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Abstract. Identifying effective tutorial dialogue strategies is a key 
issue for intelligent tutoring systems research. Human-human 
tutoring offers a valuable model for identifying effective tutorial 
strategies, but extracting them is a challenge because of the 
richness of human dialogue. This paper addresses that challenge 
through a machine learning approach that 1) learns tutorial 
strategies from a corpus of human tutoring, and 2) identifies the 
statistical relationships between student outcomes and the learned 
strategies. We have applied hidden Markov modeling to a corpus 
of annotated task-oriented tutorial dialogue to learn one model for 
each of two effective human tutors. We have identified significant 
correlations between the automatically extracted tutoring modes 
and student learning outcomes. This work has direct applications in 
authoring data-driven tutorial dialogue system behavior and in 
investigating the effectiveness of human tutoring. 
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1   Introduction 

A key issue in intelligent tutoring systems research is identifying effective 
tutoring strategies to support student learning. It has been long recognized 
that human tutoring offers a valuable model of effective tutorial strategies, 
and a rich history of tutorial dialogue research has identified some 
components of these strategies [1-4]. An important research direction is to 
use dialogue corpora to create models that can assess strategies’ 
differential effectiveness [5, 6]. There is growing evidence that tutorial 
dialogue structure can be automatically extracted from corpora of human 
tutoring, and that the resulting models can illuminate relationships 
between tutorial dialogue structure and student outcomes such as learning 
and motivation [7-11]. This paper takes a step beyond the previous work 
by identifying relationships between student learning and automatically 
extracted tutoring strategies, or modes. This modeling framework for 
extracting tutoring strategies and analyzing their differential effectiveness 
has direct applications in authoring data-driven tutorial dialogue system 
behavior and in research regarding the phenomena responsible for the 
effectiveness of human tutors. 



2   Related Work 

Identifying effective tutoring strategies has long been a research focus of 
the intelligent tutoring systems community. Empirical studies of human 
and computer tutoring have revealed characteristics of novice and expert 
tutors [12, 13], Socratic and didactic strategies [14], collaborative dialogue 
patterns in tutoring [15], and interrelationships between affect, motivation, 
and learning [1, 16]. As a rich form of communication, tutorial dialogue is 
not fully understood: recent work suggests that the interactivity facilitated 
by human tutoring is key to its effectiveness [6], and other research 
indicates that students can learn effectively by watching playbacks of past 
tutoring sessions [17]. Such findings contribute to our understanding of 
tutoring phenomena, but also raise questions about the relative 
effectiveness of different tutoring approaches.  

To shed further light on this issue, an important line of research 
involves modeling the specific relationships between different types of 
tutoring interactions and learning [5]. Some studies have investigated how 
shallow measures, such as average student turn length, correlate with 
learning in typed dialogue [18-20]. Analysis at the dialogue act and 
bigram levels has uncovered significant relationships with learning in 
spoken dialogue [7]. Recently, we have seen a growing emphasis on 
applying automatic techniques to investigate learning correlations across 
domains and modalities [21] and for devising optimal local strategies 
[9, 22]. Our work contributes to this line of investigation by applying 
hidden Markov models (HMMs) in a novel way to characterize the 
effectiveness of tutorial dialogue. HMMs have been applied successfully 
to such tasks as modeling student activity patterns [23, 24], characterizing 
the success of collaborative peer dialogues [25], and learning human-
interpretable models of tutoring modes [8]. For tutorial dialogue, the 
doubly stochastic structure of HMMs (Section 5.1) is well suited to 
capturing local dependencies and to extracting structures whose 
components are distributed across entire tutoring sessions.  

3   Tutoring Study 

The corpus that serves as the basis for this work was collected during a 
human-human tutoring study. The goal of this study was to produce a 
sizeable corpus of effective tutoring from which data-driven models of 
task-oriented tutorial dialogue could be learned. In keeping with this goal, 
the study features two paid tutors who had achieved the highest average 
student learning gains in two prior studies [10, 26]. Tutor A was a male 
computer science student in his final semester of undergraduate studies. 
Tutor B was a female third-year computer science graduate student. An 
initial analysis of the corpus suggested that the tutors took different 
approaches; for example, Tutor A was less proactive than Tutor B [27]. As 
we describe below, the two tutors achieved similar learning gains. 

Students were drawn from four separate sections, or modules, of the 
same university computer science course titled “Introduction to 
Programming – Java”. They participated on a voluntary basis in exchange 
for a small amount of course credit. A total of 61 students completed 
tutoring sessions, constituting a participation rate of 64%. Ten of these 
sessions were omitted due to inconsistencies (e.g., network problems, 
students performing task actions outside the workspace sharing software). 
The first three sessions were also omitted because they featured a pilot 
version of the task that was modified for subsequent sessions. The 
remaining 48 sessions were utilized in the modeling and analysis 
presented here. 



In order to ensure that all interactions between tutor and student were 
captured, participants reported to separate rooms at a scheduled time. 
Students were shown an instructional video that featured an orientation to 
the software and a brief introduction to the learning task. This video was 
also shown to the tutors at the start of the study. After each student 
completed the instructional video, the tutoring session commenced. The 
students and tutors interacted using software with a textual dialogue 
interface and a shared task workspace that provided tutors with read-only 
access. Students completed a learning task comprised of a programming 
exercise that involved applying concepts from recent class lectures 
including for loops, arrays, and parameter passing. The tutoring sessions 
ended when the student had completed the three-part programming task or 
one hour had elapsed.  

Students completed an identical paper-based pretest and posttest 
designed to gauge learning over the course of the tutoring session. These 
free-response instruments were written by the research team and revised 
according to feedback from an independent panel of three computer 
science educators, with between three and twenty years of classroom 
experience. This panel assessed the difficulty of each question and the 
degree to which it addressed the targeted learning concepts. 

According to a paired sample t-test, the tutoring sessions resulted in a 
statistically significant average learning gain as measured by posttest 
minus pretest (mean=7%; p<0.0001). There was no significant difference 
between the mean learning gains by tutor (meanA=6.9%, meanB=8.6%; 
p=0.569). Analysis of the pretest scores indicates that the two groups of 
students were equally prepared for the task: Tutor A’s students averaged 
79.5% on the pretest, and Tutor B’s students averaged 78.9% (t-test 
p=0.764).  

4   Corpus Annotation 

The raw corpus contains 102,315 events. 4,806 of these events are 
dialogue messages. The 1,468 student utterances and 3,338 tutor 
utterances were all subsequently annotated with dialogue act tags (Section 
4.1). The remaining events in the raw corpus consist of student problem-
solving traces that include typing, opening and closing files, and executing 
the student’s program. The entries in this problem-solving data stream 
were manually aggregated into significant student work events (Section 
4.2), resulting in 3,793 tagged task actions.  

4.1  Dialogue Act Annotation 

One human tagger applied the dialogue act annotation scheme (Table 1) to 
the entire corpus. A second tagger annotated a randomly selected subset 
containing 10% of the utterances. The resulting Kappa was 0.80, 
indicating substantial agreement.
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1 Throughout this paper we employ a set of widely used agreement categories for 

interpreting Kappa values: fair, moderate, substantial, and almost perfect  [29]. 



 

4.2  Task Annotation  

Student task actions were recorded at a low level (i.e., individual 
keystrokes). A human judge aggregated these events into problem-solving 
chunks that occurred between each pair of dialogue utterances and 
annotated the student work for subtasks and correctness. The task 
annotation protocol was hierarchically structured and, at its leaves, 
included more than fifty low-level subtasks. After tagging the subtask, the 
judge tagged the chunk for correctness. The correctness categories were 
Correct (fully conforming to the requirements of the learning task), Buggy 
(violating the requirements of the learning task), Incomplete (on track but 
not yet complete), and Dispreferred (functional but not conforming to the 
pedagogical goals of the task). 

One human judge applied this protocol to the entire corpus, with a 
second judge tagging 20% of the data that had been selected via random 
sampling stratified by tutor in order to establish reliability of the tagging 
scheme. Because each judge independently played back the events and 
aggregated them into problem-solving chunks, the two taggers often 
identified a different number of events in a given window. Any unmatched 
subtask tags were treated as disagreements. The simple Kappa statistic for 
subtask tagging was 0.58, indicating moderate agreement. However, 
because there is a sense of ordering within the subtask tags (i.e., the 
‘distance’ between subtasks 1a and 1b is smaller than the ‘distance’ 
between subtasks 1a and 3b), it is also meaningful to consider the 
weighted Kappa statistic, which was 0.86, indicating almost perfect 
agreement. To calculate agreement on the task correctness tag, we 
considered all task actions for which the two judges agreed on the subtask 
tag. The resulting Kappa statistic was 0.80, indicating substantial 
agreement. At the current stage of work, only the task correctness tags 
have been included as input to the HMMs; incorporating subtask labels is 
left to future work. 

5  Hidden Markov Models  

The annotated corpus consists of sequences of dialogue and problem-
solving actions, with one sequence for each tutoring session. Our 
modeling goal was to extract tutoring modes from these sequences in an 
unsupervised fashion (i.e., without labeling the modes manually), and to 



identify relationships between these modes and student learning. Findings 
from an earlier analysis [27] suggested that the two tutors employed 
different strategies than each other; therefore, we disaggregated the data 
by tutor and learned two models. In prior work we found that identifying 
dependent pairs of dialogue acts and joining them into a single bigram 
observation during preprocessing resulted in models that were more 
interpretable [28]. In the current work we found that this preprocessing 
step produced a better model fit in terms of HMM log likelihood; the 
resulting hybrid sequences of unigrams and bigrams were used for training 
the models reported here. 

5.1  Modeling Framework 

In our application of HMMs to tutorial dialogue, we treat the hidden states 
as tutorial strategies, or modes, whose structure is learned during model 
training.2 These states are characterized by emission probability 
distributions, which map each hidden state onto the observable symbols. 
The transition probability distribution determines transitions between 
hidden states, and the initial probability distribution determines the 
starting state [30]. Model training is an iterative process that terminates 
when the model parameters have converged or when a pre-specified 
number of iterations have been completed. Our training algorithm varied 
the number of hidden states from two to twenty and selected the model 
size that achieved the best average log-likelihood fit across ten stratified 
subsets of the data.  

5.2  Best-fit HMMs  

The best-fit HMM for Tutor A’s dialogues features eight hidden states. 
Figure 1 depicts a subset of the transition probability diagram with nodes 
representing hidden states (tutoring modes). Inside each node is a 
histogram of its emission probability distribution. For simplicity, only five 
of the eight states are displayed in this diagram; each state that was 
omitted mapped to less than 5% of the observed data sequences and was 
not significant in the correlational analysis. We have interpreted and 
named each tutoring mode based on its structure. For example, State 4 is 
dominated by correct task actions; therefore, we name this state Correct 
Student Work. State 6 is comprised of student acknowledgements, pairs of 
tutor statements, some correct task actions, and assessing questions by 
both tutor and student; we label this state Student Acting on Tutor Help. 
The best-fit model for Tutor B’s dialogues features ten hidden states. A 
portion of this model, consisting of all states that mapped to more than 5% 
of observations, is displayed in Figure 2. 

                                                             
2 The notion that tutorial dialogue strategies, or modes, constitute a portion of the 

underlying structure of tutorial dialogue is widely accepted. However, 
describing these hidden states as tutoring modes is an interpretive choice 
because the HMMs were learned in an unsupervised fashion. 



 

 

 

5.3  Model Interpretation 

Some tutoring modes with similar structures were identified by both 
models. Both models feature a Correct Student Work mode characterized 
by the student’s successful completion of a subtask. This state maps to 
38% of observations with Tutor A and 29% of observations with Tutor B. 
In both cases the Correct Student Work mode occurs more frequently than 
any other mode. The next three most frequently occurring modes each 
maps onto 10-15% of the observations. For Tutor A, one such mode is 



Tutor Explanations with Feedback, while for Tutor B a corresponding 
mode is Tutor Explanations with Assessing Questions. In both cases, the 
mode involves tutors explaining concepts or task elements. A key 
difference is that with Tutor A, the explanation mode includes frequent 
negative content feedback or positive content-free feedback, while for 
Tutor B the explanation mode features questions in which the tutor aims to 
gauge the student’s knowledge. A similar pattern emerges with each 
tutor’s next most frequent mode: for Tutor A, this mode is Student Work 
with Tutor Positive Feedback; for Tutor B, the mode is Student Work with 
Tutor Assessing Questions. These corresponding modes illuminate a 
tendency for Tutor A to provide feedback in situations where Tutor B 
chooses to ask the student a question. For Tutor A, the only mode that 
featured assessing questions was Student Acting on Tutor Help, which as 
we will discuss, was positively correlated with student learning. 

5.4  Correlations with Student Outcomes 

With the learned models in hand, the next goal was to identify statistical 
relationships between student learning and the automatically extracted 
tutoring modes. The models presented above were used to map each 
sequence of observed dialogue acts and task actions onto the set of hidden 
states (i.e., tutoring modes) in a maximum likelihood fashion. The 
transformed sequences were used to calculate the frequency distribution of 
the modes that occurred in each tutoring session (e.g., State 0 = 32%, 
State 1 = 15%...State 8 = 3%). For each HMM, correlations were 
generated between the learning gain of each student session and the 
relative frequency vector of tutoring modes for that session to determine 
whether significant relationships existed between student learning and the 
proportion of discrete events (dialogue and problem solving) that were 
accounted for by each tutoring mode. For Tutor A, the Student Acting on 
Tutor Help mode was positively correlated with learning (r=0.51; 
p<0.0001). For Tutor B, the Tutor Content Feedback mode was positively 
correlated with learning (r=0.55; p=0.01) and the Work in Progress mode 
was negatively correlated with learning (r=-0.57; p=0.0077).  

6  Discussion 

We have identified significant correlations between student learning gains 
and the automatically extracted tutoring modes modeled in the HMMs as 
hidden states. While students who worked with either tutor achieved 
significant learning on average, each group of students displayed a 
substantial range of learning gains. The correlational analysis leveraged 
this data spread to gain insight into which aspects of the tutorial 
interaction were related to higher or lower learning gains.  

For Tutor A, the relative frequency of the Student Acting on Tutor Help 
mode was positively correlated with student learning. This mode was 
characterized primarily by student acknowledgments and also featured 
tutor explanations, correct student work, positive tutor feedback, and 
assessing questions from both tutor and student. The composition of this 
tutoring mode suggests that these observed events possess a synergy that, 
in context, contributed to student learning. In a learning scenario with 
novices, it is plausible that only a small subset of tutor explanations were 
grasped by the students and put to use in the learning task. The Student 
Acting on Tutor Help mode may correspond to those instances, in contrast 



to the Correct Student Work mode in which students may have been 
applying prior knowledge.  

For Tutor B, the Tutor Content Feedback mode was positively 
correlated with student learning. This mode was relatively infrequent, 
mapping to only 7% of tutoring events. However, as noted in Section 5.3, 
providing direct feedback represents a departure from this tutor’s more 
frequent approach of asking assessing questions of the student. Given the 
nature of the learning task and the corresponding structure of the learning 
instrument, students may have identified errors in their work and grasped 
actionable new knowledge most readily through this tutor’s direct 
feedback.  

For Tutor B, the Work in Progress mode was negatively correlated with 
learning. This finding is consistent with observations that in this tutoring 
study, students did not easily seem to operationalize new knowledge that 
came through tutor hints, but rather, often needed explicit constructive 
feedback. The Work in Progress mode features no direct tutor content 
feedback. Tutor questions and explanations (which are at a more abstract 
level than the student’s solution) in the face of incomplete student work 
may not have been an effective tutoring approach in this study. 

7  Conclusion and Future Work 

We have collected a corpus of human-human tutorial dialogue, manually 
annotated it with dialogue acts and task actions, and utilized HMMs to 
extract the tutoring modes present in the corpus in an unsupervised 
fashion. We have examined two by-tutor HMMs and identified 
correlations between these models and student learning. This work extends 
findings that have correlated learning with highly localized structures such 
as unigrams and bigrams of dialogue acts [7, 10]. Using HMMs, we have 
correlated student learning with automatically extracted tutoring modes 
whose structure was learned from across entire tutoring sessions. This 
work takes a step toward fully automatic extraction of tutorial strategies 
from corpora, a contribution that has direct application in human tutoring 
research. The approach also has application in tutorial dialogue system 
development, for example, by producing a data-driven library of system 
strategies.  

A promising direction for future work involves learning models that 
more fully capture the tutorial phenomena that influence learning. There 
seems to be significant room for improvement in this regard, as evidenced 
by the fact that relatively few of the automatically extracted tutorial 
dialogue modes were correlated with learning. Continued work on rich 
dialogue act and task annotation, deep linguistic analysis of dialogue 
utterances are important areas for future work. Additionally, future work 
should leverage details of the task structure to a greater extent by 
considering regularities within tasks and subtasks as part of an augmented 
model structure in order to more fully capture  details of the tutorial 
interaction.  
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