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Abstract 

Human dialogue serves as a valuable model 
for learning the behavior of dialogue systems. 
Hidden Markov models’ sequential structure is 
well suited to modeling human dialogue, and 
their theoretical underpinnings are consistent 
with the conception of dialogue as a stochastic 
process with a layer of implicit, highly influen-
tial structure. HMMs have been shown to be 
effective for a variety of descriptive and pre-
dictive dialogue tasks. For task-oriented dia-
logue, understanding the learning behavior of 
HMMs is an important step toward building 
unsupervised models of human dialogue. This 
paper examines the behavior of HMMs under 
six experimental conditions including different 
task-oriented feature sets and preprocessing 
approaches. The findings highlight the im-
portance of providing HMM learning algo-
rithms with rich task-based information. 
Additionally, the results suggest how specific 
metrics should be used depending on whether 
the models will be employed primarily in a de-
scriptive or predictive manner.  

1 Introduction 

Human dialogue serves as a valuable model for 
learning the behavior of dialogue systems. For this 
reason, corpus-based approaches to dialogue man-
agement tasks have been an increasingly active area 
of research (Bangalore, Di Fabbrizio, & Stent, 
2006; Di Eugenio, Xie, & Serafin, 2010; Georgila, 
Lemon, Henderson, & Moore, 2009; Rotaru & 
Litman, 2009). Modeling the dialogue policies that 

humans employ permits us to directly extract con-
versational and task-based expertise. These tech-
niques hold great promise for scaling gracefully to 
large corpora, and for transferring well across do-
mains.    

The richness and flexibility of human dialogue 
introduce nondeterministic and complex patterns 
that present challenges for machine learning ap-
proaches. One approach that has been successfully 
employed in dialogue modeling is the hidden Mar-
kov model (HMM) (Rabiner, 1989). These models 
are well suited to the sequential nature of dialogue 
(Stolcke et al., 2000). Moreover, their theoretical 
underpinnings are consistent with the conception of 
dialogue as a stochastic process whose observations 
are influenced by a layer of implicit, yet highly rel-
evant, structure (Boyer et al., 2009; Woszczyna & 
Waibel, 1994).  

HMMs have been shown to perform well on 
important dialogue management tasks such as au-
tomatic dialogue act classification (Stolcke et al., 
2000). Our work has employed HMMs for a differ-
ent goal: learning dialogue policies, or strategies, 
from corpora (Boyer, Phillips, et al., 2010; Boyer, 
Phillips, Ingram, et al., in press). This work can be 
viewed from two perspectives. First, a descriptive 
goal of the work is to learn models that describe the 
nature of human dialogues in succinct probabilistic 
terms, in a way that facilitates important qualitative 
investigations. The second and complementary goal 
is predictive: learning models that accurately pre-
dict the dialogue moves of humans, in order to cap-
ture a dialogue policy that can be used within a 
system.   



Both of these goals are of paramount im-
portance in tutorial dialogue, in which tutors and 
students engage in dialogue in support of a learning 
task (Boyer, Ha, et al., 2010; VanLehn et al., 2007). 
Descriptive modeling represents a critical step to-
ward more fully understanding the phenomena that 
contribute to the high effectiveness of human tutor-
ing, which has to date been unmatched by tutorial 
dialogue systems. Predictive models, on the other 
hand, may be used directly as dialogue policies 
within systems.  

The HMMs considered here were learned from 
an annotated corpus of textual human-human tuto-
rial dialogue. In this domain, HMMs have been 
shown to correspond qualitatively to widely held 
conceptions of tutorial dialogue strategies, and ad-
jacency pair analysis before model learning has 
been shown to enhance this qualitative correspond-
ence (Boyer et al., 2009). Moreover, HMMs can 
identify in an unsupervised fashion structural com-
ponents that correlate with student knowledge gain 
(Boyer, Phillips, Ingram, et al., in press).  

However, to date, several important questions 
have not been explored. The answers to these ques-
tions have implications for learning HMMs for 
task-oriented dialogues. The questions include the 
following: 1) How reliably does the HMM learning 
framework converge to the hyperparameter N, the 
best-fit number of hidden states? 2) What are the 
effects of preprocessing approaches, specifically, 
adjacency pair analysis, on the resulting HMMs? 
3) How do different feature sets for task-oriented 
dialogue impact the descriptive fit and predictive 
power of learned HMMs? This paper addresses 
these questions. The findings suggest that model 
stability and predictive power benefit from the 
richest possible input sequences, which include not 
only dialogue acts but also information about the 
task state and the absence of particular tutor dia-
logue moves. Additionally, we find that traditional 
measures of HMM goodness-of-fit may not identify 
the most highly predictive models under some con-
ditions. 

2 Background 

HMMs have been used for dialogue modeling tasks 
for many years. Early work utilized HMMs to 
model underlying linguistic structure for the pur-
poses of identifying speech acts and reducing per-
plexity for speech recognition (Stolcke et al., 2000; 

Woszczyna & Waibel, 1994). These projects treat-
ed underlying dialogue structure as the hidden lay-
er, and dialogue utterances as observations. This 
treatment is analogous to the work presented in this 
paper, except that our observations are dialogue act 
tags only, rather than being constituent words in 
each utterance. Our goals are also different: to cre-
ate a qualitatively interpretable model of dialogue 
structure that corresponds to widely accepted no-
tions of task-oriented dialogue, and to learn a high-
ly predictive dialogue policy from a human-human 
dialogue corpus.  

HMMs rely on treating dialogue as a sequential 
Markov process in which each observation depends 
only on a finite set of preceding observations. Some 
other approaches that rely on this assumption treat 
dialogue as a Markov decision process or partially 
observable Markov decision process, in which state 
changes are associated with actions and rewards 
(e.g., Young et al., 2010). Such work focuses on 
learning an optimal policy, typically utilizing a 
combination of human and simulated dialogue cor-
pora. Reinforcement learning techniques can then 
be applied to learn the optimal policy based on the 
observed rewards. In contrast, we start with a rich 
corpus of human-human dialogue, which may have 
poor coverage in some areas (though the dialogue 
act tags were empirically derived and therefore mit-
igate this problem to some extent), and subsequent-
ly learn a model that explains the variance in that 
human corpus as well as possible. 

Capturing the dialogue policy implicit within a 
corpus of human-human dialogue has been ex-
plored in other work in a catalogue-ordering do-
main (Bangalore, Di Fabbrizio, & Stent, 2006). 
That work utilized maximum entropy modeling to 
predict human agents’ dialogue moves within a 
vector-based framework. Although a vector-based 
approach differs in many regards from the sequen-
tial HMM approach described here, both approach-
es assume a dependence only on a finite history. 
HMMs accomplish this through graphical depend-
encies, while vector-based approaches accomplish 
it by including features for a restricted window of 
left-hand context. The results of this catalogue-
ordering project highlight how challenging it is to 
predict human agents’ dialogue moves in a task-
oriented domain. 



3 Corpus  

The corpus was collected during a human-human 
tutoring study. Students solved an introductory 
computer programming problem in the Java pro-
gramming language. Tutors were located in a sepa-
rate room and communicated with students through 
textual dialogue while viewing a synchronized 
view of the student’s problem-solving workspace. 
Forty-eight students interacted for approximately 
one hour each with a tutor. Students exhibited sta-
tistically significant learning gains from pretest to 
posttest, indicating that the tutoring was effective 
(Boyer, Phillips, Ingram, et al., in press). The cor-
pus contains 1,468 student moves and 3,338 tutor 
moves. Overlapping utterances, which are common 
in dialogue platforms such as instant messaging, 
were prevented by permitting only one user to con-
struct a dialogue message at a time. Because the 
corpus is textual, utterances were segmented at tex-
tual message boundaries except when the lead dia-
logue annotator noted the presence of two separate 
dialogue acts within non-overlapping chunks of 
text. In these events the utterance was segmented 
by the primary annotator prior to being tagged by 
the second dialogue act annotator.  

In addition to dialogue act annotation, the cor-
pus was manually annotated for task structure and 
correctness (Section 3.2), and for delayed tutor 
feedback (Seciton 3.3). The appendix displays an 
excerpt from the annotated corpus.  

3.1 Dialogue Act Annotation 

As part of prior work, the corpus was annotated 
with dialogue acts for both tutor (Boyer, Phillips, 
Ingram, et al., in press) and student (Boyer, Ha, et 
al., 2010) utterances (Table 1). One annotator 
tagged the entire corpus, while a second annotator 
independently tagged a randomly selected 10% of 
tutoring sessions. The inter-annotator agreement 
Kappa score was 0.80.  

3.2 Task Annotation 

The corpus includes 97,509 keystroke-level task 
events (computer programming actions), all taken 
by the student. Tutors viewed synchronously, but 
could not edit, the computer program. The task ac-
tions were manually clustered and labeled for sub-
task structure (Boyer, Phillips, et al., 2010). The 
task structure annotation was hierarchical, with 

leaves corresponding to specific subtasks such as 
creating a temporary variable in order to swap two 
variables’ values (subtask 3-c-iii-2). Each problem-
solving cluster, or subtask, was then labeled for 
correctness (Table 2). These correctness labels are 
utilized in the models presented in this paper. The 
Kappa agreement statistic for the correctness anno-
tation on 20% of the corpus was 0.80. 

Table 1. Dialogue act tags 
Dialogue Act Tutor Example 

ASSESSING Q. Which type should that be? 
EXTRA-DOMAIN A coordinator will be there soon. 
GROUNDING Ok. 
LUKEWARM 
FDBK That’s close. 

LUKEWARM 
CONTENT FDBK 

Almost there, but the second 
parameter isn’t quite right. 

NEGATIVE FDBK That’s not right. 
NEGATIVE 
CONTENT FDBK No, the counter has to be an int. 

POSITIVE  FDBK Perfect. 
POSITIVE 
CONTENT FDBK 

Right, the array is a local varia-
ble. 

QUESTION Which approach do you prefer? 
RESPONSE It will be an int. 
STATEMENT They start at 0. 

Table 2. Task correctness tags 
Correctness 

Tag Description 

CORRECT Fully conforming to the require-
ments of the task. 

BUGGY 
Violating the requirements of the 
task. These task events typically 
require tutorial remediation. 

INCOMPLETE Not violating, but not yet fulfilling, 
the requirements of the task. 

DISPREFERRED 

Technically fulfilling requirements 
but not utilizing the target con-
cepts being tutored. These 
events typically require tutorial 
remediation. 

3.3 Annotation for Delayed Tutor Feedback 

The dialogue act and task annotations reflect posi-
tive evidence regarding what did occur in the dia-
logues. An additional annotation was introduced for 
what did not occur—specifically, instances in 
which tutors did not to make a dialogue move in 
response to students’ relevant task actions. The task 
in our corpus is computer programming, so bugs in 
the task correspond to errors either in syntax or se-



mantics of the computer program compared to the 
desired outcome. The human tutors were working 
with only one student at a time and were carefully 
monitoring student task actions during the dialogue, 
so we take the absence of a dialogue move at a rel-
evant point to be an intentional choice by the tutor 
to delay feedback as part of the tutorial strategy. 
The automatic annotation for delayed feedback in-
troduced two new event tags: NO-MENTION of cor-
rectly completed subtasks, and NO-REMEDIATION 
of existing bugs within the task.  

The intuition behind these tags is that within a 
learned dialogue policy, specifically modeling 
when not to intervene is crucial. Typically human 
tutors mention correctly completed subtasks, but at 
times other tutorial goals eclipse the importance of 
doing so. The NO-MENTION tag captures these in-
stances. On the other hand, typically when working 
with novices, human tutors remediate an existing 
bug quickly. However, tutors may choose to delay 
this remediation for a variety of reasons such as 
remediating a different bug instead or asking a con-
ceptual question to encourage the student to reflect 
on the issue. The NO-REMEDIATION tag captures 
these instances of the absence of remediation given 
that a bug was present. These two annotations for 
delayed feedback were performed automatically 
(Boyer, Phillips, Ha, et al., in press).  

3.4 Adjacency Pair Modeling 

Prior work has demonstrated that adjacency pairs 
can be identified in an unsupervised fashion from a 
corpus (Midgley, Harrison, & MacNish, 2006). 
This technique relies on statistical analysis to de-
termine the significant dependencies that exist be-
tween pairs of dialogue acts, or in our task-oriented 
corpus, pairs of dialogue acts or task actions. After 
the pairs of dependent events are identified, they 
are joined within the corpus algorithmically (Boyer 
et al., 2009). Joining a pair of dependent moves in 
this way is equivalent to introducing a deterministic 
(probability=1) succession between observation 
symbols. This type of dependency cannot be 
learned in the traditional first-order HMM frame-
work, but is desirable when two observations are 
strongly linked.1 

                                                             
1 Enhanced HMM structures, such as autoregressive HMMs, 
which allow for direct graphical links between observation 
symbols, can learn such a dependency but only in stochastic 
terms. 

The experiment that is described in Section 4 
utilizes different feature sets to learn and compare 
HMMs. Table 3 shows these feature sets and their 
most highly statistically significant adjacency pairs. 

Table 3. Experimental conditions and top three ad-
jacency pairs (subscripts denote speaker, Student or 

Tutor) 

Condition Description 
Significant Adjacency 

Pairs 

DAONLY Dialogue acts 
only 

QS~RspT  
GroundS~GroundT 
AssessQT~PosFdbkS 

DATASK 

Dialogue acts 
& task cor-
rectness 
events 

QS~RspT 
CorrectTaskS~CorrectTaskS 
GroundS~GroundT 

DATASK-
DELAY 

Dialogue 
acts, task 
correctness, 
& delayed 
feedback  

QS~RspT 
NoRemediateT~BuggyTaskS 
CorrectTaskS~CorrectTaskS 

4 Models 

HMMs were selected as the modeling framework 
for this work because their sequential nature is well 
suited to the structure of human dialogue, and their 
“hidden” variable corresponds to widely held con-
ceptions of dialogue as having an unobservable, but 
influential, layer of stochastic structure. For exam-
ple, in tutoring, an “explanation” mode is common, 
in which the tutor presents new information and the 
student provides acknowledgments or takes task 
actions accordingly. Although the presence of the 
“explanation” goal is not directly observable in 
most dialogues, it may be inferred from the obser-
vations. These sequences correspond to the input 
observations for learning an HMM.  

4.1 Hidden Markov Models 

HMMs explicitly model hidden states within a 
doubly stochastic structure (Rabiner, 1989). A first-
order HMM, in which each hidden state depends 
only on the immediately preceding hidden state, is 
defined by the following components: 

• ∑ = {σ1, σ2, …, σM}, the observation sym-
bol alphabet 

• S = {s1,s2,…,sN}, the set of hidden states 



• Π=[πi], i=1,…,N, the initial probability dis-
tribution, where πi is the probability of the 
model beginning in hidden state si in S  

• A=[aij], a transition probability distribution, 
where aij is the probability of the model 
transitioning from hidden state i to hidden 
state j for i,j=1,…,N 

• B=[bik], an emission probability distribu-
tion where bik is the probability of state i 
(i=1,…,N) emitting (or generating) obser-
vation symbol k (k=1,…,M). 

4.2 Dialogue Modeling with HMMs 

In this work, the observation symbol alphabet ∑ is 
given. For each experimental condition, ∑ is either 
1) all dialogue act tags, 2) all dialogue acts plus 
task correctness tags, or 3) dialogue act, task cor-
rectness, and delayed feedback tags. The transition 
probability distribution A, emission probability dis-
tribution B, and initial probability distribution Π are 
learned by the standard Baum-Welch algorithm for 
optimizing HMM parameters (Rabiner, 1989). This 
algorithm is susceptible to becoming trapped in 
local optima, so our approach uses ten-time random 
restart with new initial parameters for each model 
to reduce the probability of selecting a model that 
represents only a local optimum.  

The hyperparameter N, which is the best number 
of hidden states, is also learned rather than fixed. 
This process involves running the full HMM train-
ing algorithm, including random restarts in ten-fold 
cross-validation, across the data and selecting the N 
that corresponds to the best mean goodness-of-fit 
measure. For HMMs, a typical goodness-of-fit 
measure is log-likelihood, which captures how like-
ly the observations would be under the current 
model. The log is taken for practical reasons, to 
avoid numerical underflow. Higher log-likelihood 
corresponds to improved model fit. However, typi-
cally it is desirable to penalize a higher number of 
hidden states, since increasing the model complexi-
ty results in tradeoffs that may not be fully warrant-
ed by the improvement in model fit. In this work, 
we utilize the Akaike Information Criterion (AIC), 
a standard penalized log-likelihood metric (Akaike, 
1976).  

 
 
 

AIC = 2*N – 2*ln(likelihood) 
Lower values of AIC indicate better model fit. 

4.3 Experimental Conditions 

HMMs were learned using three separate feature 
sets, each providing a progressively more complete 
picture of the task-oriented dialogues: dialogue acts 
only (DAONLY), dialogue acts and task events 
(DATASK), and dialogue acts with both task cor-
rectness events and tags for delayed tutor feedback 
(DATASKDELAY).  

In addition to the three different feature sets, 
each condition included one of two types of pre-
processing. Each type of model was trained on un-
altered sequences of the annotated tags, which we 
refer to as the UNIGRAM condition. Additionally, 
each type of model was trained on sequences with 
statistically dependent adjacency pairs joined in a 
preprocessing step as described in Section 3.4. The 
UNIGRAM and ADJPAIR conditions were explored 
for each of the three feature sets, resulting in six 
experimental conditions. These conditions were 
chosen in order to explore the convergence behav-
ior of HMMs under the different feature sets and 
preprocessing, and to compare measures of descrip-
tive fit with measures of predictive power.  

4.4 Learned HMMs 

Figures 1 and 2 show a subset of the DAONLY 
UNIGRAM model and the DATASKDELAY ADJPAIR 
model. These figures depict the structure of our 
HMMs: each hidden state is associated with an 
emission probability distribution over the possible 
observation symbols.  

5 Goodness-of-Fit Curves 

The learning algorithm described in Section 4.2 
was applied to input sequences under the six exper-
imental conditions to learn the best-fit HMM pa-
rameters. Figure 3 displays these AIC results, 
which are discussed in detail in the remainder of 
this section.  

 



 
Figure 1. Subset of learned HMM (N=13) for 

DAONLY UNIGRAM condition 
 

 
Figure 2. Subset of learned HMM (N=9) for 

DATASKDELAY ADJPAIR condition  

5.1 Impact of Experimental Conditions  

For the DAONLY condition, both the UNIGRAM and 
ADJPAIR models generally improve until N=12 or 
13, after which the fit generally worsens. A differ-

ent pattern emerges for the DATASK condition, in 
which the UNIGRAM sequences are optimally fit to 
a model with 16 states, while the ADJPAIR se-
quences are fit to a model with 8 states. Finally, for 
the DATASKDELAY condition, the UNIGRAM se-
quences are best fit by a model with 10 hidden 
states, while the ADJPAIR sequences are fit best 
by 9. Typically, we see that ADJPAIR sequences are 
fit to slightly simpler models in terms of the hy-
perparameter N, number of hidden states. 
  

Figure 3. Number of hidden states and cor-
responding adjusted AIC, shifted to a mini-
mum score of zero indicating the best-fit N 
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c) Dialogue Act, Task, & Delayed Feedback 
(DATASKDELAY)  

 
 N (number of hidden states) 



Stability in the hyperparameter N is an im-
portant consideration because an underlying as-
sumption of our work is that the hidden states 
correspond to unobserved stochastic structures of 
the real world process—that is, we hypothesize 
that a “true” value for N exists. We would like 
models to exhibit decreasing variation in goodness 
of fit measures around this true N. To examine this 
stability we consider the three best AIC values for 
each condition and their corresponding Ns: the set 
{Nk-best | k=1,2,3}. The range of this set indicates 
how “far apart” the best three Ns are: for example, 
in the DAONLY UNIGRAM condition, the top three 
models have Ns of {13,10,15}, yielding a range of 
5. Intuitively, a small value for this metric indicates 
that the model has converged tightly on N.  

Figure 4 shows the stability results for the six 
different experimental conditions. As shown in the 
figure, for the DATASK and DATASKDELAY condi-
tions, the ADJPAIR models achieve the smallest 
range among the top three values of N; these mod-
els converge most tightly to the “best” value.   

 
Figure 4. Stability of N (range of {N1best, N2best, 

N3best}) – smaller implies tighter convergence to 
“best” N 

6 Predictive Analysis 

Section 5 presented an analysis of the goodness-of-
fit curves of HMMs learned from the corpus. The 
measures of stability and discrimination for N cap-
ture important aspects of the behavior of HMMs 
toward this parameter, which is conceived of as 
representing “true” real-world stochastic behavior. 
In this way, Section 5 has presented a descriptive 
view of HMM dialogue models.  

This section presents a predictive view of the 
models. Specifically, we consider prediction accu-
racy, defined as the percent of tutor dialogue moves 

that the model is able to correctly predict given the 
dialogue history sequence up to that point.  

6.1 Impact of Dependent Adjacency Pairs 

We first explore whether the preprocessing step of 
joining dependent adjacency pairs impacted predic-
tion accuracy. The prediction accuracy of the best-
fit model in each condition is displayed in Figure 5. 
This figure includes prediction accuracy on training 
data, which were used to learn model parameters, 
as well as prediction accuracy on testing data, 
which were withheld from model training.  

 
Figure 5. Prediction accuracy for tutor moves 

 
As shown in Figure 5, joining the adjacency 

pairs improved model performance on the training 
sets of all three conditions, indicating that the varia-
tion within the training data was better explained 
by ADJPAIR models. (This measure of predictive 
power is different from a goodness-of-fit criterion 
as described in the previous section, a relationship 
that will be discussed further in Section 7.) In con-
trast to the training set performance, the ADJPAIR 
models performed better than UNIGRAM models for 
the testing set only in the DATASKDELAY condi-
tion.   

6.2 Impact of Task-Oriented Feature Sets 

As illustrated in Figure 5, the three feature sets per-
form similarly under the UNIGRAM condition. This 
performance is slightly above baseline (DAONLY 
and DATASK baselines = 0.38; DATASKDELAY 
baseline = 0.30), and diminishes little between the 
training and testing sets. In contrast, under the 
ADJPAIR condition, performance between condi-
tions and across training and testing sets varies. The 
DATask model performs far better on predicting 
observations in the training than the testing set, 



suggesting possible overfitting to the training set. 
This relationship is discussed further in Section 7. 
The DATASKDELAY model performs well during 
both training and testing, though with a slight de-
crease in accuracy on the testing set.   

6.3 Relationship Between Predictive and De-
scriptive Metrics 

Measures of fit such as log-likelihood and AIC cap-
ture the likelihood of observing the data given a 
model. Predictive accuracy, on the other hand, 
measures the probability that the model can predict 
the next observation given a partial sequence. In 
general, we would expect these measures to corre-
late well; however, there is not perfect correlation 
between these metrics because the mechanism by 
which log-likelihood (and thereby AIC) is derived 
involves maximizing likelihood over complete se-
quences, while prediction is performed over partial 
sequences.  

To examine how well AIC and prediction accu-
racy correlate, Figure 6 displays these values for a 
subset of the models in the DAONLY UNIGRAM 
condition and the DATASKDELAY ADJPAIR condi-
tion. These two conditions represent the extremes 
of the experimental conditions, with DAONLY con-
taining the least information about the task-oriented 
dialogue while DATASKDELAY contains the most 
information.  

As shown in Figure 6, the correlation for 
DAONLY UNIGRAM roughly conforms to what 
would be expected: lower AIC, indicating better 
model fit, is associated with the highest prediction 
accuracies. The relationship is less clear for the 
DATASKDELAY ADJPAIR condition. While its 
worst AIC is associated with the lowest prediction 
accuracy as expected, the best AIC is not associated 
with the highest prediction accuracy. This phenom-
enon may be due to the lack of spread among AIC 
values overall for this condition; as seen in Figure 
3, the DATASKDELAY ADJPAIR condition has the 
flattest AIC curve of all conditions, indicating that 
for this condition the difference between best-fit 
and worst-fit models is smaller than for any other 
condition. The inconsistent relationship between 
AIC and prediction accuracy, therefore, may be the 
product of noise surrounding a large set of “good” 
models, whereas for the DAONLY UNIGRAM condi-
tion, the set of good models is smaller.  

 

 

7 Discussion 

The results suggest several important findings re-
garding feature sets and preprocessing for learning 
HMMs of task-oriented dialogue. First, the models’ 
convergence patterns to a best-fit N, number of 
hidden states, indicate that more information em-
bedded within the sequences may correspond with 
a flatter goodness-of-fit curve. Adding more infor-
mation to the input sequences may introduce some 
regularities that partly mitigate the limitations of 
even a poorly fit HMM. This additional infor-
mation may come in the form of adjacency pairs 
discovered in an unsupervised fashion, which im-
proved the stability of convergence on the best-fit 
N under the DATASK and DATASKDELAY condi-
tions. This increased stability is likely due to the 
fact that under these conditions, leveraging adja-
cency pair information augments the HMM’s struc-
ture with contextual dependencies that could 
otherwise not be learned under the traditional 
HMM framework.  

For predictive accuracy, the benefits of richer 
input sequences are also highlighted. The most 
highly predictive models included all three sources 

P
re

di
ct

io
n 

A
cc

ur
ac

y 

a) DAOnly UNIGRAM Condition 

 
 AIC 

P
re

di
ct

io
n 

A
cc

ur
ac

y 

b) DATASKDELAY ADJPAIR Condition  

 
 AIC 

Figure 6. Prediction accuracy vs. AIC 



of information: dialogue acts, task events, and de-
layed feedback tags. However, with the addition of 
this rich information to the input sequences and the 
accompanying flatter goodness-of-fit curve as dis-
cussed above, we noted an irregular pattern of cor-
relation between goodness-of-fit and predictive 
accuracy that is worthy of future exploration. Spe-
cifically, it appears that the most highly predictive 
DATASKDELAY ADJPAIR model, which is the most 
highly predictive of all models in all conditions, 
does not correspond to the best (lowest) AIC for 
that condition (Figure 3). This finding suggests that 
when a predictive task is the primary goal, a predic-
tive metric should be used to select the best-fit 
model. Additional support for such an approach is 
provided by the close correspondence between 
training and testing set prediction accuracy. 

8 Conclusion 

Understanding how HMMs behave under different 
feature sets is an important step toward learning 
effective models of task-oriented dialogue. This 
paper has examined how HMMs converge to a best 
number of hidden states under different experi-
mental conditions. We have also considered how 
well HMMs under these conditions predict tutor 
dialogue acts within a corpus of task-oriented tutor-
ing, a crucial step toward learning dialogue policies 
from human corpora. The findings highlight the 
importance of adding rich task-based features to the 
input sequences in order to learn HMMs that con-
verge tightly on the best-fit number of hidden 
states. The results also indicate that caution should 
be used when utilizing traditional goodness-of-fit 
metrics, which are appropriate for descriptive ap-
plications, if the goal is to learn a highly predictive 
model.  

This line of research is part of a larger research 
program of learning unsupervised models of human 
task-oriented dialogue that can be used to define 
the behavior of dialogue systems. Developing a 
framework for learning a dialogue policy from hu-
man corpora, as discussed here, is a critical step 
toward that goal. Future work should focus on un-
supervised dialogue act classification, and address 
the challenges of user plan recognition.  
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Appendix. Excerpt from task-oriented textual human-human tutoring corpus. 

Speaker Utterance or Event Tag 

Student: [Task action on subtask 3-c-i-4] BUGGY 

Student: [Task action on subtask 3-c-ii-5] CORRECT 

Tutor: [Does not provide remediation for existing bug] NOREMEDIATION 

Student: [Task action on subtask 3-c-iii-1] BUGGY 

Student: i don't remember off the top of my head how the swap 
function worked. most of the time i just copied and 
pasted it from some of my older code 

NEGATIVECONTENTFDBK 

Tutor: The easiest way to swap x and y is to make a tempo-
rary variable 

 

Student: Ok ACK 

Student: do i need to pass the entire array and the indecies of the 
items to swap? 

ASSESSQ 

Tutor:  if you want to use a seperate method to swap, then yes, 
you'll have to pass those things 
 

POSCONTENTFDBK 

Tutor:  [Does not mention a correctly completed subtask]	   NOMENTIONCOMP 

Student: oh. i guess i could just swap it in the same method. it is 
problably easier that way, and less code. we were 
showed in class how to do it separately, but i had never 
thought of doing it the other way.  

STMT 

Student: [Task action on subtask 3-c-iii-2] DISPREFERRED 

Tutor:  Both ways work, but it’s definitely less code to just do 
it inside this method.  

STMT 

Student: Ok ACK 
 


