
The Impact of Task-Oriented Feature Sets on
HMMs for Dialogue Modeling

Kristy Elizabeth Boyer

Eun Young Ha

Robert Phillips*

James Lester

Department of Computer Science
North Carolina State University

*Dual affiliation with Applied Research Associates, Inc.
Raleigh, North Carolina, USA

{keboyer, eha, rphilli, lester}@ncsu.edu

Abstract

Human dialogue serves as a valuable model
for learning the behavior of dialogue systems.
Hidden Markov models’ sequential structure is
well suited to modeling human dialogue, and
their theoretical underpinnings are consistent
with the conception of dialogue as a stochastic
process with a layer of implicit, highly influen-
tial structure. HMMs have been shown to be
effective for a variety of descriptive and pre-
dictive dialogue tasks. For task-oriented dia-
logue, understanding the learning behavior of
HMMs is an important step toward building
unsupervised models of human dialogue. This
paper examines the behavior of HMMs under
six experimental conditions including different
task-oriented feature sets and preprocessing
approaches. The findings highlight the im-
portance of providing HMM learning algo-
rithms with rich task-based information.
Additionally, the results suggest how specific
metrics should be used depending on whether
the models will be employed primarily in a de-
scriptive or predictive manner.

1 Introduction

Human dialogue serves as a valuable model for
learning the behavior of dialogue systems. For this
reason, corpus-based approaches to dialogue man-
agement tasks have been an increasingly active area
of research (Bangalore, Di Fabbrizio, & Stent,
2006; Di Eugenio, Xie, & Serafin, 2010; Georgila,
Lemon, Henderson, & Moore, 2009; Rotaru &
Litman, 2009). Modeling the dialogue policies that

humans employ permits us to directly extract con-
versational and task-based expertise. These tech-
niques hold great promise for scaling gracefully to
large corpora, and for transferring well across do-
mains.

The richness and flexibility of human dialogue
introduce nondeterministic and complex patterns
that present challenges for machine learning ap-
proaches. One approach that has been successfully
employed in dialogue modeling is the hidden Mar-
kov model (HMM) (Rabiner, 1989). These models
are well suited to the sequential nature of dialogue
(Stolcke et al., 2000). Moreover, their theoretical
underpinnings are consistent with the conception of
dialogue as a stochastic process whose observations
are influenced by a layer of implicit, yet highly rel-
evant, structure (Boyer et al., 2009; Woszczyna &
Waibel, 1994).

HMMs have been shown to perform well on
important dialogue management tasks such as au-
tomatic dialogue act classification (Stolcke et al.,
2000). Our work has employed HMMs for a differ-
ent goal: learning dialogue policies, or strategies,
from corpora (Boyer, Phillips, et al., 2010; Boyer,
Phillips, Ingram, et al., in press). This work can be
viewed from two perspectives. First, a descriptive
goal of the work is to learn models that describe the
nature of human dialogues in succinct probabilistic
terms, in a way that facilitates important qualitative
investigations. The second and complementary goal
is predictive: learning models that accurately pre-
dict the dialogue moves of humans, in order to cap-
ture a dialogue policy that can be used within a
system.

Both of these goals are of paramount im-
portance in tutorial dialogue, in which tutors and
students engage in dialogue in support of a learning
task (Boyer, Ha, et al., 2010; VanLehn et al., 2007).
Descriptive modeling represents a critical step to-
ward more fully understanding the phenomena that
contribute to the high effectiveness of human tutor-
ing, which has to date been unmatched by tutorial
dialogue systems. Predictive models, on the other
hand, may be used directly as dialogue policies
within systems.

The HMMs considered here were learned from
an annotated corpus of textual human-human tuto-
rial dialogue. In this domain, HMMs have been
shown to correspond qualitatively to widely held
conceptions of tutorial dialogue strategies, and ad-
jacency pair analysis before model learning has
been shown to enhance this qualitative correspond-
ence (Boyer et al., 2009). Moreover, HMMs can
identify in an unsupervised fashion structural com-
ponents that correlate with student knowledge gain
(Boyer, Phillips, Ingram, et al., in press).

However, to date, several important questions
have not been explored. The answers to these ques-
tions have implications for learning HMMs for
task-oriented dialogues. The questions include the
following: 1) How reliably does the HMM learning
framework converge to the hyperparameter N, the
best-fit number of hidden states? 2) What are the
effects of preprocessing approaches, specifically,
adjacency pair analysis, on the resulting HMMs?
3) How do different feature sets for task-oriented
dialogue impact the descriptive fit and predictive
power of learned HMMs? This paper addresses
these questions. The findings suggest that model
stability and predictive power benefit from the
richest possible input sequences, which include not
only dialogue acts but also information about the
task state and the absence of particular tutor dia-
logue moves. Additionally, we find that traditional
measures of HMM goodness-of-fit may not identify
the most highly predictive models under some con-
ditions.

2 Background

HMMs have been used for dialogue modeling tasks
for many years. Early work utilized HMMs to
model underlying linguistic structure for the pur-
poses of identifying speech acts and reducing per-
plexity for speech recognition (Stolcke et al., 2000;

Woszczyna & Waibel, 1994). These projects treat-
ed underlying dialogue structure as the hidden lay-
er, and dialogue utterances as observations. This
treatment is analogous to the work presented in this
paper, except that our observations are dialogue act
tags only, rather than being constituent words in
each utterance. Our goals are also different: to cre-
ate a qualitatively interpretable model of dialogue
structure that corresponds to widely accepted no-
tions of task-oriented dialogue, and to learn a high-
ly predictive dialogue policy from a human-human
dialogue corpus.

HMMs rely on treating dialogue as a sequential
Markov process in which each observation depends
only on a finite set of preceding observations. Some
other approaches that rely on this assumption treat
dialogue as a Markov decision process or partially
observable Markov decision process, in which state
changes are associated with actions and rewards
(e.g., Young et al., 2010). Such work focuses on
learning an optimal policy, typically utilizing a
combination of human and simulated dialogue cor-
pora. Reinforcement learning techniques can then
be applied to learn the optimal policy based on the
observed rewards. In contrast, we start with a rich
corpus of human-human dialogue, which may have
poor coverage in some areas (though the dialogue
act tags were empirically derived and therefore mit-
igate this problem to some extent), and subsequent-
ly learn a model that explains the variance in that
human corpus as well as possible.

Capturing the dialogue policy implicit within a
corpus of human-human dialogue has been ex-
plored in other work in a catalogue-ordering do-
main (Bangalore, Di Fabbrizio, & Stent, 2006).
That work utilized maximum entropy modeling to
predict human agents’ dialogue moves within a
vector-based framework. Although a vector-based
approach differs in many regards from the sequen-
tial HMM approach described here, both approach-
es assume a dependence only on a finite history.
HMMs accomplish this through graphical depend-
encies, while vector-based approaches accomplish
it by including features for a restricted window of
left-hand context. The results of this catalogue-
ordering project highlight how challenging it is to
predict human agents’ dialogue moves in a task-
oriented domain.

3 Corpus

The corpus was collected during a human-human
tutoring study. Students solved an introductory
computer programming problem in the Java pro-
gramming language. Tutors were located in a sepa-
rate room and communicated with students through
textual dialogue while viewing a synchronized
view of the student’s problem-solving workspace.
Forty-eight students interacted for approximately
one hour each with a tutor. Students exhibited sta-
tistically significant learning gains from pretest to
posttest, indicating that the tutoring was effective
(Boyer, Phillips, Ingram, et al., in press). The cor-
pus contains 1,468 student moves and 3,338 tutor
moves. Overlapping utterances, which are common
in dialogue platforms such as instant messaging,
were prevented by permitting only one user to con-
struct a dialogue message at a time. Because the
corpus is textual, utterances were segmented at tex-
tual message boundaries except when the lead dia-
logue annotator noted the presence of two separate
dialogue acts within non-overlapping chunks of
text. In these events the utterance was segmented
by the primary annotator prior to being tagged by
the second dialogue act annotator.

In addition to dialogue act annotation, the cor-
pus was manually annotated for task structure and
correctness (Section 3.2), and for delayed tutor
feedback (Seciton 3.3). The appendix displays an
excerpt from the annotated corpus.

3.1 Dialogue Act Annotation

As part of prior work, the corpus was annotated
with dialogue acts for both tutor (Boyer, Phillips,
Ingram, et al., in press) and student (Boyer, Ha, et
al., 2010) utterances (Table 1). One annotator
tagged the entire corpus, while a second annotator
independently tagged a randomly selected 10% of
tutoring sessions. The inter-annotator agreement
Kappa score was 0.80.

3.2 Task Annotation

The corpus includes 97,509 keystroke-level task
events (computer programming actions), all taken
by the student. Tutors viewed synchronously, but
could not edit, the computer program. The task ac-
tions were manually clustered and labeled for sub-
task structure (Boyer, Phillips, et al., 2010). The
task structure annotation was hierarchical, with

leaves corresponding to specific subtasks such as
creating a temporary variable in order to swap two
variables’ values (subtask 3-c-iii-2). Each problem-
solving cluster, or subtask, was then labeled for
correctness (Table 2). These correctness labels are
utilized in the models presented in this paper. The
Kappa agreement statistic for the correctness anno-
tation on 20% of the corpus was 0.80.

Table 1. Dialogue act tags
Dialogue Act Tutor Example

ASSESSING Q. Which type should that be?
EXTRA-DOMAIN A coordinator will be there soon.
GROUNDING Ok.
LUKEWARM
FDBK That’s close.

LUKEWARM
CONTENT FDBK

Almost there, but the second
parameter isn’t quite right.

NEGATIVE FDBK That’s not right.
NEGATIVE
CONTENT FDBK No, the counter has to be an int.

POSITIVE FDBK Perfect.
POSITIVE
CONTENT FDBK

Right, the array is a local varia-
ble.

QUESTION Which approach do you prefer?
RESPONSE It will be an int.
STATEMENT They start at 0.

Table 2. Task correctness tags
Correctness

Tag Description

CORRECT Fully conforming to the require-
ments of the task.

BUGGY
Violating the requirements of the
task. These task events typically
require tutorial remediation.

INCOMPLETE Not violating, but not yet fulfilling,
the requirements of the task.

DISPREFERRED

Technically fulfilling requirements
but not utilizing the target con-
cepts being tutored. These
events typically require tutorial
remediation.

3.3 Annotation for Delayed Tutor Feedback

The dialogue act and task annotations reflect posi-
tive evidence regarding what did occur in the dia-
logues. An additional annotation was introduced for
what did not occur—specifically, instances in
which tutors did not to make a dialogue move in
response to students’ relevant task actions. The task
in our corpus is computer programming, so bugs in
the task correspond to errors either in syntax or se-

mantics of the computer program compared to the
desired outcome. The human tutors were working
with only one student at a time and were carefully
monitoring student task actions during the dialogue,
so we take the absence of a dialogue move at a rel-
evant point to be an intentional choice by the tutor
to delay feedback as part of the tutorial strategy.
The automatic annotation for delayed feedback in-
troduced two new event tags: NO-MENTION of cor-
rectly completed subtasks, and NO-REMEDIATION
of existing bugs within the task.

The intuition behind these tags is that within a
learned dialogue policy, specifically modeling
when not to intervene is crucial. Typically human
tutors mention correctly completed subtasks, but at
times other tutorial goals eclipse the importance of
doing so. The NO-MENTION tag captures these in-
stances. On the other hand, typically when working
with novices, human tutors remediate an existing
bug quickly. However, tutors may choose to delay
this remediation for a variety of reasons such as
remediating a different bug instead or asking a con-
ceptual question to encourage the student to reflect
on the issue. The NO-REMEDIATION tag captures
these instances of the absence of remediation given
that a bug was present. These two annotations for
delayed feedback were performed automatically
(Boyer, Phillips, Ha, et al., in press).

3.4 Adjacency Pair Modeling

Prior work has demonstrated that adjacency pairs
can be identified in an unsupervised fashion from a
corpus (Midgley, Harrison, & MacNish, 2006).
This technique relies on statistical analysis to de-
termine the significant dependencies that exist be-
tween pairs of dialogue acts, or in our task-oriented
corpus, pairs of dialogue acts or task actions. After
the pairs of dependent events are identified, they
are joined within the corpus algorithmically (Boyer
et al., 2009). Joining a pair of dependent moves in
this way is equivalent to introducing a deterministic
(probability=1) succession between observation
symbols. This type of dependency cannot be
learned in the traditional first-order HMM frame-
work, but is desirable when two observations are
strongly linked.1

1 Enhanced HMM structures, such as autoregressive HMMs,
which allow for direct graphical links between observation
symbols, can learn such a dependency but only in stochastic
terms.

The experiment that is described in Section 4
utilizes different feature sets to learn and compare
HMMs. Table 3 shows these feature sets and their
most highly statistically significant adjacency pairs.

Table 3. Experimental conditions and top three ad-
jacency pairs (subscripts denote speaker, Student or

Tutor)

Condition Description
Significant Adjacency

Pairs

DAONLY Dialogue acts
only

QS~RspT
GroundS~GroundT
AssessQT~PosFdbkS

DATASK

Dialogue acts
& task cor-
rectness
events

QS~RspT
CorrectTaskS~CorrectTaskS
GroundS~GroundT

DATASK-
DELAY

Dialogue
acts, task
correctness,
& delayed
feedback

QS~RspT
NoRemediateT~BuggyTaskS
CorrectTaskS~CorrectTaskS

4 Models

HMMs were selected as the modeling framework
for this work because their sequential nature is well
suited to the structure of human dialogue, and their
“hidden” variable corresponds to widely held con-
ceptions of dialogue as having an unobservable, but
influential, layer of stochastic structure. For exam-
ple, in tutoring, an “explanation” mode is common,
in which the tutor presents new information and the
student provides acknowledgments or takes task
actions accordingly. Although the presence of the
“explanation” goal is not directly observable in
most dialogues, it may be inferred from the obser-
vations. These sequences correspond to the input
observations for learning an HMM.

4.1 Hidden Markov Models

HMMs explicitly model hidden states within a
doubly stochastic structure (Rabiner, 1989). A first-
order HMM, in which each hidden state depends
only on the immediately preceding hidden state, is
defined by the following components:

• ∑ = {σ1, σ2, …, σM}, the observation sym-
bol alphabet

• S = {s1,s2,…,sN}, the set of hidden states

• Π=[πi], i=1,…,N, the initial probability dis-
tribution, where πi is the probability of the
model beginning in hidden state si in S

• A=[aij], a transition probability distribution,
where aij is the probability of the model
transitioning from hidden state i to hidden
state j for i,j=1,…,N

• B=[bik], an emission probability distribu-
tion where bik is the probability of state i
(i=1,…,N) emitting (or generating) obser-
vation symbol k (k=1,…,M).

4.2 Dialogue Modeling with HMMs

In this work, the observation symbol alphabet ∑ is
given. For each experimental condition, ∑ is either
1) all dialogue act tags, 2) all dialogue acts plus
task correctness tags, or 3) dialogue act, task cor-
rectness, and delayed feedback tags. The transition
probability distribution A, emission probability dis-
tribution B, and initial probability distribution Π are
learned by the standard Baum-Welch algorithm for
optimizing HMM parameters (Rabiner, 1989). This
algorithm is susceptible to becoming trapped in
local optima, so our approach uses ten-time random
restart with new initial parameters for each model
to reduce the probability of selecting a model that
represents only a local optimum.

The hyperparameter N, which is the best number
of hidden states, is also learned rather than fixed.
This process involves running the full HMM train-
ing algorithm, including random restarts in ten-fold
cross-validation, across the data and selecting the N
that corresponds to the best mean goodness-of-fit
measure. For HMMs, a typical goodness-of-fit
measure is log-likelihood, which captures how like-
ly the observations would be under the current
model. The log is taken for practical reasons, to
avoid numerical underflow. Higher log-likelihood
corresponds to improved model fit. However, typi-
cally it is desirable to penalize a higher number of
hidden states, since increasing the model complexi-
ty results in tradeoffs that may not be fully warrant-
ed by the improvement in model fit. In this work,
we utilize the Akaike Information Criterion (AIC),
a standard penalized log-likelihood metric (Akaike,
1976).

AIC = 2*N – 2*ln(likelihood)
Lower values of AIC indicate better model fit.

4.3 Experimental Conditions

HMMs were learned using three separate feature
sets, each providing a progressively more complete
picture of the task-oriented dialogues: dialogue acts
only (DAONLY), dialogue acts and task events
(DATASK), and dialogue acts with both task cor-
rectness events and tags for delayed tutor feedback
(DATASKDELAY).

In addition to the three different feature sets,
each condition included one of two types of pre-
processing. Each type of model was trained on un-
altered sequences of the annotated tags, which we
refer to as the UNIGRAM condition. Additionally,
each type of model was trained on sequences with
statistically dependent adjacency pairs joined in a
preprocessing step as described in Section 3.4. The
UNIGRAM and ADJPAIR conditions were explored
for each of the three feature sets, resulting in six
experimental conditions. These conditions were
chosen in order to explore the convergence behav-
ior of HMMs under the different feature sets and
preprocessing, and to compare measures of descrip-
tive fit with measures of predictive power.

4.4 Learned HMMs

Figures 1 and 2 show a subset of the DAONLY
UNIGRAM model and the DATASKDELAY ADJPAIR
model. These figures depict the structure of our
HMMs: each hidden state is associated with an
emission probability distribution over the possible
observation symbols.

5 Goodness-of-Fit Curves

The learning algorithm described in Section 4.2
was applied to input sequences under the six exper-
imental conditions to learn the best-fit HMM pa-
rameters. Figure 3 displays these AIC results,
which are discussed in detail in the remainder of
this section.

Figure 1. Subset of learned HMM (N=13) for

DAONLY UNIGRAM condition

Figure 2. Subset of learned HMM (N=9) for

DATASKDELAY ADJPAIR condition

5.1 Impact of Experimental Conditions

For the DAONLY condition, both the UNIGRAM and
ADJPAIR models generally improve until N=12 or
13, after which the fit generally worsens. A differ-

ent pattern emerges for the DATASK condition, in
which the UNIGRAM sequences are optimally fit to
a model with 16 states, while the ADJPAIR se-
quences are fit to a model with 8 states. Finally, for
the DATASKDELAY condition, the UNIGRAM se-
quences are best fit by a model with 10 hidden
states, while the ADJPAIR sequences are fit best
by 9. Typically, we see that ADJPAIR sequences are
fit to slightly simpler models in terms of the hy-
perparameter N, number of hidden states.

Figure 3. Number of hidden states and cor-
responding adjusted AIC, shifted to a mini-
mum score of zero indicating the best-fit N

A
dj

us
te

d
A

IC

a) Dialogue ActsOnly (DAONLY)

 N (number of hidden states)

A
dj

us
te

d
A

IC

b) Dialogue Act and Task Events (DATASK)

 N (number of hidden states)

A
dj

us
te

d
A

IC

c) Dialogue Act, Task, & Delayed Feedback
(DATASKDELAY)

 N (number of hidden states)

Stability in the hyperparameter N is an im-
portant consideration because an underlying as-
sumption of our work is that the hidden states
correspond to unobserved stochastic structures of
the real world process—that is, we hypothesize
that a “true” value for N exists. We would like
models to exhibit decreasing variation in goodness
of fit measures around this true N. To examine this
stability we consider the three best AIC values for
each condition and their corresponding Ns: the set
{Nk-best | k=1,2,3}. The range of this set indicates
how “far apart” the best three Ns are: for example,
in the DAONLY UNIGRAM condition, the top three
models have Ns of {13,10,15}, yielding a range of
5. Intuitively, a small value for this metric indicates
that the model has converged tightly on N.

Figure 4 shows the stability results for the six
different experimental conditions. As shown in the
figure, for the DATASK and DATASKDELAY condi-
tions, the ADJPAIR models achieve the smallest
range among the top three values of N; these mod-
els converge most tightly to the “best” value.

Figure 4. Stability of N (range of {N1best, N2best,

N3best}) – smaller implies tighter convergence to
“best” N

6 Predictive Analysis

Section 5 presented an analysis of the goodness-of-
fit curves of HMMs learned from the corpus. The
measures of stability and discrimination for N cap-
ture important aspects of the behavior of HMMs
toward this parameter, which is conceived of as
representing “true” real-world stochastic behavior.
In this way, Section 5 has presented a descriptive
view of HMM dialogue models.

This section presents a predictive view of the
models. Specifically, we consider prediction accu-
racy, defined as the percent of tutor dialogue moves

that the model is able to correctly predict given the
dialogue history sequence up to that point.

6.1 Impact of Dependent Adjacency Pairs

We first explore whether the preprocessing step of
joining dependent adjacency pairs impacted predic-
tion accuracy. The prediction accuracy of the best-
fit model in each condition is displayed in Figure 5.
This figure includes prediction accuracy on training
data, which were used to learn model parameters,
as well as prediction accuracy on testing data,
which were withheld from model training.

Figure 5. Prediction accuracy for tutor moves

As shown in Figure 5, joining the adjacency

pairs improved model performance on the training
sets of all three conditions, indicating that the varia-
tion within the training data was better explained
by ADJPAIR models. (This measure of predictive
power is different from a goodness-of-fit criterion
as described in the previous section, a relationship
that will be discussed further in Section 7.) In con-
trast to the training set performance, the ADJPAIR
models performed better than UNIGRAM models for
the testing set only in the DATASKDELAY condi-
tion.

6.2 Impact of Task-Oriented Feature Sets

As illustrated in Figure 5, the three feature sets per-
form similarly under the UNIGRAM condition. This
performance is slightly above baseline (DAONLY
and DATASK baselines = 0.38; DATASKDELAY
baseline = 0.30), and diminishes little between the
training and testing sets. In contrast, under the
ADJPAIR condition, performance between condi-
tions and across training and testing sets varies. The
DATask model performs far better on predicting
observations in the training than the testing set,

suggesting possible overfitting to the training set.
This relationship is discussed further in Section 7.
The DATASKDELAY model performs well during
both training and testing, though with a slight de-
crease in accuracy on the testing set.

6.3 Relationship Between Predictive and De-
scriptive Metrics

Measures of fit such as log-likelihood and AIC cap-
ture the likelihood of observing the data given a
model. Predictive accuracy, on the other hand,
measures the probability that the model can predict
the next observation given a partial sequence. In
general, we would expect these measures to corre-
late well; however, there is not perfect correlation
between these metrics because the mechanism by
which log-likelihood (and thereby AIC) is derived
involves maximizing likelihood over complete se-
quences, while prediction is performed over partial
sequences.

To examine how well AIC and prediction accu-
racy correlate, Figure 6 displays these values for a
subset of the models in the DAONLY UNIGRAM
condition and the DATASKDELAY ADJPAIR condi-
tion. These two conditions represent the extremes
of the experimental conditions, with DAONLY con-
taining the least information about the task-oriented
dialogue while DATASKDELAY contains the most
information.

As shown in Figure 6, the correlation for
DAONLY UNIGRAM roughly conforms to what
would be expected: lower AIC, indicating better
model fit, is associated with the highest prediction
accuracies. The relationship is less clear for the
DATASKDELAY ADJPAIR condition. While its
worst AIC is associated with the lowest prediction
accuracy as expected, the best AIC is not associated
with the highest prediction accuracy. This phenom-
enon may be due to the lack of spread among AIC
values overall for this condition; as seen in Figure
3, the DATASKDELAY ADJPAIR condition has the
flattest AIC curve of all conditions, indicating that
for this condition the difference between best-fit
and worst-fit models is smaller than for any other
condition. The inconsistent relationship between
AIC and prediction accuracy, therefore, may be the
product of noise surrounding a large set of “good”
models, whereas for the DAONLY UNIGRAM condi-
tion, the set of good models is smaller.

7 Discussion

The results suggest several important findings re-
garding feature sets and preprocessing for learning
HMMs of task-oriented dialogue. First, the models’
convergence patterns to a best-fit N, number of
hidden states, indicate that more information em-
bedded within the sequences may correspond with
a flatter goodness-of-fit curve. Adding more infor-
mation to the input sequences may introduce some
regularities that partly mitigate the limitations of
even a poorly fit HMM. This additional infor-
mation may come in the form of adjacency pairs
discovered in an unsupervised fashion, which im-
proved the stability of convergence on the best-fit
N under the DATASK and DATASKDELAY condi-
tions. This increased stability is likely due to the
fact that under these conditions, leveraging adja-
cency pair information augments the HMM’s struc-
ture with contextual dependencies that could
otherwise not be learned under the traditional
HMM framework.

For predictive accuracy, the benefits of richer
input sequences are also highlighted. The most
highly predictive models included all three sources

P
re

di
ct

io
n

A
cc

ur
ac

y

a) DAOnly UNIGRAM Condition

 AIC

P
re

di
ct

io
n

A
cc

ur
ac

y

b) DATASKDELAY ADJPAIR Condition

 AIC

Figure 6. Prediction accuracy vs. AIC

of information: dialogue acts, task events, and de-
layed feedback tags. However, with the addition of
this rich information to the input sequences and the
accompanying flatter goodness-of-fit curve as dis-
cussed above, we noted an irregular pattern of cor-
relation between goodness-of-fit and predictive
accuracy that is worthy of future exploration. Spe-
cifically, it appears that the most highly predictive
DATASKDELAY ADJPAIR model, which is the most
highly predictive of all models in all conditions,
does not correspond to the best (lowest) AIC for
that condition (Figure 3). This finding suggests that
when a predictive task is the primary goal, a predic-
tive metric should be used to select the best-fit
model. Additional support for such an approach is
provided by the close correspondence between
training and testing set prediction accuracy.

8 Conclusion

Understanding how HMMs behave under different
feature sets is an important step toward learning
effective models of task-oriented dialogue. This
paper has examined how HMMs converge to a best
number of hidden states under different experi-
mental conditions. We have also considered how
well HMMs under these conditions predict tutor
dialogue acts within a corpus of task-oriented tutor-
ing, a crucial step toward learning dialogue policies
from human corpora. The findings highlight the
importance of adding rich task-based features to the
input sequences in order to learn HMMs that con-
verge tightly on the best-fit number of hidden
states. The results also indicate that caution should
be used when utilizing traditional goodness-of-fit
metrics, which are appropriate for descriptive ap-
plications, if the goal is to learn a highly predictive
model.

This line of research is part of a larger research
program of learning unsupervised models of human
task-oriented dialogue that can be used to define
the behavior of dialogue systems. Developing a
framework for learning a dialogue policy from hu-
man corpora, as discussed here, is a critical step
toward that goal. Future work should focus on un-
supervised dialogue act classification, and address
the challenges of user plan recognition.

Acknowledgments. This work is supported in part by
National Science Foundation through Grants REC-
0632450, IIS-0812291, DRL-1007962 and the STARS

Alliance Grant CNS-0739216. Any opinions, findings,
conclusions, or recommendations expressed in this re-
port are those of the participants, and do not necessarily
represent the official views, opinions, or policy of the
National Science Foundation.

References

Akaike, H. (1976). An information criterion (AIC).
Math. Sci., 14(153), 5-9.

Bangalore, S., Di Fabbrizio, G., & Stents, A. (2006).
Learning the structure of task-driven human-human
dialogs. Proceedings of ACL ’06, 201-208.

Boyer, K. E., Ha, E. Y., Phillips, R., Wallis, M. D.,
Vouk, M. A., & Lester, J. C. (2010). Dialogue Act
Modeling in a Complex Task-Oriented Domain.
Proceedings of SIGDIAL (pp. 297-305).

Boyer, K. E., Phillips, R., Ha, E. Y., Wallis, M. D.,
Vouk, M. A., & Lester, J. C. (in press). Learning a
Tutorial Dialogue Policy for Delayed Feedback.
Proceedings of the 24th International FLAIRS Con-
ference.

Boyer, K. E., Phillips, R., Ha, E. Y., Wallis, M. D.,
Vouk, M. A., & Lester, J. C. (2009). Modeling dia-
logue structure with adjacency pair analysis and hid-
den Markov models. Proceedings of NAACL HLT,
Companion Volume, 49-52.

Boyer, K. E., Phillips, R., Ha, E. Y., Wallis, M. D.,
Vouk, M. A., & Lester, J. C. (2010). Leveraging
Hidden Dialogue State to Select Tutorial Moves.
Proceedings of the NAACL HLT 2010 Fifth Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications (pp. 66-73).

Boyer, K. E., Phillips, R., Ingram, A., Young, E., Wallis,
M., Vouk, M., et al. (in press). Investigating the Re-
lationship Between Dialogue Structure and Tutoring
Effectiveness: A Hidden Markov Modeling Ap-
proach. International Journal of Artificial Intelli-
gence in Education.

Di Eugenio, B., Xie, Z., & Serafin, R. (2010). Dialogue
Act Classification, Higher Order Dialogue Structure,
and Instance-Based Learning. Dialogue & Dis-
course, 1(2), 1-24.

Georgila, K., Lemon, O., Henderson, J., & Moore, J. D.
(2009). Automatic annotation of context and speech
acts for dialogue corpora. Natural Language Engi-
neering, 15(3), 315-353.

Midgley, T. D., Harrison, S., & MacNish, C. (2006).
Empirical verification of adjacency pairs using dia-
logue segmentation. Proceedings of SIGDIAL, 104-
108.

Rabiner, L. R. (1989). A tutorial on hidden Markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2), 257-286.

Rotaru, M., & Litman, D. J. (2009). Discourse Structure
and Performance Analysis : Beyond the Correlation.
Proceedings of SIGDIAL (pp. 178-187).

Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates,
R., Jurafsky, D., et al. (2000). Dialogue Act Model-
ing for Automatic Tagging and Recognition of Con-
versational Speech. Computational Linguistics,
26(3), 339-373.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P.,
Olney, A., & Rose, C. P. (2007). When Are Tutorial

Dialogues More Effective Than Reading? Cognitive
Science: A Multidisciplinary Journal, 30(1), 3-62.

Woszczyna, M., & Waibel, A. (1994). Inferring linguis-
tic structure in spoken language. Proceedings of the
International Conference on Spoken Language Pro-
cessing (pp. 847-850).

Young, S., Gašić, M., Keizer, S., Mairesse, F.,
Schatzmann, J., Thomson, B., et al. (2010). The Hid-
den Information State model: A practical framework
for POMDP-based spoken dialogue management.
Computer Speech & Language, 24(2), 150-174.

Appendix. Excerpt from task-oriented textual human-human tutoring corpus.

Speaker Utterance or Event Tag

Student: [Task action on subtask 3-c-i-4] BUGGY

Student: [Task action on subtask 3-c-ii-5] CORRECT

Tutor: [Does not provide remediation for existing bug] NOREMEDIATION

Student: [Task action on subtask 3-c-iii-1] BUGGY

Student: i don't remember off the top of my head how the swap
function worked. most of the time i just copied and
pasted it from some of my older code

NEGATIVECONTENTFDBK

Tutor: The easiest way to swap x and y is to make a tempo-
rary variable

Student: Ok ACK

Student: do i need to pass the entire array and the indecies of the
items to swap?

ASSESSQ

Tutor: if you want to use a seperate method to swap, then yes,
you'll have to pass those things

POSCONTENTFDBK

Tutor: [Does not mention a correctly completed subtask]	 NOMENTIONCOMP

Student: oh. i guess i could just swap it in the same method. it is
problably easier that way, and less code. we were
showed in class how to do it separately, but i had never
thought of doing it the other way.

STMT

Student: [Task action on subtask 3-c-iii-2] DISPREFERRED

Tutor: Both ways work, but it’s definitely less code to just do
it inside this method.

STMT

Student: Ok ACK

