to clearly correct misconceptions, and (3) adept at coordinating their physical behaviors
with a running verbal explanation that is tightly coupled to the task the learner was performing.

3. Detecting and Correcting Misconceptions in 3D Environments

The learner’s avatar serves two key roles in addressing misconceptions.  First, she solves problems by
manipulating a joystick to direct her avatar’s behaviors.  In response to these directives, the avatar
performs actions such as picking up objects, carrying them, manipulating devices, and traveling from
one location to another.  Second, her avatar serves in an advisory capacity by providing explanations.
When the student takes actions that indicate she harbors misconceptions about the domain, her avatar
intervenes and corrects her misconceptions by providing appropriate advice.  Hence, problem solving
and advice both play out immersively in the 3D world.  All of the avatar’s misconception
detection/correction functionalities are provided by the architecture shown in Figure 2.  To begin, the
avatar verbally presents a problem for the student to solve.  As the student begins to perform the task
to solve the problem, her position and the changes she enacts to the objects she manipulates are
reflected in continuous updates made to the 3D world model, which represents the coordinates and
state of all objects in the learning environment.   All of her problem-solving activities are tracked by
an avatar misconception handler, which observes and addresses the misconceptions she exhibits
while interacting with the world.   

3.1  Misconception Detection

Problem-solving begins when the avatar poses a problem for the learner to solve in the 3D world.  To
take advantage of the immersive properties of 3D worlds, the avatar-based framework described here
focuses on procedural tasks in which learners acquire concepts relating sequences of steps in a
coached-practice setting. For example, in the CPU CITY learning environment testbed, students are
posed problems about how to perform the fetch-execute cycle in the virtual computer and the avatar
coaches their problem-solving activities. Given a particular “programming assignment,” their job is to

Figure 1.   The CPU CITY learning environment



manipulate the avatar through the world to transport data packets and manipulate hardware
components such as the ALU, decoder, and registers.  After the avatar describes the problem, the
misconception detector employs a goal-decomposition planner to create a hierarchical task network
representing the potentially correct problem-solving actions to be taken by the learner.   Task
networks are graph structures whose nodes represent actions at varying levels of detail, organized in a
hierarchy of time-ordered sequences.  At the bottom of the hierarchy are primitive tasks whose actions
require no further task decomposition.  Each action specification encodes information about the type
of action, the actors involved, the objects affected, and potential subsequent actions.

As the student performs actions through the avatar in the environment, the misconception
detector tracks her behaviors by traversing the leaves of the task network it generated.  By inspecting
the action types of active action specification nodes against student-driven actions performed by the
avatar in the world, the misconception detector classifies each action she performs as either critical or
non-critical.  Actions are considered critical if they enact significant changes to the problem state.
For example, in CPU CITY, critical actions include attempts to pick up and deposit objects, e.g., data
packets, to pass through a portal from one architectural component to another, and to manipulate a
device, e.g., pulling a lever of the ALU.  Periods of latency that exceed a task-specific time limit are
also considered critical actions.  These are used to detect misconceptions in which the student does
not know what course of action to follow next and “freezes.” Example non-critical actions in CPU
CITY include turning the avatar slightly to the left or walking forward (but not through a portal).

Efficiently managing classification of actions is essential to the intention monitoring
enterprise.   First, to combat the problem of enumerating the full set of non-critical actions, the
misconception detector polls the world model for critical actions and considers all other actions to be
non-critical.  Second, in learning environments that provide instruction about tasks of any complexity,
multiple solution paths are possible.  The misconception detector must therefore exploit a
representation that is sufficiently flexible to accommodate more than one solution.  Hence, the
misconception detector generates task networks that are lattices of branching, partially ordered task

Figure 2.   The avatar-based misconception detection and correction architecture
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specifications.  When the student embarks on a solution that consists of a particular order of atomic
actions, the misconception detector tracks her activities by traversing the task network via the
particular solution path she adopts.  It produces one of three outcomes: (1) if the current action is
deemed non-critical, intention monitoring continues; (2) if the current action is deemed critical and
correct, the misconception detector advances the action task node specification to the appropriate
successors; (3) if the current action is critical but incorrect, the misconception detector invokes the
misconception classifier to classify a potential misconception.

3.2  Classifying Misconceptions

When the student performs a critical action that is sub-optimal, the misconception classifier
determines the type of misconception the student may have about the subject matter.  Rather than
invasively probing the student with questions, the misconception classifier exploits the knowledge
about the student’s problem-solving activities to make its diagnosis.  To do so, it first inspects (1) the
active task specification nodes1 in the task network and (2) the specific action performed by the
student  Next, it searches through a misconception tree to determine the most specific misconception
that is relevant to the student’s sub-optimal actions.  The misconception tree represents the most
common misconceptions about procedural knowledge and the most common misconceptions about
conceptual knowledge that may induce procedural missteps.  It encodes a decision tree, where the
children of each node represent specialized categories of misconceptions.  At each level, the most
salient problem-solving actions performed by the student and key environmental features of the 3D
world are used to distinguish different categories of misconceptions. Beginning at the root, the
classifier traverses the tree as deep as it can to determine the most specific misconception class
applicable to the current situation.

To illustrate, suppose a student interacting with the avatar of CPU CITY has been given
“programming exercise” in which she must retrieve the next microcode instruction.  To do so, she
must pull the Load lever in the RAM.  She directs the avatar to pull the lever but has neglected to put
the address in the RAM input register.  Because pulling a lever is a critical action but does not
successfully advance the current goal to a legitimate subsequent goal in the task network, the
misconception detector signals a misconception and invokes the misconception classifier.  The
classifier searches through a misconception tree (Figure 3).  The first decision in the tree is to
determine whether the physical location of the avatar is correct with respect to the current goal.  Since
she is currently in the RAM, a misconception about location (incorrect environment) is ruled out and
the classifier turns to potential inappropriate actions taken in the correct location (rationale absent).
Because her actions have been tracked by the misconception detector, it is known that the offending
behavior involved manipulating devices in the RAM, in this case, the Load lever (incorrect lever).
Finally, by inspecting the task tree, the classifier determines that a lever pull action is currently
inappropriate but will be appropriate soon; the student has skipped over an intermediate prerequisite
step, a common problem in learning procedural tasks (step skip).  Because a leaf in the tree has now
been reached, the most specific category has been identified.

3.3  Correcting Misconceptions

After the student’s most likely misconception has been identified, the misconception classifier
invokes the misconception corrector.  Given the specific category of misconception and its
contextually instantiated arguments, the corrector indexes into a curriculum information network
(CIN) [24] that encodes misconception correction topics and the prerequisite relations that hold
between them.  For example, given the step skip category identified above and the specific arguments
(RAM-load-attempt), the corrector for the CPU CITY avatar indexes into the CIN and directs the
avatar to provide verbal advice on a particular topic.  A template associated with the selected topic is
instantiated with lexicalizations of arguments from the current situation and the avatar is directed to
provide verbal advice.  In this case, the avatar informs the student, “You’re skipping a step.  You

                                                       
1 Multiple task specification nodes may be active because of multiple (alternate) paths through the task network
to achieve a particular goal.



forgot to X,” where X is instantiated here as, “put the address in the RAM input register.”  The strings
are annotated with prosodic markups, passed to the speech synthesizer, and then spoken by the avatar.
 Misconceptions are further corrected with two student-initiated question-asking techniques.
If the student asks for further assistance by pressing a “help” button (Figure 1), the corrector executes
the following three-step algorithm.  (1) The corrector examines the students recent actions, the active
task action specifications nodes in the task network, and the world model to index into the CIN.  (2) It
inspects an overlay student model [7] associated with the CIN to assess the student’s prior exposure to
the concept(s) discussed in the selected CIN node.  (3) If the prior exposure is limited, it directs the
avatar to provide a general (abstract) explanation of the relevant concepts; if there has been some
degree of prior exposure, the avatar will be instructed to provide more specific assistance; if the
student has been exposed to the current material multiple times and is still experiencing difficulty, the
avatar will offer to perform the task for the student and explain it using pedagogical agent
demonstration techniques [1,15,21].  Students may also request additional assistance by asking
specific questions via a pop-up question-asking interface.  If they request information about a
particular topic, the corrector performs a topological sort of overlay CIN nodes to determine
prerequisites of the selected concept.  It then directs the avatar to provide the necessary background
information and addresses the question.

4. A Lifelike Avatar for the CPU CITY Learning Environment

The misconception framework has been implemented in WHIZLOW, a lifelike avatar who inhabits the
CPU CITY 3D learning environment testbed for the domain of computer architecture for novices.2

CPU CITY’s 3D world represents a motherboard housing nearly 100 3D models that represent the
principal architectural components including the RAM, CPU, and hard drive.  Students are given
“programming” tasks in which they direct through the virtual computer. The avatar’s operators used
to generate task networks to track students’ problem-solving activities range from operators for
picking up and depositing data, instruction, and address packets to operators for interacting with
devices that cause arithmetic and comparison operations. Its misconception classifier handles a broad
range of misconceptions including incorrect locations for operation attempts, procedural sub-task
repetitions and step skips, inappropriate device manipulations where pre-conditions have not been
satisfied, and confusions between addresses and data and between input and output. The avatar’s
misconception corrector addresses these misconceptions by employing a CIN with more than 60
nodes.  Altogether, the misconception handler, avatar behavior generator, and the CPU CITY learning
environment consists of approximately 60,000 lines of C++ and employs the OpenGL graphics library
for real-time 3D rendering.

The avatar has been subjected to a number of formative studies with more than 40 subjects
interacting with WHIZLOW in CPU CITY.  Most recently, the misconception framework has been
investigated with a focus group study with 7 students, each of whom interacted with WHIZLOW for an
                                                       
2 The current implementation runs on Pentium II 300 MHz machines, with 64 MB of memory and an 8MB
SGRAM Permedia2 OpenGL accelerator at frame rates between approximately 10-15 FPS. WHIZLOW’s speech
is synthesized with the Microsoft Speech SDK 3.0. Generating speech for a typical sentence requires
approximately 1/8 second, which includes the time to process prosodic directives.
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hour to work on 5-7 programming exercises. To help the students feel comfortable, the experimenter
encouraged them to pose questions to the avatar frequently.  Subjects’ experience interacting with
WHIZLOW suggests that the task network representation is sufficiently expressive to enable the avatar
to comment effectively on their activities in the world.  In general, subjects were very pleased with his
responses to their questions.  Even though the avatar exhibited awkward movements at times, they
found him extremely friendly and likeable.  Because task network nodes encode preconditions on
actions and their relationships with devices, they enabled the pedagogical planner to note students’
problem-solving difficulties.  The granularity of task networks appeared to be at approximately the
appropriate level.  If it were any lower, the agent would have made comments about low-level details
such as micro-manipulation by subjects of the joystick, an activity with which they experienced no
problems.  In contrast, if the granularity were any higher the misconception detector would be unable
to know where the student should be directing her avatar, what devices she should be manipulating, or
how she should be performing the task.

Perhaps most critically, students interacting with avatars driven by the misconception framework
learn why actions should be performed. First, they learn how their actions relate to constraints on the
operation of the devices they operate.  For example, subjects interacting with CPU CITY learned that
RAM must be accessed with a specific address by being required to obtain a value from memory, but
being unable to do so without specifying a particular address for it.  Second, students learn the
consequences of their actions through explanations provided by the agent.  For example, when one
subject was attempting to obtain a data packet from the RAM and a page fault occurred, WHIZLOW
explained to him that he needed to go instead to the hard drive because the data sought after by the
student had in fact been stored on there rather than in the RAM.

5. Conclusions and Future Work

The avatar-based misconception framework offers much promise for coupling 3D learning
environments with procedurally-oriented tasks. By addressing misconceptions in the context of
problem-solving, corrections offered by the avatar at these junctures—particularly by an engaging
lifelike avatar—can be readily assimilated.  By detecting students’ misconceptions via tracking task
networks, classifying misconceptions via traversing misconception trees based on features of the task
and physical characteristics of the 3D learning environment, and correcting misconceptions via
directing the avatar to deliver topical advice based on prerequisites in a CIN, avatars can serve as
effective tools for addressing misconceptions.  Three key directions for future work are particularly
intriguing.  First, the misconception framework currently makes a single-fault assumption.  If in fact a
student has multiple misconceptions about the domain—this is frequently the case, particularly for
novices—the framework now can only detect and correct one misconception at a time.  Addressing
multiple misconceptions is critical for deploying these technologies.  Second, the knowledge
engineering involved in designing task tree operators, misconception trees, and CINs is substantial.
Accelerating the creation of these knowledge structures and ensuring they remain mutually consistent
presents non-trivial challenges.  Third, conducting large-scale empirical studies in even more complex
3D worlds will shed considerable light on the most effective misconception detection and correction
techniques.  We will be exploring these issues in our future research.
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