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Abstract. Recent years have seen growing interest in automated goal recogni-
tion. In user-adaptive systems, goal recognition is the problem of recognizing a 
user’s goals by observing the actions the user performs. Models of goal recogni-
tion can support student learning in intelligent tutoring systems, enhance com-
munication efficiency in dialogue systems, or dynamically adapt software to us-
ers’ interests. In this paper, we describe an approach to goal recognition that 
leverages Markov Logic Networks (MLNs)—a machine learning framework 
that combines probabilistic inference with first-order logical reasoning—to en-
code relations between problem-solving goals and discovery events, domain-
specific representations of user progress in narrative-centered learning envi-
ronments. We investigate the impact of discovery event representations on goal 
recognition accuracy and efficiency. We also investigate the generalizability of 
discovery event-based goal recognition models across two corpora from stu-
dents interacting with two distinct narrative-centered learning environments. 
Empirical results indicate that discovery event-based models outperform previ-
ous state-of-the-art approaches on both corpora. 

Keywords: Goal recognition, narrative-centered learning environments, intent 
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1 Introduction 

A key challenge in user-adaptive systems is recognizing users’ intentions and plans. 
Goal recognition, also known as intent recognition, is the process of identifying the 
high-level objective that a user is pursuing based on an observed sequence of actions 
performed by the user. It is a restricted form of plan recognition, which involves iden-
tifying both the user’s goal and the action sequence that will achieve the goal. The 
capacity to reason about users’ plans, activities, and intentions enables user-adaptive 
systems to predict actions that will be performed by the user. Computational models 
of goal recognition have been investigated across a range of applications, including 
intelligent tutoring systems [1], dialogue systems [2], and digital games [3, 4]. 

One type of user-adaptive system that particularly stands to benefit from goal 
recognition models is narrative-centered learning environments. Narrative-centered 
learning environments combine the personalized educational support of intelligent 
tutoring systems with the engaging, interactive storylines of digital games [5, 6]. In 
narrative-centered learning environments, goal recognition models can be used to 



support struggling students by detecting erroneous problem-solving approaches or 
misconceived strategies that require remediation. Models for goal recognition can also 
be used to pre-emptively adapt learning environments’ interactive narratives, dynami-
cally adjusting difficulty or providing personalized scaffolding and guidance.  

In this work, we investigate the generalizability of goal recognition models that 
leverage Markov logic networks (MLNs) [7] to encode relations between students’ 
goals and problem-solving progress in narrative-centered learning environments. 
Markov logic is a statistical relational learning framework that combines probabilistic 
inference with first-order logical reasoning. In our work, we examine the impact of a 
domain-specific representation of problem-solving progress, called discovery events, 
on MLN-based goal recognition models’ accuracy and efficiency. Discovery events 
encode major plot milestones that convey key problem-solving information to stu-
dents during narrative-centered learning. We examine the impact of incorporating 
logical representations of discovery events into MLN-based goal recognition models, 
comparing discovery event-based models to a MLN-based baseline  approach.  

To investigate the generalizability of the models, we train and evaluate them using 
corpora from two distinct narrative-centered learning environments: a narrative-
centered learning environment for middle school microbiology that centers on diag-
nostic problem solving and another narrative-centered learning environment for ele-
mentary science education that emphasizes exploration-focused quests on maps, mod-
els, and landforms. Empirical results from the evaluation indicate that discovery 
event-based goal recognition models outperform prior state-of-the-art MLN ap-
proaches. Furthermore, the findings generalize across both learning environments, 
indicating that discovery event-based MLN models for goal recognition are an effec-
tive approach for predicting students’ goals during narrative-centered learning. 

2 Related Work 

Goal recognition, along with the related tasks of activity recognition and plan recogni-
tion, has been the subject of considerable interest in the AI community for decades. A 
wide variety of computational frameworks, including symbolic representations [8–
10], probabilistic representations [11, 12], grammar-based models [12, 13], and hy-
brid models [2, 14, 15] have been investigated extensively, both from theoretical and 
empirical perspectives. Goal recognition models have also been examined across a 
range of applications, including dialogue management [16], learning environments 
[1], cybersecurity [10], story understanding [11], and games [3, 4, 15, 17, 18].  

Over the past few years, Markov logic networks have received growing attention 
for their promise in plan, activity, and goal recognition [15, 19, 20]. Sadilek and 
Kautz [15] used Markov logic to investigate activity recognition in a multi-agent Cap-
ture the Flag game using GPS data. In their model, a Markov logic network combines 
hard and soft constraints derived from Capture the Flag rules to de-noise and label 
GPS data in terms of “capture” events. Experiments demonstrated that the MLN mod-
el significantly outperformed alternate probabilistic and nonprobabilistic approaches, 
correctly identifying 90% of capture events. Singla and Mooney [19] devised a meth-



 

 

od for constructing MLN-based plan recognition models using abductive reasoning 
over planning domains. Experiments found that Singla and Mooney’s approach im-
proved predictive accuracy over competing techniques. However, by framing the 
problem in terms of abductive inference, their approach requires a formal description 
of the planning domain be available.  

We extend prior work on goal recognition in narrative-centered learning environ-
ments by examining the impact of logical representations of discovery events on the 
accuracy and efficiency of goal recognition [20, 21]. Further, we investigate discov-
ery event-based models’ capacity to generalize across multiple narrative-centered 
learning environments. 

3 MLN-Based Goal Recognition with Discovery Events 

We formalize goal recognition as a classification task: given a sequence of actions 
performed in a narrative-centered learning environment, determine the goal that is 
most likely associated with the actions. We use Markov logic networks [7], a statisti-
cal relational learning framework, to perform classification.  Markov logic networks 
(MLNs) unify logical and probabilistic representations for reasoning over a 
knowledge base. A MLN is a set of first-order logical formulae with associated 
weights. Each weight denotes the formula’s strength as a constraint on the set of pos-
sible worlds described by the knowledge base. During inference, the formulae and 
weights are transformed into a Markov network, a graphical model with each node 
representing a random variable, and each undirected edge representing conditional 
dependencies. The joint probability distribution is defined as 
𝑃 𝑋 = 𝑥 = !

!
𝜙!(𝑥 ! )! , where 𝛷!  is a potential function over a clique in the 

graph. The potential function is derived from the weight of a formula and the ground-
ings of the individual predicates in the training corpus. 

For this work, weights are learned using Markov: The Beast, an open source im-
plementation of Cutting Plane Inference for the MLN learning framework [22]. Cut-
ting Plane Inference uses Weighted MAX-SAT [7] inference by incrementally adding 
violated formulae to a knowledge base and solving the remaining Markov network. 

Classification within MLNs is similar to other probabilistic graphical models. A 
random variable, or predicate in MLNs, is created for the class to be predicted. During 
inference, probabilities for different groundings of the hidden predicate are computed 
for each time step in the student interaction data. 

In order to prepare our goal recognition corpora for training, validating, and evalu-
ating classification models, we make several assumptions about our domains. First, 
we assume students only pursue a single goal at a time. Second, we assume that the 
distribution between observations and goals is fixed across players. Third, we assume 
that the student is not aware that the system is monitoring their goals, and therefore 
the system does not influence students’ goal-directed behavior.  



Based upon these assumptions, we annotate each student action in a goal recogni-
tion corpus using the following process. First, the students’ interaction traces are 
scanned for points in which goals are achieved. These observations are annotated with 
the goal. Because we assume there are no interleaved goals, every remaining action is 
annotated with the next goal observed. Afterward, the original goal-achieving actions 
are removed, because it would be trivial to recognize a goal from a goal-achieving 
action. 

Table 1 shows the four predicates used to describe each observation in a narrative-
centered learning environment. To represent location symbolically, the virtual envi-
ronment is discretized, and each region is assigned a unique identifier. These discrete 
regions are specified as arguments to location predicates. Logical formulae were de-
veloped to connect these observed predicates to a hidden predicate representing the 
student’s goal associated with that action. Formulae were included to ensure that only 
one goal was associated for any given time step.  

In addition to formulae connecting the observed predicates to the goal predicates, 
we introduce new formulae to capture significant milestones in the interaction history: 
discovery events. Within a narrative-centered learning environment, the overall task 
can be conceptualized in terms of resolving a central driving question about the plot. 
Central questions often revolve around the nature of the setting (e.g., Where are we?), 
what characters will do or have done (e.g., Who committed the crime?), or the conse-
quences of a major event (e.g., What is going to happen now?).  

Discovery events represent the user’s narrative progress by encoding partial an-
swers to the plot’s central driving question. For example, in the context of a mystery 
plot, discovery events represent clues that the player obtains. To illustrate, consider 
the following medical mystery scenario. The protagonist, a medical detective, is in-
vestigating a disease afflicting a group of sick patients. In order to learn more about 
the illness, the protagonist asks a sick patient about his symptoms and recent medical 
history. The resulting conversation is a discovery event; the protagonist gains valua-
ble information to diagnose the illness and resolve the story’s central question: “What 
is making the patients sick?” Later in the investigation, the protagonist runs a labora-
tory test on some eggs that the sick patient recently consumed. The eggs test positive 
for salmonella. This is another discovery event that reveals the likely transmission 
source for the disease. In addition to plot revelations, discovery events can include 
first-time demonstrations of game mechanics that are required to advance the interac-
tive narrative’s plot. For example, when the protagonist demonstrates that she can 
successfully use the laboratory’s testing equipment for the first time, the action is 

Table 1: Predicates for goal recognition 

Predicate Semantics 
action(t,a) Observed player performing action a at time t 
argument(t,a) Object a was involved in the player’s action at time t 
location(t,l) Observed player at location l at time t 
state(t,s) Player has passed the milestones for state s before time t 
goal(t,g) Player is attempting goal g at time t 

 



 

 

considered a discovery event. In this manner, discovery events encompass a broad 
range of events that transpire in interactive narratives. 

4 Testbed Narrative-Centered Learning Environments 

In order to investigate the effectiveness and generalizability of discovery event-based 
models of goal recognition, we train and evaluate the models on goal recognition 
corpora from two distinct narrative-centered learning environments. The first envi-
ronment, CRYSTAL ISLAND: OUTBREAK, is an educational interactive narrative for 
middle school science that focuses on diagnostic problem solving. The second envi-
ronment, CRYSTAL ISLAND: UNCHARTED DISCOVERY, is an educational interactive 
narrative for upper elementary science that emphasizes quests about maps, models, 
and landforms. In this section, we describe each of the learning environments.  

4.1 CRYSTAL ISLAND: OUTBREAK 

CRYSTAL ISLAND: OUTBREAK is a narrative-centered learning environment for middle 
school microbiology. The environment features a science mystery where students 
attempt to discover the identity and source of an infectious disease that is plaguing a 
research team stationed on a remote island. Students explore the research camp from a 
first-person viewpoint and manipulate virtual objects, converse with characters, and 
use lab equipment and other resources to solve the mystery.  

In order to represent students’ problem-solving progress in OUTBREAK’s interac-
tive narrative, we identified seven narrative sub-goals that are central to the solving 
the science mystery. These goals are never directly presented to the student; rather, 
they are discovered by the student during the course of gameplay. Five of the goals 
involve interviewing virtual characters. One goal involves successfully running a 
laboratory test on the disease’s transmission source. The final goal involves submit-
ting a correct diagnosis to a virtual character, thereby solving the mystery.  

There are nineteen different types of actions in the OUTBREAK environment. These 
actions include interactions with virtual objects, talking with virtual characters, gath-
ering and recording information in a diagnosis worksheet, and interacting with the 
testing equipment in a virtual laboratory. There are seven major regions of the island. 
Each of these locations is further divided into several sub-areas in a rough grid. In 
total, there are 39 distinct, non-overlapping locations that are recorded throughout 
interactions with the narrative-centered learning environment. Narrative state is con-
ceptualized in terms of three phases of the plot: an introductory phase, a laboratory 
testing phase, and a diagnosis worksheet phase. After the introduction, the latter two 
phases can be attempted in either order. Narrative state is encoded as a binary vector 
indicating which of the phases have been completed.  

In addition to the narrative state, six discovery events were identified in the plot. 
The discovery events represent moments in the interaction where critical plot-related 
information is communicated to the student. Three of the discovery events occur dur-
ing dialogue with virtual characters, two occur during interactions with in-game 



books and posters, and two occur during interactions with a diagnosis worksheet tool 
that students’ use in the environment.  

4.2 CRYSTAL ISLAND: UNCHARTED DISCOVERY 

CRYSTAL ISLAND: UNCHARTED DISCOVERY takes place on a fictional island in the 
Oceania region of the Pacific Ocean. Students take on the role of a child who has been 
shipwrecked on an island after a tropical storm along with a crew of explorers. After 
an introductory cinematic, the student joins a cast of virtual characters on the island in 
establishing a new life. From there, the student explores a rich 3D environment as she 
performs tasks for the various island inhabitants. As students learn about landforms, 
navigation and modeling, they are asked to perform several quests that assess their 
skills. Following a brief tutorial segment to familiarize students with the interface and 
gameplay, students have access to a virtual tablet device that provides access to sev-
eral in-game applications to support problem solving. 

In the dataset used in this work, students completed four quests. Two of the quests 
focused on understanding landforms, such as plateaus, deltas and waterfalls. Two of 
the quests involved understanding navigation, both through reading a map and follow-
ing a heading for a specified amount of distance. Each quest was associated with three 
goals. These goals were used as the targets for goal recognition. Once a quest was 
begun, its three goals could be pursued in any order. Quests could also be repeated, 
since faster times were given in-game rewards in the form of trophies. 

There were thirty-seven distinct actions that the student could perform in 
UNCHARTED DISCOVERY. These range from general actions (e.g., moving between 
areas, managing items), to quest management (e.g., accepting quests, quitting quests), 
to quest-specific actions (e.g., taking photographs, collecting flags). There are sixty 
outdoor locations on the island, as well as three buildings that may be entered. The 
phases of the narrative state are partitioned in terms of the quests; the completion of a 
quest marks the transition from one phase to another. Because the plot of UNCHARTED 
DISCOVERY is organized in terms of quests, discovery events are also defined in terms 
of quests. Two of the discovery events involve quest management, accepting a quest 
and quitting a quest. Another three occur during interactions with the table. The stu-
dents are able to view a map of the island, access a virtual encyclopedia, and take 
freeform notes to organize their thoughts. Finally, three discovery events are quest-
specific actions, such as placing signs at specific locations, taking photographs, and 
picking up colored flags. 

5 Goal Recognition Corpora 

The OUTBREAK corpus was gathered from 153 8th grade students, aged 12-15 
(M=13.3) in a North Carolina public school. Sixteen players were removed due to 
incomplete data or prior experience with the narrative-centered learning environment. 
Of the remaining 137 players, 77 were male and 60 were female. A minority, 41.6% 
of students, completed the mystery in the allotted time. Twenty of the 137 players 



 

 

experienced a game crash, and were instructed to restart the game. In these cases, both 
sets of observations will be used for this work [5]. 

The students were first presented with an overview of OUTBREAK, which intro-
duced the backstory and task description and the game controls. They were also given 
handouts, which contained that information, as well as a map of the island and a de-
scription of the characters in the virtual environment. The students were then given a 
pre-survey, which assessed their science content knowledge, in addition to various 
psychological instruments. The students interacted with the system for a maximum of 
60 minutes. At the end of 60 minutes, or when they completed the mystery, the stu-
dents were given a post-survey. The whole interaction lasted about 120 minutes. 

The UNCHARTED DISCOVERY corpus was collected from eight North Carolina pub-
lic elementary schools. Each fifth-grade classroom interacted with the software over a 
4-week period. A total of 831 students participated in the data collection, of which 
49% were male. The schools represented urban (40%), suburban (20%), and rural 
settings (40%) [23].  

The students interacted with the software six times over the 4-week period, sup-
plemented with six teacher-led lessons. Each interaction with UNCHARTED 
DISCOVERY was 50 minutes long. For this work, only sessions from the first two 
weeks were considered. During the first two weeks, four quests were available to the 
students. During the remaining two weeks, the students had access to two quests that 
were entirely contained within a single set of actions. From a goal recognition stand-
point, these quests would necessitate special consideration, since the student is effec-
tively prevented from performing many of the available actions while attempting the 
quest. The data from the tutorial level were also removed. Observations from all ses-
sions were concatenated to produce one observation sequence for each student. 

6 Results 

The evaluation of our goal recognition model focused on three principal metrics: F1, 

8t : |8g : goal(t, g)| = 1 (1)

8t, g : goal(t, g) ⇤ w2(g) (2)

8t, a, g : action(t, a) ) goal(t, g) ⇤ w3(a, g) (3)

8t, l, g : location(t, l) ) goal(t, g) ⇤ w4(l, g) (4)

8t, s, g : state(t, s) ) goal(t, g) ⇤ w5(s, g) (5)

8t, a, s, g : action(t, a) ^ state(t, s) ) goal(t, g) ⇤ w6(a, s, g) (6)

8t, a, g : action(t� 1, a) ) goal(t, g) ⇤ w7(a, g) (7)

8t, l, g : location(t� 1, l) ) goal(t, g) ⇤ w8(l, g) (8)

8t, s, g : state(t� 1, s) ) goal(t, g) ⇤ w9(s, g) (9)

8t, a, s, g : action(t� 1, a) ^ state(t� 1, s) ) goal(t, g) ⇤ w10(a, s, g) (10)

8t, a1, a2, g : action(t� 1, a1) ^ action(t, a2) ) goal(t, g) ⇤ w11(a1, a2, g) (11)

8t, a1, a2, g1, g2 :

 
action(t� 1, a1) ^ action(t, a2)

) [goal(t� 1, g1) ) goal(t, g2)]

!
⇤ w12(a1, a2, g1, g2) (12)

1

Fig. 1. Baseline formulae 



convergence rate, and convergence point. F1 measures the predictive accuracy of the 
models. The F1 measure is defined as the harmonic mean between precision and re-
call. However, since our MLN formulae enforce that only one prediction is made for 
each time step, the multi-class precision and recall are equivalent to the F1 measure. 
Convergence rate is the percentage of sequences that are eventually classified to the 
correct goal. Any sequence whose final action is predicted as belonging to the correct 
goal is said to have converged on the goal. Convergence point measures the percent-
age of a converged sequence that was observed before the correct goal was consistent-
ly predicted. For this measure, a lower number indicates improved performance. 

Two models were trained and evaluated on each of the corpora. The baseline mod-
el was a previously published model for goal recognition on the OUTBREAK corpus 
[20]. It was comprised of 13 logical formulae (Fig. 1) with weights learned using 
Markov: The Beast [22].  

 The discovery events models extended the baseline model in two ways. First, the 
model was simplified by removing formulae that referenced previous time steps (i.e., 
formulae 7-12 in Fig. 1); only formulae that included references to the current time 
step were maintained. These formulae formed the cores of the models for both the 
OUTBREAK and UNCHARTED DISCOVERY corpora.  

In addition, new sets of formulae were added to encode discovery events in each of 
the new models. The discovery events allowed the models to reference key events 
students had completed in the narratives. For each discovery event, a new formula 
was created. Each discovery event was expressed in terms of the predicates described 
in Section 3. For example, the Testing discovery event for the OUTBREAK corpus was 
defined as action(t,”Test”). The Eating Habits dis  covery event is defined as 
argument(t,”Eating Habits”) because it can be triggered by multiple dif-
ferent types of actions. The encoded discovery events were placed within the mile-
stone formulae, which served as indicator nodes to determine if the discovery event 
had happened in the interaction history.  

8t, g : |8t2 < t : action(t2, “Worksheet”)| � 1 ) goal(t, g) ⇤ w13(g) (1)

8t, g : |8t2 < t : action(t2, “Test”)| � 1 ) goal(t, g) ⇤ w14(g) (2)

8t, g : |8t2 < t : argument(t2, “Eating Habits”)| � 1 ) goal(t, g) ⇤ w15(g) (3)

8t, g :

�����8t2 < t :
action(t2, “Read”)^

argument(t2, “Salmonellosis”)

����� � 1 ) goal(t, g) ⇤ w16(g) (4)

8t, g : |8t2 < t : argument(t2, “Symptoms”)| � 1 ) goal(t, g) ⇤ w17(g) (5)

8t, g : |8t2 < t : argument(t2, “Bacteria”)| � 1 ) goal(t, g) ⇤ w18(g) (6)

1

Fig. 2. Discovery event formulae for CRYSTAL ISLAND: OUTBREAK 



 

 

 The formulae in Fig. 2 capture the discovery events for CRYSTAL ISLAND: 
OUTBREAK. The formulae in Fig. 3 capture the discovery events for CRYSTAL ISLAND: 
UNCHARTED DISCOVERY.  

The models were trained using 10-fold cross validation. The folds were formed us-
ing the number of students, rather than the number of goal sequences, to ensure inde-
pendence between folds. The three evaluation metrics (F1, convergence rate, conver-
gence point) were computed across each of the ten evaluations. The four models were 
compared statistically using one-way analysis of variance. The results of cross valida-
tion on the CRYSTAL ISLAND: OUTBREAK corpus can be found in Table 2, and the 
results for the CRYSTAL ISLAND: UNCHARTED DISCOVERY corpus can be found in 
Table 3. 

7 Discussion 

The empirical results suggest that logical encodings of domain-specific discovery 
events improve performance of goal recognition models. The discovery event models 
outperformed the previous state-of-the-art baselines on all three metrics for both cor-

Table 2. Goal recognition model comparison for CRYSTAL ISLAND: OUTBREAK 

Model F1 Convergence Rate Convergence Point 
Baseline 0.488 F(1,18)=7.661 

p<0.05 
30.906 F(1,18)=133.7 

P<0.001 
50.865 F(1,18)=27.98 

p<0.001 Discovery 
Event 

0.546 50.056 35.862 

 
Table 3. Goal recognition model comparison for CRYSTAL ISLAND: UNCHARTED DISCOVERY  

Model F1 Convergence Rate Convergence Point 
Baseline 0.226 F(1,18)=14.58 

p<0.01 
11.915 F(1,18)=709.1 

p<0.001 
87.786 F(1,18)=61.66 

p<0.001 Discovery 
Event 

0.244 29.973 79.350 

 
 

8t, g : |8t2 < t : action(t2, “Pickup Flag”)| � 1 ) goal(t, g) ⇤ w19(g) (1)

8t, g : |8t2 < t : action(t2, “Drop Flag”)| � 1 ) goal(t, g) ⇤ w20(g) (2)

8t, g : |8t2 < t : action(t2, “Take Notes”)| � 1 ) goal(t, g) ⇤ w21(g) (3)

8t, g : |8t2 < t : action(t2, “Take Photo”)| � 1 ) goal(t, g) ⇤ w22(g) (4)

8t, g : |8t2 < t : action(t2, “Use IslandPedia”)| � 1 ) goal(t, g) ⇤ w23(g) (5)

8t, g : |8t2 < t : action(t2, “Begin Quest”)| � 1 ) goal(t, g) ⇤ w24(g) (6)

8t, g : |8t2 < t : action(t2, “Quit Quest”)| � 1 ) goal(t, g) ⇤ w25(g) (7)

8t, g : |8t2 < t : action(t2, “Check Map”)| � 1 ) goal(t, g) ⇤ w26(g) (8)

1

Fig. 3. Discovery event formulae for CRYSTAL ISLAND: UNCHARTED DISCOVERY 



pora. In both cases, the discovery event models were significantly more accurate than  
the baseline models, as demonstrated by analyses of variance on F1 scores. In addi-
tion, the discovery event models consistently generated accurate predictions earlier in 
the observation sequences. Early prediction is particularly important for goal recogni-
tion in narrative-centered learning environments, as it provides time for computing 
and executing interventions to dynamically shape interactive narratives. In the future, 
it may be useful to consider alternate measures of early prediction. One example 
would be to define a sequence as converged if there is high probability that a large 
proprotion of the observations are consistent  

It is important to note that there are several limitations to the work. First, there 
are some restrictions on the types of interactive environments in which this approach 
can be used. The approach is most compatible with environments that are explicitly 
goal-oriented. Automatically encoding user progress is a necessary part of defining 
discovery events. Identifying meaningful progress measures for an environment with-
out well-defined goals is likely to be problematic. It is conceivable that navigating 
physical landmarks could serve as progress milestones for purely exploration-focused 
environments, and this type of investigation is left for future work.  

A second limitation is the assumption that there are no concurrent goals. Relax-
ing this assumption would likely require a resource-intensive manual annotation effort 
to determine how various actions contribute to the goals to be recognized. Alterna-
tively, asking students to periodically self-report their goals—either through the soft-
ware or think aloud protocol—could also be explored. 

Lastly, there is the question of appropriate grain size for discovery events repre-
sentations. On the one hand, it is possible that a coarse-grained representation that 
solely denotes which goals have been completed would provide sufficient context for 
effective goal recognition. On the other hand, every individual action performed by a 
student provides context for inferring the goal she is trying to accomplish. The dis-
covery events presented in this work were chosen because they provide salient pieces 
of plot-related information to the student; a retelling of the story would be incoherent 
without including the information conveyed by the discovery events. It is unclear 
whether this is necessarily the optimal grain size for encoding discovery events, but 
ultimately it is an empirical question. In the future, additional studies should be con-
ducted to determine the appropriate representational characteristics for encoding dis-
covery events to drive goal recognition in narrative-centered learning environments. 

8 Conclusions and Future Work 

Goal recognition has a long history of study in artificial intelligence. In narrative-
centered learning environments, goal recognition models enable interactive narrative 
planners to personalize events to individual students and their problem-solving behav-
iors. In this paper, we have presented a goal recognition framework that leverages 
Markov logic networks to encode relations between users’ goals and discovery 
events, key milestones denoting user progress in a narrative-centered learning envi-
ronment. Discovery event-based models were compared to a previous state-of-the-art 



 

 

MLN model across two narrative-centered learning environments. Empirical analyses 
demonstrated that the discovery event-based models consistently outperformed the 
baseline model on all considered goal recognition metrics: F1 score, convergence rate, 
and convergence point.  

There are several promising directions for future work. First, it will be important to 
investigate ways to relax the simplifying assumptions used in the work, such as the 
assumption that whenever a student achieves a goal, it is the same goal that she had 
been seeking to achieve. Another assumption it will be important to relax is the as-
sumption that goals are pursued serially. In open-ended narrative-centered learning 
environments, such as both editions of CRYSTAL ISLAND, it is possible for students to 
pursue multiple goals concurrently, and in some cases synergistically. Finally, it will 
be important to incorporate discovery event-based goal recognition models into run-
time narrative-centered learning environments to investigate their capacity to drive 
user-adaptive systems. 
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