
Intelligent Multi-Shot Visualization Interfaces
for Dynamic 3D Worlds

William H. Bares James C. Lester
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206 USA

+1 919 515 7534
{whbares@cacs.usl.edu, lester@eos.ncsu.edu}

ABSTRACT
In next-generation virtual 3D simulation, training, and
entertainment environments, intelligent visualization
interfaces must respond to user-specified viewing requests
so users can follow salient points of the action and monitor
the relative locations of objects. Users should be able to
indicate which object(s) to view, how each should be
viewed, cinematic style and pace, and how to respond when
a single satisfactory view is not possible. When constraints
fail, weak constraints can be relaxed or multi-shot solutions
can be displayed in sequence or as composite shots with
simultaneous viewports. To address these issues, we have
developed CONSTRAINTCAM, a real-time camera
visualization interface for dynamic 3D worlds. It has been
studied in an interactive testbed in which users can issue
viewing goals to monitor multiple autonomous characters
navigating through a virtual cityscape. CONSTRAINTCAM’s
real-time performance in this testbed is encouraging.

KEYWORDS
Intelligent 3D visualization, adaptive and customizable user
interfaces.

INTRODUCTION
The recent emergence of high-end 3D graphics
technologies offers great promise for a new generation of
interactive 3D entertainment, education, and simulation-
based training systems. In these and future systems, the
ability to dynamically create visualizations that effectively
respond to users’ viewing requests, regardless of the
complexity of the environment or its dynamics, is essential.
To this end, recent projects have explored techniques for
generating 3D illustrations [8, 9, 18, 19], producing 3D
animated movies [5, 14], generating 3D animated
explanations to achieve communicative goals [1, 2, 4, 13],
visualizing museum walkthroughs and virtual chatrooms
[6, 12], and generating 3D scenes with simulated humans

for ergonomic simulation [16] and VR training [17].
Automatic camera control assistants can keep a goal object
in clear view or help navigate a terrain [10, 11, 15, 16].

Intelligent visualization interfaces are critical for real-time
interactive visualization of dynamic 3D worlds. For
example, in next-generation 3D interactive fiction systems,
multiple autonomous characters will inhabit complex
environments. Autonomous characters will unpredictably
navigate and interact with one another and environmental
artifacts. At any time, the viewer may wish to monitor
various aspects of the action or gauge the relative locations
of the characters. Users of interactive 3D simulations and
training applications could also post viewing goals to either
monitor the environment or assist in performing tasks in the
environment. Consequently, the intelligent visualization
interface should, in general, attempt to satisfy viewer
requests in real-time regardless of how dynamic or
complex the environment. This entails continuously
planning occlusion-free camera placements to view the
salient features of the relevant subjects so that the viewer
can immediately comprehend the subjects and their
interactions with one another and the environment.

To address these issues, we have developed an intelligent
visualization interface that employs a partial constraint-
based framework. By reasoning from a kind of “cinematic
first principles” of scene geometry, the visualization
planner can solve viewers’ goals to visualize given
subjects. Each subject can include one or more user-
specified viewing constraints such as vantage angle or
distance, in addition to avoiding occlusions. Moreover, by
employing a partial constraint satisfaction approach, it can
provide effective alternate visualization solutions when
constraints cannot be completely satisfied. The
visualization interface can relax weak failed constraints
and, if necessary, decompose a viewing goal into multiple
shots, which can be presented as either a sequence of views
or a composite view with simultaneous multiple viewports.
Clarity is improved by applying several visual cues
including color-coded highlights. In a real-time 3D
interactive virtual environment, the user can at any time
specify which subjects to view, the vantage constraints, and

preferences to control the use of inset viewports,
highlighting effects, camera pace, and cinematic style.

This framework has been implemented in
CONSTRAINTCAM, an intelligent visualization interface for
interactive 3D worlds. Its behavior has been studied in an
interactive testbed with multiple autonomous characters
interacting in a dense cityscape of potentially occluding
buildings. The user monitors the action by posting viewing
requests to observe a specified subset of the characters as
they exhibit both goal-directed and stochastic behaviors.
Three autonomous characters, a police officer, Jake, and
Sam wander the streets searching and competing for a lost
bag of money. CONSTRAINTCAM’s real-time performance
and the results of an informal focus group study with
viewers have yielded encouraging results.

AUTOMATED 3D CAMERA PLANNING
An intelligent 3D visualization interface requires an
automated camera planner to position the camera to view
the scene. Automatically planning camera shots requires
solving precisely the same sets of problems that are faced
by cinematographers. Human cinematographers can
compose camera placements, or shots, to capture complex,
live events taking place in real-world physical settings
frequently beyond their control. Likewise, automated
camera planners must reason about the given viewing
request in the context of extant structures of the virtual
environment rather than either ignoring them or making
simplifying changes to them. Consequently, a general-
purpose solution to the automated camera planning
problem should satisfy the following four requirements:

• User-Specified Viewing Goals: At any time, viewers
may wish to view any set of subjects, and they may do
so by stipulating specific viewing constraints on each.

• Real-time Behavior Unpredictability: Events may
occur in an unpredictable fashion resulting from
interactions between autonomous characters,
simulation events, and interactive user manipulations.

• Environmental Complexity: Worlds are populated by
objects arranged in non-trivial configurations.

• World Non-Interference: The world should not be
modified to simplify the visualization problem.

Prior works on automated camera planning do not provide
a general-purpose solution to address these requirements.
One family of systems employs camera positions pre-
specified relative to the subject(s) being viewed [1, 2, 8, 9,
18, 19]. This approach fails when the camera must view
arbitrary combinations of subjects with specific constraints,
or when unanticipated motion or obstructions occlude the
subjects of interest. IBIS can overcome viewing failures by
using multi-view illustrations and cutaways of occluding

obstructions, and CATHI has a facility for transparency [4,
9]. Though not a focus of this work, transparency and
cutaways could be used in special cases such as when a
subject is enclosed within another object.

Idiom-based systems encode knowledge of cinematography
to sequence shots of commonly occurring actions [4, 5, 12,
13, 14]. Idioms focus on the complementary issue of
sequencing shots rather than solving camera positions.
Existing idiom-based systems use a finite set of pre-
specified relative camera placements in lieu of camera
placement solvers. Thus, these idiom-based systems can
often fail to find acceptable shots when subjects occupy
unanticipated relative spatial configurations, or when
structures in the world occlude the subjects of interest.

In contrast, the constraint satisfaction approach to
automated camera planning casts viewing goals as
constraint satisfaction problems. When a viewer issues a
request to visualize particular subjects of interest and
specifies how each should be viewed, a constraint solver
attempts to find a solution camera placement. CAMDROID

supports a broad and powerful set of camera constraints,
but employs a numerical constraint solver that is subject to
local minima failures [6, 7]. In our prior work, a task
model was used to direct a real-time constraint-based
camera planner to provide views of a learner’s avatar [3].
Neither of these two constraint-based systems provided a
systematic solution for handling constraint failures.

Automatic camera control assistants vary camera position
to avoid occlusions of a goal object or satisfy screen-space
constraints on how subjects appear on-screen [10, 16].
Automated camera navigation assistants adjust camera
motion speed based on distance to the target or guide the
camera along specified optimal vantages as a user
navigates over a terrain [11, 15]. Neither automated
viewing nor navigation assistants can address user-
specified viewing goals because they focus on specific
subsets of these issues or on controlling relatively low-level
parameters and frequently require considerable user inputs.

3D VISUALIZATION INTERFACE
We have developed a flexible 3D cinematic visualization
interface that allows viewers to at any time select which
subject(s) to be viewed, specify the vantage constraints for
each subject, select cinematic style or pace, choose the
style of highlights, and control the amount of information
displayed at one time on the screen.

Viewers may begin by selecting which subset of the
principles to view. For example, in the interactive testbed,
they may select from the set of {Cop, Jake, Sam, money
bag, bank, or the hideout Joe’s Place} by depressing the
toggle buttons along the bottom edge of the screen. They
may then use a dialog box to specify the desired optimal
viewing vantage angle for each subject. Users submit a
viewing goal by pressing the Ask button.

Figure 1: CONSTRAINTCAM architecture

Users can also specify the information content per screen,
which influences the number of simultaneous inset
viewports used to present multi-shot solutions.

The user can also indicate if highlight effects should be
used and if so what graphical style should be used.
• Outline: Draw a colored rectangle around the object.
• Bounds: Draw a 3D bounding box around the object.
• Color Tint: the object is tinted by the highlight color.
• Pulsate: The color of the highlight blinks if this option

is selected.

The user may specify the cinematic pace by selecting from
the following options:
• Slow: camera moves slowly and shots have long

duration.
• Medium: camera moves at a moderate speed and shots

have a moderate duration of approximately 5 seconds.
• Fast: camera travels rapidly and shots have short

duration of approximately 3 seconds.

A user can select a cinematic style by choosing one of the
following strategies for sequencing camera shots.
• Informative: the camera is positioned to view the

subject(s) from establishing shots that view the
subject(s) from the user’s specified preferred vantage
angle. The camera will move to track the subject(s).

• Mixed: Selects a variety of shot sequences ranging
from establishing views, pan shots, and ease-in/out.

• Dramatic: Camera shot sequences involving sweep-
arounds, ease-ins, and ease-outs are employed.

The stylistic sequences of camera shots are composed of
one or more shots of the following types presented in
sequence. The selected cinematic style dictates which
specific sequences are instantiated.

• Establishing shot: film all subjects from medium or
long range to show their relative locations or attributes.

• Pan: Fix camera position and rotate camera to track
subject(s).

• Ease-in: Begin at establishing shot, then move in for a
close-up.

• Ease-out: Opposite of ease-in.

PARTIAL CONSTRAINT CAMERA PLANNING
Camera planning begins when a viewer posts a 3D
visualization request. For example, she might request to
view three subjects, two of which happen to be separated
by a great distance, with the objective of comparing their
relative locations and physical attributes. This
visualization request implies the following constraints:

(1) All subjects are visible in a single view to establish
their relative locations and attributes

(2) The camera must be sufficiently near the subjects
that their distinguishing attributes are recognizable

(3) Each subject should be viewed from an angle that
reveals its distinguishing features

(4) Occluding obstacles in the environment cannot
obscure the subjects of interest.

Such visualization requests are solved by CONSTRAINTCAM

whose primary modules are illustrated in Figure 1.
Knowledge sources include the description of the 3D
world, a library of multi-shot frame structures, and the
given viewing constraint problem. Principle modules
include the Constraint Analyzer, Constraint Solver, and
Multi-Shot Frame Composer. These computations result in
a hierarchical visualization plan of shots and insets.

Given a viewing goal, CONSTRAINTCAM attempts to find a
camera placement that will satisfy all of the constraints.
The Constraint Analyzer identifies regions of space in
which to place the camera to satisfy each constraint. If a
solution is possible, it is found by computing a common
region of space in which to place the camera so that all of
the constraints are satisfied. If a solution in the form of a
single shot cannot be found, then the Constraint Solver
identifies which pairs of constraints are incompatible. The
weakest incompatible constraints are relaxed to permit a
solution, or the problem is decomposed to form a multi-
shot solution. The Multi-Shot Frame Composer exploits a
repository of multi-shot frame structures to create
sequential or composite visualizations of the multiple shot
solution. The solution is expanded into a hierarchical
visualization plan, whose child nodes represent individual
shots, and coded arcs denote sequential or simultaneous
display of child shots in insets. The plan is then rendered
in real-time and typically lasts for a duration of at least four
seconds, then the entire 3D visualization planning process
is repeated to reflect new developments in the environment.

Viewing Goal
3D World

Multi-shot Frame
Structures

Visualization Plan

Multi-Shot Frame Composer

Constraint Analyzer

Intelligent 3D Visualization Interface

Constraint Solver

Formulating Camera Constraints
A user’s visualization goal is expressed as a constraint
problem consisting of a number of constraints on the
subject(s) to be viewed. The Constraint Solver supports
four types of constraints (a subset of Drucker's constraints
[6, 7]). Each constraint can be applied to any subject to be
viewed by the camera and includes a relative priority and a
marker indicating whether that constraint can be relaxed.

• Vantage Angle: Indicates the permissible range of
relative orientations between the camera and the
subject, e.g., which faces(s) of an object the camera is
allowed to view, and of these, which is the optimal.

• Viewing Distance: Specifies the minimum and
maximum allowable distances between the camera and
the subject along with the optimal distance.

• Occlusion Avoidance: Dictates that camera position
should be adjusted when necessary to prevent the
subject from being occluded by obstacles.

• Room Enclosure: Limits the camera position to remain
within an optional enclosed rectangular region.

The strength of a constraint is determined by the product of
the priority of the subject it applies to and the given priority
of that constraint. During relaxation, constraints of lower
strength will be disabled before those of greater strength.

Analyzing Consistent Regions
For each given constraint, the Constraint Analyzer must
determine a consistent region of space within which the
camera must be placed to satisfy that constraint. Consistent
regions are expressed in spherical coordinates and packed
into discrete bit arrays (each bit represents a 3º x 3º span of
spherical space) so that fast register bit-wise operators can
compute the solution intersection in constant-time. Each
consistent region is expressed in terms of a local spherical
coordinates system with origin at the center of the subject
upon which that constraint is applied.

For example, the consistent region satisfying the occlusion
avoidance constraint for a subject S is found by projecting
the bounding boxes of nearby potentially occluding
obstacles onto a sphere surrounding the subject S (Others
have used a similar method for finding occlusions [7, 16]).
These projections are then converted into a global spherical
coordinate system and then negated to represent occlusion-
free regions of space for viewing subject S.

To compute an intersection of the consistent regions, each
local consistent region must be first converted into a
common global spherical coordinate system. This global
spherical coordinate system is defined so that its origin is at
the center of all subjects of interest. Each local spherical
coordinates consistent region is projected onto the surface

of the surrounding global sphere to affect the conversion to
global spherical coordinates.

Computing Constraint Solutions
Once the consistent regions for all constraints have been
computed and converted into a common global
representation, they are all intersected. If the cumulative
intersection region R is non-empty, then the Constraint
Solver searches for the spherical coordinates point (θ, φ)
within R that is nearest the optimal vantage for viewing the
set of subjects. The optimal vantage for the set of subjects
is found by evaluating one of several functions of the
optimal vantage of each individual subject, e.g., average or
vantage of highest priority subject. The camera distance
dist away from the subject(s) is computed via intersecting
minimum and maximum distance intervals corresponding
to the consistent regions for the viewing distance
constraints. If the optimal vantage is occluded, then dist
may be decreased to put the camera in front of the nearest
obstacle found by ray casting against obstacle bounding
volumes. Point (θ, φ, dist) is converted from spherical
coordinates to Cartesian coordinates to set the position of
the camera which is aimed at the center of the subject(s).

For example, assume that vantage angle and occlusion-
avoidance constraints are applied to view the subject shown
in Figure 2. Figure 2(a) illustrates the horizontal
component of the allowable vantage constraint which
requests a front sided view of the Cop θ [45°, 180°].
Figure 2(b) shows the region of space marked inconsistent
with respect to the occlusion-avoidance constraint since it
includes an obstacle blocking vantages θ [91°, 180°].
Figure 2(c) plots the spherical consistent region for the
vantage constraint where consistent vantages (θ, φ) are
marked in white. Figure 2(d) plots the occlusion-avoidance
consistent region with the occluded region marked in dark
gray (inconsistent). For the sake of illustration, the φ
(elevation) dimension is assigned arbitrary values since the
example only presents a “top-down” view. Figure 2(e)
plots the consistent region computed from the intersection
of the vantage and occlusion-avoidance constraint
consistent regions. To satisfy both constraints, the camera
vantage component θ must lie within [45°, 90°]. The
elevation component assumes the arbitrary range of φ [15°,
60°]. Assume that the optimal vantage angle was (θ 135°,
φ 45°). The solution consistent region is searched
beginning from (θ 135°, φ 45°) to find the consistent
vantage nearest to the optimal, which in this example
happens to be (θ 90°, φ 45°). This places the camera to
view the front of the Cop as shown in Figures 2 (f) and (g).

Constraint Failure Heuristics
If no solution can be found for the given constraints, then
the Constraint Solver attempts to find an alternate solution.
For many interactive 3D applications, it is acceptable—
frequently it is even critical—for the automated camera to
present some view of the scene that gives the viewer some,

Figure 2: Camera constraint solution example

if not all, of the information requested. To accomplish this,
the Constraint Solver first identifies the combinations of
constraints that are incompatible. It next attempts to find a
maximal solution satisfying as many of the higher strength
constraints as possible.

Combinations of incompatible constraints are identified by
constructing an incompatible constraints pair graph. The
Constraint Solver creates a node for each Cs,i, the ith

constraint on subject S. Next, it adds an arc connecting
nodes { Cs1,i1, Cs2,i2 } if their consistent regions Rs1,i1 and
Rs2,i2 fail to intersect.

The Constraint Solver then repeatedly relaxes weaker
constraints until no incompatible constraint pairs remain.
Incompatible constraints are tested for relaxation in order
from lowest to highest strength. When a constraint can be
relaxed, it deletes all incompatible constraint pair graph
arcs that involve that constraint. It continues until either no
more constraints remain to be tested or no more arcs
remain in the graph. If no incompatible constraint pairs
arcs remain, then it submits the resulting relaxed constraint
problem to the constraint solver. If relaxation was
successful, it returns a single shot camera solution to the
relaxed problem. For example, assume the vantage
constraints of subject S1 and S2 are incompatible and the
vantage constraint of S2 is of lower strength. The vantage
constraint of S2 is then relaxed, and the arcs dependent
upon it are deleted. Since no incompatible constraint pairs
remain after relaxation of S2’s vantage constraint, then the
relaxed constraint problem can be solved.

If relaxation is not possible, then the Constraint Solver can
decompose the viewing constraint problem into a multi-
shot solution. The Constraint Solver attempts to satisfy as
many constraints as possible in each sub-problem to
minimize the number of shots. It places each incompatible
constraint of the pair { Cs1,i1, Cs2,i2 } into a distinct sub-
problem Pk. It then inserts all possible compatible
constraints into each sub-problem. Thus for sub-problem
Pk including constraint Cs1,i1, it adds constraint Cs,i if no
incompatible constraint pairs arc joins these constraints.
This maximal heuristic attempts to include as many
subjects as possible in each sub-problem (shot) which helps
establish the relative location attributes. Finally, each sub-
problem is solved to produce a camera shot.

For example, Figure 3(a) depicts an incompatible
constraints pair graph for three subjects Cop, Sam, and
Jake. V indicates vantage constraints, D distance
constraints, and O occlusion constraints. Dotted arcs join
the incompatible distance constraints. Sam (lower middle
of Figure 3(c)) is too far away from the Cop and Jake
(upper middle) for all three to appear in a single view from
a distance near enough so each is recognizable. Since there
are no incompatible constraint pair arcs between the Cop
and Jake, then the Constraint Solver can compute a shot of

φ

φ

(d) Occlusion consistent region

θ

 θ = 91°,
 θ = 180°

φ

(c) Vantage consistent region

θ

 θ = 45°, θ = 180°

θ

(e) Constraint solution consistent region

θ = 45°,
θ = 90°

(g) Camera view

180°

(a) Allowable vantage region

45°

(b) Occluded region

180°

91°

(f) Solution camera placement

180°

90°

45°

Figure 3: Example constraint decomposition

both characters (Figure 3(b)). The decomposed shot
depicting Sam appears in the top right inset of Figure 3(c).

Multi-Shot Solutions
If the Constraint Solver has decomposed a constraint
problem, then the Multi-Shot Frame Composer determines
how to present the multiple camera shots. Composite shots
combine a main viewport with one or more inset viewports
allowing the viewer to gauge relationships between
subjects. Alternatively, the user may prefer to focus on
each shot individually in sequence. The Multi-Shot Frame
Composer draws from a repository of multi-shot frame
structures, each of which displays from one to four camera
shots per screen. Figure 3(c) illustrates the display for a
preference of two insets to display the two decomposed
shots along with an overview shot of all three characters
found by relaxing the failed distance constraints.

Coordinating Multi-Shot Visualizations
To improve the clarity of the resulting visuals methods are
employed to establish connections between subjects
appearing in insets, avoid use of redundant inset shots, and

highlight the subjects of interest. When a multiple shot
solution is produced, constraints are relaxed to create a
supplemental overview shot, which includes all subjects of
the viewing goal. This overview shot is presented in the
main viewport in conjunction with the decomposed shots in
the inset(s) to help connect the subjects in insets to their
respective locations in the overview shot.

The resulting inset shots are compared to the overview shot
to cull redundant inset shots which do not depict subject(s)
of interest significantly better according to a measure of
constraint satisfaction success than the overview shot.
Each camera shot can be evaluated in terms of how well the
constraints on the subject(s) shown are satisfied. A
constraint satisfaction success rating is computed for each
shot by deducting a weighted penalty function for each
failed constraint. An optimality rating can be computed for
each shot based on how closely the camera is placed
relative to the desired optimal vantage for viewing each
subject. Highlights in the form of outline rectangles,
bounding boxes, or blinking colors can be applied to draw
attention to subjects. Color-coded highlights are used to tie
subjects in the insets to their positions in the overview shot.
Highlights are also applied when a subject’s on-screen size
is below a threshold or the subject is occluded as indicated
by the constraint satisfaction success evaluation.

EXAMPLE INTERACTION
This example illustrates how CONSTRAINTCAM

1 responds
to a series of viewing goals in the interactive 3D testbed.
The user posts a viewing goal by selecting which subject(s)
are to be viewed using labeled toggle buttons then pressing
the Ask button. In this example, viewing goal constraints
are specified to disallow relaxation so that failures exercise
multi-shot solutions with relaxed constraint shots in main
viewport overview shots. Initially, the viewer allows at
most one inset viewport and wishes to view the Cop and
Sam. The resulting camera view in Figure 4 (a) depicts
Sam to the right of the police officer with both surrounded
by buildings on either side. Note that the camera has
elevated its position to obtain an occlusion-free view. The
camera vantage slightly in front of and to the right of the
characters is the result of averaging the user-specified
optimal vantages of each character (rear for the police
officer, and front-right for Sam) in addition to elevation of
the camera to avoid the occluding building.

The viewer next requests a view of the Cop and Jake. In
Figure 4(b) the camera cannot find a clear shot of both
since they are located on opposite sides of town. Distance
constraints fail since a single shot of both characters would

1 The interactive 3D testbed consist of approximately
55,000 lines of C++ code and achieves frame rates of
approximately 7 to 15 frames per second on a 333 MHz
Pentium II with a Permedia2 OpenGL accelerator.

(c) Overview with decomposed shots in inset viewports

(b) Decomposed shot of nearby characters Cop and Jake

(a) Incompatible constraint pairs graph with failed constraints

DV O

Cop

DV O

Sam

DV O

Jake

DV O

Cop

DV O

Jake

Figure 4: Example screen shots

require the camera to be placed too far away for either to be
recognizable. Multi-shot decomposition results in one shot
of the Cop and a shot of Jake. Since one inset is allowed
by the viewer, the Multi-Shot Frame Composer creates a
relaxed-constraint overview shot in the main window and
uses the inset viewport to first show the detail shot of Jake.
Jake, outlined in white in the overview and inset, stands at
the lower rightmost street corner. Seconds later the inset
will present the shot of the Cop, outlined in red, who
appears in the upper left of the overview shot.

Next, the viewer allows up to two insets. A viewing goal is
posted to show the Cop, Sam, and Jake. As Sam moves too
far away, the three characters can no longer clearly appear
in a single view, and a multi-shot solution consisting of an
overview shot and two insets is employed as shown in
Figure 4 (c). The first shot, which appears in the upper left
inset, satisfies the constraints on the Cop and Jake. The
second shot of the decomposition (top right inset) depicts
Sam who is outlined in white and stands in the bottom
center of the overview shot. For additional details on how
the partial constraint solution was computed in this multi-
shot example, you may refer back to Figure 3.

Lastly, the viewer shifts focus to the Cop and bank. The
multi-shot solution presents the Cop (outlined in red) in an
inset viewport since he appears small in the left side of the
overview shot, but culls out the multi-shot of the bank since
it appears clearly in the middle right of Figure 4(d).

CONCLUSIONS AND FUTURE WORK
As interactive 3D worlds appear in an expanding range of
entertainment, educational, and training systems, they place
an increasingly heavy demand on real-time visualization
systems to respond to user-specified viewing requests in
complex environments. We have proposed an intelligent
visualization interface framework for planning goal-
directed shots in interactive 3D worlds. By exploiting the
flexibility of partial constraint satisfaction, it can compute
“next-best” solutions to difficult viewing problems by
relaxing less critical constraints and by creating multi-shot
solutions with customized highlights and insets. While this
work addresses many of the core issues in automated
camera planning, much remains to be done. For example, a
direct-manipulation interface could be used to select the
subject(s) and specify any of viewing constraint minimum,
maximum, and optimal values. The silhouettes, rather than

(a) View of two subjects featuring occlusion-avoidance (b) Overview with one inset and color-coded highlights

(c) Overview with two multi-shot insets (d) Overview and inset of cop but culled multi-shot of bank

bounding boxes, of occluding objects should be plotted to
handle irregular and concave polyhedral objects. Presently,
the algorithm misses some solutions that place the camera
in front of an occluding object. We are developing a more
complete representation of distances of potential occluding
objects. We will be exploring these issues in ongoing and
future research.

ACKNOWLEDGEMENTS
Thanks to: the multimedia design team (Tim Buie, Mike
Cuales, Patrick FitzGerald, Alex Levy, and Rob Gray) for
cinematography suggestions and video production.
Support is provided by a grant from the National Science
Foundation (Faculty Early Career Development Award
IRI-9701503), the North Carolina State University
IntelliMedia Initiative, and an industrial gift from Novell.

REFERENCES
1. Elisabeth André, W. Finkler, W. Graf, T. Rist, A.

Schauder, and W. Walhster. WIP: The automatic
synthesis of multimodal presentations. In M.T.
Maybury, editor, Intelligent Multimedia Interfaces,
chapter 3, AAAI Press, 1993.

2. William H. Bares and James C. Lester. Realtime
generation of customized 3D animated explanations
for knowledge-based learning environments. In AAAI-
97: Proceedings of the Fourteenth National
Conference on Artificial Intelligence, pages 347-354,
1997.

3. William H. Bares, Luke S. Zettlemoyer, Dennis W.
Rodriguez, and James C. Lester. Task-Sensitive
Cinematography Interfaces for Interactive 3D Learning
Environments. In IUI-98: Proceedings of the 1998
International Conference on Intelligent User
Interfaces, pages 81-88, 1998.

4. Andreas Butz. Anymation with CATHI. In
Proceedings of the Ninth Innovative Applications of
Artificial Intelligence Conference, pages 957-962,
1997.

5. David B. Christianson, Sean E. Anderson, Li-wei He,
David H. Salesin, Daniel S. Weld, and Michael F.
Cohen. Declarative camera control for automatic
cinematography. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages
148-155, 1996.

6. Steven Drucker and David Zeltzer. Intelligent camera
control in a virtual environment. In Proceedings of
Graphics Interface ‘94, pages 190-199, 1994.

7. Steven Drucker and David Zeltzer. CamDroid: A
system for implementing intelligent camera control. In
Proceedings of the 1995 Symposium on Interactive 3D
Graphics, pages 139-144, 1995.

8. Steven Feiner. APEX: An experiment in the
automated creation of pictorial explanations. IEEE
Computer Graphics & Applications, pages 29-37,
November 1985.

9. Steven Feiner and Dorée Seligmann. Cutaways and
ghosting: satisfying visibility constraints in dynamic
3D illustrations. The Visual Computer, pages 292-302,
August 1992.

10. Michael Gleicher and Andrew Witkin. Through-the-
lens camera control. In Proceedings of ACM
SIGGRAPH ‘92, volume 26, pages 331-340, July
1992.

11. Andrew Hanson and Eric Wernert. Constrained 3D
navigation with 2D controllers. In Proceedings of
IEEE Visualization ’97, pages 175-182, 1997.

12. Li-wei He, Michael Cohen, and David Salesin. The
virtual cinematographer: A paradigm for automatic
real-time camera control and directing. In Proceedings
of ACM SIGGRAPH ’96, pages 217-224, 1996.

13. Peter Karp and Steven Feiner. Issues in the automated
generation of animated presentations. In Proceedings
of Graphics Interface ‘90, pages 39-48, 1991.

14. Peter Karp and Steven Feiner. Automated presentation
planning of animation using task decomposition with
heuristic reasoning. In Proceedings of Graphics
Interface ‘93, pages 118-126, 1993.

15. J. Mackinlay, S. Card, and G. Robertson. Rapid
controlled movement through a virtual 3D workspace.
In Proceedings of ACM SIGGRAPH ’90, pages 171-
176, 1990.

16. Cary B. Phillips, Norman Badler, and John Granieri.
Automatic viewing control for 3D direct manipulation.
In Proceedings of the 1992 Symposium on Interactive
3D Graphics, pages 71-74, 1992.

17. Jeff Rickel and Lewis Johnson. Integrating
pedagogical capabilities in a virtual environment
agent. In Proceedings of the First International
Conference on Autonomous Agents, pages 30-38,
1997.

18. Dorée Seligmann and Steven Feiner. Automated
generation of intent-based 3D illustrations. Computer
Graphics, 25(4), pages 123-132, 1991.

19. Dorée Seligmann and Steven Feiner. Supporting
interactivity in automated 3D illustrations. In
Proceedings of Intelligent User Interfaces, ’93, pages
37-44, 1993.

