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Abstract 

Classifying the dialogue act of a user utterance 
is a key functionality of a dialogue 
management system. This paper presents a 
data-driven dialogue act classifier that is 
learned from a corpus of human textual 
dialogue. The task-oriented domain involves 
tutoring in computer programming exercises. 
While engaging in the task, students generate a 
task event stream that is separate from and in 
parallel with the dialogue. To deal with this 
complex task-oriented dialogue, we propose a 
vector-based representation that encodes 
features from both the dialogue and the 
hierarchically structured task for training a 
maximum likelihood classifier. This classifier 
also leverages knowledge of the hidden 
dialogue state as learned separately by an 
HMM, which in previous work has increased 
the accuracy of models for predicting tutorial 
moves and is hypothesized to improve the 
accuracy for classifying student utterances. 
This work constitutes a step toward learning a 
fully data-driven dialogue management model 
that leverages knowledge of the user-generated 
task event stream. 

1 Introduction 

Two central challenges for dialogue systems are 
interpreting user utterances and selecting system 
dialogue moves. Recent years have seen an 
increased focus on data-driven techniques for 
addressing these challenging tasks (Bangalore et 
al., 2008; Frampton & Lemon, 2009; Hardy et 
al., 2006; Sridar et al., 2009; Young et al., 2009). 
Much of this work utilizes dialogue acts, built on 
the notion of speech acts (Austin, 1962), which 

provide a valuable intermediate representation 
that can be used for dialogue management. 

Data-driven approaches to dialogue act 
interpretation have included models that take into 
account a variety of lexical, syntactic, acoustic, 
and prosodic features for dialogue act tagging 
(Sridhar et al., 2009; Stolcke et al., 2000). In 
task-oriented domains, recent work has 
approached dialogue act classification by 
learning dialogue management models entirely 
from human-human corpora (Bangalore et al., 
2008; Chotimongkol, 2008; Hardy et al., 2006). 
Our work adopts this approach for a corpus of 
human-human dialogue in a task-oriented 
tutoring domain. Unlike the majority of task-
oriented domains that have been studied to date, 
our domain involves the separate creation of a 
persistent artifact, in our case a computer 
program, by the user during the course of the 
dialogue. Our corpus consists of human-human 
textual dialogue utterances and a separate, 
parallel stream of user-generated task actions. 
We utilize structural features including 
task/subtask, speaker, and hidden dialogue state 
along with lexical and syntactic features to 
interpret user (student) utterances.  

This paper makes three contributions. First, it 
addresses representational issues in creating a 
dialogue model that integrates task actions with 
hierarchical task/subtask structure. The task is 
captured within a separate synchronous event 
stream that exists in parallel with the dialogue. 
Second, this paper explores the performance of 
dialogue act classifiers using different 
lexical/syntactic and structural feature sets. This 
comparison includes one model trained entirely 
on lexical/syntactic features, an important step 
toward robust unsupervised dialogue act tagging 



(Sridhar et al., 2009). Finally, it investigates 
whether the addition of HMM and task/subtask 
features improves the performance of the 
dialogue act classifiers. The findings support this 
hypothesis for three student dialogue moves, 
each with important implications for tutorial 
dialogue.  

2 Related Work 

A variety of modeling approaches have been 
investigated for statistical dialogue act 
classification, including sequential approaches 
and vector-based classifiers. Sequential 
approaches typically formulate dialogue as a 
Markov chain in which an observation depends 
on a finite number of preceding observations. 
HMM-based approaches make use of the Markov 
assumption in a doubly stochastic framework 
that allows fitting optimal dialogue act sequences 
using the Viterbi algorithm (Rabiner, 1989; 
Stolcke et al., 2000). Like this work, the 
approach reported here adopts a first-order 
Markov formulation to train an HMM on 
sequences of dialogue acts, but the prediction of 
this HMM is subsequently encoded in a feature 
vector for training a vector-based classifier. 

Vector-based approaches, such as maximum 
entropy modeling, also frequently take into 
account both lexical/syntactic and structural 
features. Lexical and syntactic cues are extracted 
from local utterance context, while structural 
features involve longer dialogue act sequences 
and, in task-oriented domains, task/subtask 
history. Work by Bangalore et al. (2008) on 
learning the structure of human-human dialogue 
in a catalogue-ordering domain (also extended to 
the Maptask and Switchboard corpora) utilizes 
features including words, part of speech tags, 
supertags, and named entities, and structural 
features including dialogue acts and task/subtask 
labels. In order to perform incremental decoding 
of dialogue acts and task/subtask structure, they 
take a greedy approach that does not require the 
search of complete dialogue sequences. Our 
work also accomplishes left-to-right incremental 
interpretation with a greedy approach. Our 
feature vectors differ from the aforementioned 
work slightly with respect to lexical/syntactic 
features and notably in the addition of a set of 
structural features generated by a separately 
trained HMM, as described in Section 4.2.  

Recent work has explored the use of lexical, 
syntactic, and prosodic features for online 
dialogue act tagging (Sridhar et al., 2009); that 

work explores the notion that structural (history) 
features could be omitted altogether from 
incremental left-to-right decoding, resulting in 
computationally inexpensive and robust dialogue 
act classification. Although our textual dialogue 
does not feature prosodic cues, we report on the 
use of lexical/syntactic features alone to perform 
dialogue act classification, a step toward a fully 
unsupervised approach.   

Like Bangalore et al. (2008), we treat task 
structure as an integral part of the dialogue 
model. Other work that has taken this approach 
includes the Amitiés project, in which a dialogue 
manager for a financial domain was derived 
entirely from a human-human corpus (Hardy et 
al., 2006). The TRIPS dialogue system also 
closely integrated task and dialogue models, for 
example, by utilizing the task model to facilitate 
indirect speech act interpretation (Allen et al., 
2001). Work on the Maptask corpus has modeled 
task structure in the form of conversational 
games (Wright Hastie et al., 2002). Recent work 
in task-oriented domains has focused on learning 
task structure with unsupervised approaches 
(Chotimongkol, 2008). Emerging unsupervised 
methods, such as for detecting actions in multi-
party discourse, also implicitly capture a task 
structure (Purver et al., 2006).  

Our domain differs from the task-oriented 
domains described above in that our dialogues 
center on the user creating a persistent artifact of 
intrinsic value through a separate, synchronous 
stream of task actions. To illustrate, consider a 
catalogue-ordering task in which one subtask is 
to obtain the customer’s name. The fulfillment of 
this subtask occurs entirely through the dialogue, 
and the resulting artifact (a completed order) is 
produced by the system. In contrast, our task 
involves the user constructing a solution to a 
computer programming problem. The fulfillment 
of this task occurs partially in the dialogue 
through tutoring, and partially in a separate 
synchronous stream of user-driven task actions 
about which the tutor must reason. The stream of 
user-driven task actions produces an artifact of 
value in itself (a functioning computer program), 
and that artifact is the subject of much of the 
dialogue. We propose a representation that 
integrates task actions and dialogue acts from 
these streams into a shared vector-based 
representation, and we investigate the use of the 
resulting structural, lexical, and syntactic 
features for dialogue act classification.  



3 Corpus and Annotation 

The corpus was collected during a controlled 
human-human tutoring study in which tutors and 
students worked through textual dialogue to 
solve an introductory computer programming 
problem. The dialogues were effective: on 
average, students exhibited significant learning 
and self-confidence gains (Boyer et al., 2009).   

The corpus contains 48 dialogues each with a 
separate, synchronous task event stream as 
depicted in Excerpt 1 of the appendix. There is 
exactly one dialogue (tutoring session) per 
student. The corpus captures approximately 48 
hours of dialogue and contains 1,468 student 
utterances and 3,338 tutor utterances. Because 
the dialogue was textual, utterance segmentation 
consisted of splitting at existing sentence 
boundaries when more than one dialogue act was 
present in the utterance. This segmentation was 
conducted manually by the principal dialogue act 
annotator.1  

The corpus was manually annotated with 
dialogue act labels and task/subtask features. 
Lexical and syntactic features were extracted 
automatically. The remainder of this section 
describes the manual annotation. 

3.1 Dialogue Act Annotation 

The dialogue act annotation scheme was inspired 
by schemes for conversational speech (Stolcke et 
al., 2000) and task-oriented dialogue (Core & 
Allen, 1997). It was also influenced by tutoring-
specific tagsets (Litman & Forbes-Riley, 2006). 
Inter-rater reliability for the dialogue act tagging 
on 10% of the corpus selected via stratified (by 
tutor) random sampling was ĸ=0.80. The 
dialogue act tags, their relative frequencies, and 
their individual kappa scores from manual 
annotation are displayed in Table 1.  

3.2 Task Annotation 

All task actions were generated by the student 
while implementing the solution to an 
introductory computer programming problem in 
Java. These task actions were recorded as a 
separate event stream in parallel with the 
dialogue corpus. This stream included 97,509 
keystroke-level user task events, which were 
manually aggregated into task/subtask event 
clusters and annotated for subtask structure and 
then for correctness. A total of 3,793 aggregated 

                                                
1 Automatic segmentation is a challenging problem in itself 
and is left to future work. 

student subtask actions were identified through 
manual annotation. The task annotation scheme 
is hierarchical, reflecting the nested nature of the 
subtasks. A subset of this task annotation scheme 
is depicted in Figure 1. In the models reported in 
this paper, the 66 leaves of the task/subtask 
hierarchy were encoded in the input feature 
vectors.  
 

Table 1. Student dialogue acts 

Student Dialogue Act 
Rel. 
Freq. 

Human 
κ 

ACKNOWLEDGMENT (ACK)  .17  .90 

REQUEST FOR FEEDBACK (RF)  .20  .91 

EXTRA‐DOMAIN (EX)  .08  .79 

GREETING (GR)  .04  .92 

UNCERTAIN FEEDBACK WITH ELABORATION (UE)  .01  .53 

UNCERTAIN FEEDBACK (U)  .02  .49 

NEGATIVE FEEDBACK WITH ELABORATION (NE)  .01  .61 

NEGATIVE FEEDBACK (N)  .05  .76 

POSITIVE FEEDBACK WITH ELABORATION (PE)  .02  .43 

POSITIVE FEEDBACK (P)  .09  .81 

QUESTION (Q)  .09  .85 

STATEMENT (S)  .16  .82 

THANKS (T)  .05  1 
 

Each group of task events that occurred between 
dialogue utterances was tagged, possibly with 
many subtask labels, by a human judge. The 
judge aggregated the raw task keystrokes and 
tagged the task/subtask hierarchy for each 
cluster. (Please see Excerpt 1 in the appendix.) A 
second judge tagged 20% of the corpus in a 
reliability study for which one-to-one subtask 
identification was not enforced, an approach that 
was intended to give judges maximum flexibility 
to cluster task actions and subsequently apply the 
tags. All unmatched subtask tags were treated as 
disagreements. The resulting kappa statistic at 
the leaves was ĸ= 0.58. However, we also 
observe that the sequential nature of the subtasks 
within the larger task produces an ordinal 
relationship between subtasks. For example, in 
Figure 1, the “distance” between subtasks 1-a 
and 1-b can be thought of as “less than” the 
distance between subtasks 1-a vs. 3-d because 
those subtasks are farther from each other within 
the larger task. The weighted Kappa statistic 
(Artstein & Poesio, 2008) takes into account 
such an ordinal relationship and its implicit 
distance function. The weighted Kappa is 



ĸweighted=0.86, which indicates acceptable inter-
rater reliability on the task/subtask annotation. 

 

Figure 1. Portion of task annotation scheme 
 
Along with its tag for hierarchical subtask 

structure, each task event was also judged for 
correctness according to the requirements of the 
task as depicted in Table 2. The agreement 
statistic for correctness was calculated for task 
events on which the two judges agreed on 
subtask tag. The resulting unweighted agreement 
statistic for correctness was ĸ=0.80. 

 
Table 2. Task correctness labels 

 

Label  Description 

CORRECT  Fully  satisfying  the  requirements  of 
the  learning  task.  Does  not  require 
tutorial remediation. 

BUGGY  Violating  the  requirements  of  the 
learning task. Often requires tutorial 
remediation. 

INCOMPLETE  Not  violating,  but  not  yet  fully 
satisfying,  the  requirements  of  the 
learning  task.  May  require  tutorial 
remediation. 

DISPREFERRED  Technically  satisfying  the 
requirements  of  the  learning  task, 
but  not  adhering  to  its  pedagogical 
intentions.  Usually  requires  tutorial 
remediation. 

4 Features 

The vector-based representation for training the 
dialogue act classifiers integrates several sources 
of features: lexical and syntactic features, and 
structural features that include dialogue act 
labels, task/subtask labels, and set of hidden 
dialogue state prediction features.   

4.1 Lexical and Syntactic Features 

Lexical and syntactic features were automatically 
extracted from the utterances using the Stanford 
Parser default tokenizer and part of speech (pos) 
tagger (De Marneffe et al., 2006). The parser 
created both phrase structure trees and typed 
dependencies for individual sentences. From the 
phrase structure trees, we extracted the top-most 
syntactic node and its first two children. In the 
case where an utterance consisted of more than 
one sentence, only the phrase structure tree of the 
first sentence was considered. Typed 
dependencies between pairs of words were 
extracted from each sentence. Individual word 
tokens in the utterances were further processed 
with the Porter Stemmer (Porter, 1980) in the 
NLTK package (Loper & Bird, 2004). The pos 
features were extracted in a similar way. 
Unigram and bigram word and pos tags were 
included for feature selection in the classifiers.   

4.2 Structural Features 

Structural features include the annotated 
dialogue acts, the annotated task/subtask labels, 
and attributes that represent the hidden dialogue 
state. Our previous work has found that a set of 
hidden dialogue states, which correspond to 
widely accepted notions of dialogue modes in 
tutoring, can be identified in an unsupervised 
fashion (without hand labeling of the modes) by 
HMMs trained on manually labeled dialogue acts 
and task/subtask features (Boyer et al., 2009). 
These HMMs performed significantly better than 
bigram models for predicting human tutor moves 
(Boyer et al., 2010), which indicates that the 
hidden dialogue state leveraged by the HMMs 
has predictive value even in the presence of 
“true” (manually annotated) dialogue act labels. 
Therefore, we hypothesized that an HMM could 
also improve the performance of models to 
classify student dialogue acts. To explore this 
hypothesis, we trained an HMM utilizing the 
methodology described in (Boyer et al., 2009) 
and used it to generate hidden dialogue state 
predictions in the form of a probability 
distribution over possible user utterances at each 
step in the dialogue. This set of stochastic 
features was subsequently passed to the classifier 
as part of the input vector (Figure 2).  

4.3 Input Vectors 

The features were combined into a shared vector-
based representation for training the classifier. 
As depicted in Table 3, the components of the 



feature vector include binary existence vectors 
for lexical and syntactic features for the current 
(target) utterance as well as for three utterances 
of left context (this left context may include both 
tutor and student utterances, which are 
distinguished by a separate indicator for the 
speaker). The task/subtask and correctness 
history features encode the separate stream of 
task events. There is no one-to-one 
correspondence between these history features 
and the left-hand dialogue context, because 
several task events could have occurred between 
a pair of dialogue events (or vice versa). This 
distinction is indicated in the table by the 
representation of dialogue time steps as [t, t-1,…] 
and task history steps as [task(t), task(t-1),…]. In 
total, the feature vectors included 11,432 
attributes that were made available for feature 
selection.  

 
Figure 2. Generation of hidden dialogue state 

prediction features 

5 Experiments 

This section describes the learning of maximum 
likelihood vector-based models for classification 
of user dialogue acts. In addition to investigating 
the accuracy of the overall model, we also 
performed experiments regarding the utility of 
feature types for discriminating between 
particular dialogue acts of interest.    

The classifiers are based on logistic 
regression, which learns a discriminant for each 
pair of dialogue acts by assigning weights in a 
maximum likelihood fashion. 2   The logistic 
regression models were learned using the Weka 
machine learning toolkit (Hall et al., 2009). For 

                                                
2 In general, the model that maximizes likelihood also 
maximizes entropy under the same constraints 
(Berger et al., 1996).  

feature selection, we performed attribute subset 
evaluation with a best-first approach that 
greedily searched the space of possible features 
using a hill climbing approach with 
backtracking. The prediction accuracy of the 
classifiers was determined through ten-fold 
cross-validation on the corpus, and the results 
below are presented in terms of prediction 
accuracy (number of correct classifications 
divided by total number of classifications) as 
well as by the kappa statistic, which adjusts for 
expected agreement by chance.   

 
Table 3. Feature vectors 

Feature vector f  Description 

[wt,1,…wt,|w|, 
pt,1,…,pt,|p|, 
dt,1,…,dt,|d|, 
st,1,…,st,|s|] 

Binary existence vector for word 
unigrams & bigrams, pos unigrams & 
bigrams, dependency types, and syntactic 
nodes for current target utterance t  

[wt-k,1,…wt-k,|w|, 
pt-k,1,…,pt-k,|p|, 
dt-k,1,…,dt-k,|d|, 
st-k,1,…,st-k,|s|]  
where k=1,…,3 

Binary existence vector for word 
unigrams & bigrams, pos unigrams & 
bigrams, dependency types, and syntactic 
nodes for three utterances of left context 

[p(o1),…,p(o|S|)] 
Probability distribution for emission 
symbols in predicted next hidden state as 
generated by HMM  

[dat-1, dat-2, dat-3] Dialogue act left context  

[spt-1,spt-2, spt-3]  Speaker label left context 

[tktask(t-1), tktask(t-2), 
tktask(t-3)] 

Three steps of subtask history (each level 
of hierarchy represented as a separate 
feature)  

[ctask(t-1), ctask(t-2), 
ctask(t-3)] 
 

Three steps of task correctness history 

pt Indicator for whether the target 
utterance was immediately preceded by 
a task event 

 

5.1 Overall Classification Task 

The overall dialogue act classification model was 
trained to classify each utterance with respect to 
the thirteen dialogue acts (Table 1). For this task, 
the feature selection algorithm selected 63 
attributes including some syntax, dependency, 
pos, and word attributes as well as dialogue act, 
speaker, and task/subtask features. No hidden 
dialogue state features or task correctness 
attributes were selected. The overall 
classification accuracy was 62.8%. This accuracy 
constitutes a 369% improvement over baseline 
chance of 17% (the relative frequency of the 
most frequently occurring dialogue act, ACK). 
An alternate nontrivial baseline is a bigram 
model on true dialogue acts (including speaker 
tags); this model’s accuracy was 36.8%. The 



overall kappa for the full classifier was ĸ=.57. 
The confusion matrix for this model is depicted 
in Figure 3.  
      In addition to the classifier described above, 
we experimented with classifiers that used only 
the lexical and syntactic features of each 
utterance. This approach is of interest in part 
because it avoids the error propagation that can 
happen when a model relies on a series of its 
own previous classifications as features. The 
classifier that used only the set of lexical and 
syntactic features achieved a prediction accuracy 
of 60.2% and ĸ=.53 using 85 attributes.  
 

 

5.2 Binary Dialogue Act Classification 

In tutoring, some student dialogue acts are 
particularly important to identify because of their 
implications for the tutor’s response or for the 
student model. For example, a student’s 
REQUEST FOR FEEDBACK requires the tutor to 
assess the condition of the task, rather than to 
query the in-domain factual knowledge base. 
UNCERTAIN FEEDBACK is another dialogue act of 
high importance because identifying it allows the 
tutor to respond in an affectively advantageous 
way (Forbes-Riley & Litman, 2009).  

To explore which features are useful for 
classifying particular dialogue acts, we 
constructed binary dialogue act classifiers, one 
for each dialogue act, by preprocessing the 
dialogue act labels from the set of thirteen down 
to TRUE or FALSE depending on whether the label 
of the utterance matched the target dialogue act 
for that specialized classifier. Table 4 displays 
the features that were selected for each binary 
classifier, along with the percent accuracy and 
kappa for each model. Note that for some 
dialogue acts the chance baseline is very high, 
and therefore even a model with high prediction 
accuracy achieves a low kappa.   
      As depicted in Table 4, for several dialogue 
act models, the feature selection algorithm 
retained subtask and HMM features.  
 

Table 4. Binary DA classifiers 
 

DA  # Features Selected 
% 

Correct 
Model 

κ 

ACK  51 
Lexical/syntax, HMM, DA history 
(preceding=S), speaker history 

(preceding=Tutor)  

.933  .75 

RF  42 
Lexical/syntax, DA history, 

preceded by subtask 
.905  .72 

EX  57 
Dependency, pos, word, HMM, 
DA history (preceding=EX), 

subtask 

.939  .45 

GR  11 
Syntax, pos, word, DA 

(previous=EMPTY), speaker, 
subtask  

.998  .97 

UE  21  Dependency, pos, word, subtask  .991  .33 

U  63 
Syntax, dependency, pos, word, 

HMM, subtask 
.979  .21 

NE  44 
Dependency, pos, word, HMM, 
DA history (2 ago=UNCERTAIN), 

subtask 

.987  0 

N  83 
Lexical/syntax, DA history, 

subtask 
.966  .76 

PE  90 
Dependency, pos, word, HMM, 

subtask 
.976  .10 

P  110 
Dependency, pos, word, HMM, 
DA history (previous=REQUEST 

FEEDBACK) 

.945  .58 

Q  43 
Syntax, dep, pos, word, HMM, 

subtask 
.940  .60 

S  92 
Syntax, pos, word, HMM, DA 
history (previous=EMPTY or Q) 

.901  .57 

T  29 
Syntax, pos, word, DA history 

(previous=POSITIVE) (3 
ago=POSITIVE) 

.992  .92 

 

   In an experiment to quantify the utility of these 
features, it was found that for many dialogue 
acts, a binary dialogue act classifier that was 
trained using only lexical and syntactic features 
achieved the same or better classification 
accuracy than the model that was given all 
features (Figure 4). For comparison, the modified 
baseline model used the last three true dialogue 
acts (with speaker tags); this model achieved 
better than chance for four dialogue acts and 
achieved nearly as well as the full model for 
GREETING (GR). The models that were given all 
possible features for selection outperformed the 
lexical/syntax-only model for seven of the 
thirteen dialogue acts (GREETING (GR), REQUEST 
FOR FEEDBACK (RF), POSITIVE FEEDBACK (P), 
POSITIVE ELABORATED FEEDBACK (PE), 
UNCERTAIN ELABORATED FEEDBACK (UE), 
NEGATIVE FEEDBACK (N), and EXTRA-DOMAIN 
(EX)); however, it should be noted that none of 
these differences in performance is statistically 
reliable at the p=0.05 level.  
 

Figure 3. Confusion matrix 



 

Figure 4. Kappa for binary DA classifiers by 
features available for selection 

6 Discussion 

We have presented a maximum likelihood 
classifier that assigns dialogue act labels to user 
utterances from a corpus of human-human 
tutorial dialogue given a set of lexical, syntactic, 
and structural features. Overall, this classifier 
achieved 62.8% accuracy in ten-fold cross-
validation on the corpus. This performance is on 
par with other automatic dialogue act tagging 
models, both sequential and vector-based, in 
task-oriented domains that do not feature 
complex, user-driven parallel tasks. 

In a catalogue ordering domain with an 
integrated task and dialogue model, Bangalore et 
al. (2009) report 75% classification accuracy for 
user utterances using a maximum entropy 
classifier, a 275% improvement over baseline. 
Poesio & Mikheev (1998) report 54% 
classification accuracy by utilizing 
conversational game structure and speaker 
changes in the Maptask corpus, an improvement 
of 170% over baseline. Recent work on Maptask 
reports a classification accuracy of 65.7% using 
local utterance (such as lexical/syntactic) 
features alone, with prosodic cues yielding 
further slight improvement (Sridhar et al., 2009). 
This classifier is analogous to our 
lexical/syntactic feature model, which achieved 
60.2% accuracy. 

The results of these models demonstrate that, 
consistent with the findings in other task-oriented 
domains, lexical/syntactic features are highly 
useful for classifying student dialogue moves in 
this complex task-oriented domain. Models 
trained using those lexical/syntactic features 

performed almost universally better (with the 
exception of the binary classifier for GREETING) 
than models that were given the same left context 
of true dialogue act tags.  

It was hypothesized that leveraging both the 
hidden dialogue state and hierarchical subtask 
features would improve the performance of the 
classifiers. There is some evidence that the 
subtask structure was helpful for the overall 
classifier; however, no HMM features were kept 
during feature selection for the overall model. Of 
the binary models, approximately half performed 
better than the overall model in terms of true 
positive rate; of those, three did so by including 
HMM or task/subtask features among the 
selected attributes to differentiate different tones 
of student feedback. However, this difference in 
performance was not statistically reliable. This 
finding suggests that, given lexical and syntactic 
features which are strong predictors of dialogue 
acts, the hidden dialogue state as captured by an 
an HMM may not contribute significantly to the 
dialogue act classification task. 

7 Conclusion and Future Work 

Dialogue modeling for complex task-oriented 
domains poses significant challenges. An 
effective dialogue model allows systems to 
detect user dialogue acts so that they can respond 
in a manner that maximizes the chance of 
success. Experiments with the data-driven 
classifiers presented in this paper demonstrate 
that lexical/syntactic features can effectively 
classify student dialogue acts in the task-oriented 
tutoring domain. For POSITIVE, NEGATIVE, and 
UNCERTAIN ELABORATED student feedback acts, 
which play a key role in tutorial dialogue system, 
the addition of hidden dialogue state features (as 
learned by an HMM) and task/subtask features 
(annotated manually) improve classification 
accuracy, but not statistically reliably.  

  The overarching goal of this work is to create 
a data-driven tutorial dialogue system that learns 
its behavior from corpora of effective human 
tutoring. The dialogue act classification models 
reported here constitute an important step toward 
that goal, by integrating the dialogue stream with 
a parallel user-driven task event stream. The next 
generation of data-driven systems should 
leverage models that capture the rich interplay 
between dialogue and task. Future work will 
focus on data-driven approaches to task 
recognition and tutorial planning. Additionally, 
as dialogue system research addresses 



increasingly complex task-oriented domains, it 
becomes increasingly important to investigate 
unsupervised approaches for dialogue act 
classification and task recognition.  
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Time Stamp Dialogue Stream 
Task 

Stream  
2008-04-11 18:23:45 Student:  so do i have to manipulate the 

array this time? [Q]   
2008-04-11 18:23:53 Tutor:  this time, we need to do two things 

[S]    
2008-04-11 18:24:02 Tutor:  first, we need to create a new 

array to hold the changed values 
[S]    

2008-04-11 18:24:28     i 
2008-04-11 18:24:28     n 
2008-04-11 18:24:28     t 
2008-04-11 18:24:28     \sp 

1-a-i 
BUGGY 

2008-04-11 18:24:35     \del  
2008-04-11 18:24:36     \sp  
2008-04-11 18:24:36     d 
2008-04-11 18:24:36     o 
2008-04-11 18:24:36     u 
2008-04-11 18:24:36     b 
2008-04-11 18:24:37     l 
2008-04-11 18:24:37     e 
2008-04-11 18:24:37     \sp 
2008-04-11 18:24:39     [] 

1-a-i 
CORRECT 

2008-04-11 18:24:40     \sp  
2008-04-11 18:24:42     n 
2008-04-11 18:24:42     e 
2008-04-11 18:24:42     w 
2008-04-11 18:24:43     \sp 
2008-04-11 18:24:44     \del 
2008-04-11 18:24:45     T 
2008-04-11 18:24:46     \del 
2008-04-11 18:24:54     T 
2008-04-11 18:24:54     i 
2008-04-11 18:24:54     m 
2008-04-11 18:24:54     e 
2008-04-11 18:24:54     s 
2008-04-11 18:24:55     3 
2008-04-11 18:24:57     ; 

1-a-ii 
CORRECT 

2008-04-11 18:25:11 Student:  good? [RF]    
2008-04-11 18:25:14 Tutor:  good so far, yes [PF]    
2008-04-11 18:25:29 Student:  so now i have to change parts of 

the times array right? [Q]    
2008-04-11 18:25:34 Tutor:  not quite [LF]    
2008-04-11 18:25:57 Tutor:  So, when you create a new object, 

like a String for example, you'd say 
something like  String s = new 
String() [S]    

2008-04-11 18:25:59 Tutor:  right? [AQ]    
2008-04-11 18:26:06 Student:  right [P]    
2008-04-11 18:26:14 Tutor:  arrays are similar [S]    
 
 
 
 

 

 
 
 

 

Appendix
 

Excerpt 1. Parallel synchronous dialogue and task event streams 
with annotations. (Note tutor dialogue acts: AQ=ASSESSING 

QUESTION, LF=LUKEWARM FEEDBACK, PF=POSITIVE FEEDBACK) 


