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Abstract
Advances in artificial intelligence (AI) and machine learning can be leveraged to tailor training based on the goals, learning
needs, and preferences of learners. A key component of adaptive training systems is tutorial planning, which controls
how scaffolding is structured and delivered to learners to create dynamically personalized learning experiences. The goal
of this study was to induce data-driven policies for tutorial planning using reinforcement learning (RL) to provide adap-
tive scaffolding based on the Interactive, Constructive, Active, Passive framework for cognitive engagement. We describe
a dataset that was collected to induce RL-based scaffolding policies, and we present the results of our policy analyses.
Results showed that the best performing policies optimized learning gains by inducing an adaptive fading approach in
which learners received less cognitively engaging forms of remediation as they advanced through the training course.
This policy was consistent with preliminary analyses that showed constructive remediation became less effective as lear-
ners progressed through the training session. Results also showed that learners’ prior knowledge impacted the type of
scaffold that was recommended, thus showing evidence of an aptitude–treatment interaction. We conclude with a dis-
cussion of how AI-based training can be leveraged to enhance training effectiveness as well as directions for future
research.

Keywords
Tutorial planning, adaptive remediation, reinforcement learning, adaptive instructional systems

1. Introduction

Artificial intelligence (AI) will play a central role in mod-

ernized training systems for the military. The transforma-

tive potential of AI-enhanced training and education is

made possible by advancements in a wide array of cap-

abilities, including natural language processing,1 multimo-

dal learning analytics,2 automated scenario generation,3

and adaptive decision-making,4 that can be leveraged to

create engaging and effective training experiences that are

tailored to individual learners and teams. Numerous stud-

ies have shown that when designed effectively, adaptive

instructional systems (AISs), such as intelligent tutoring

systems, can be as effective as a skilled human tutor at

supporting student learning.5 Still, determining what, how,

and when to adapt instruction is a central question facing

AIS developers. This challenge stems in part from the

wide range of pedagogical strategies and tactics that can

be implemented in AISs, as well as a lack of empirically

grounded guidance about the relative contribution of dif-

ferent adaptive interventions on learning outcomes.6

Another challenge is the lack of tools that AISs can use to

develop theory-driven frameworks and workflows to
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explore the effectiveness of different pedagogical plans

and decisions.

Tutorial planning is a critical component of AISs, con-

trolling how instructional feedback and support are struc-

tured and delivered to learners. Tutorial planners utilize a

set of formalized pedagogical rules to drive decisions

about how an AIS sequences instruction and delivers scaf-

folding. These rules are typically based on learning the-

ories and provide general guidance on when to scaffold

learners, what type of scaffolding to provide, and how

scaffolding should be carried out within an AIS. Despite

their importance, however, tutorial planners often suffer

from three important limitations. Firstly, creating tutorial

planners is expensive, requiring labor-intensive knowledge

engineering processes that involve close collaboration

between subject matter experts, education experts, and

software developers.7 Secondly, once a tutorial planner

has been created, it typically remains fixed; it does not

improve or change over time unless manually updated by

an expert. Thirdly, tutorial planners that utilize production

rules to make decisions about adaptive instruction are

poorly suited for reasoning about the inherent uncertainty

in learning, such as determining how learners respond to

different types of tutorial strategies or perform on

assessments.

Recent advances in machine learning (ML) have intro-

duced opportunities to reduce the authoring burden of

AISs by inducing data-driven models of tutorial planning

directly from data generated by student interactions with

an AIS.4,8,9 The induced models are designed to automati-

cally control how pedagogical support is structured and

delivered to learners at run-time to create personalized

learning experiences. Leveraging decision-theoretic frame-

works, such as Markov decision processes (MDPs), these

models explicitly account for the inherent uncertainty in

how learners respond to different types of tutorial strate-

gies and tactics, and automatically generate and refine

tutorial planning policies that seek to optimize learning

outcomes.

This paper presents results from work to devise and

investigate data-driven tutorial planning policies using

reinforcement learning (RL) to provide learners with adap-

tive remediation. Toward this goal, we describe a human

subjects’ study that collected training interaction data from

over 500 learners who completed a 90-minute adaptive

online training course that taught doctrinal concepts asso-

ciated with counterinsurgency (COIN) and stability opera-

tions while receiving adaptive remediation. We describe

the online adaptive training course, which was authored

using the Generalized Intelligent Framework for Tutoring

(GIFT), an open-source framework for developing and

evaluating AISs that includes a suite of tools for devising

and testing theory-driven pedagogical interventions. The

remediation activities were based on Chi’s Interactive,

Constructive, Active, Passive (ICAP) framework of cogni-

tive engagement, which distinguishes between different

levels of cognitive engagement that a learner may have

with instructional material.10 We describe preliminary

results examining the effectiveness of the ICAP-inspired

remediation and the learner interaction data. Following

this, we discuss the results of a second study that induced

RL policies using the data collected from the human sub-

jects’ study and review how the policies can be used to

scaffold learning by providing students with tailored reme-

diation in an online training course. Our findings point

toward the significant promise of using data-driven tech-

niques to model adaptive scaffolding in AISs to enhance

learning.

1.1. Adaptive instructional systems

AISs guide student learning experiences by tailoring

instruction based on the individual goals, needs, and pre-

ferences of learners in the context of domain learning

objectives.11 Adapting instructional content and support to

the needs of learners can be accomplished in many differ-

ent ways in AISs.12 For example, AISs can present lear-

ners with different types of instructional feedback,13

hints,14 and faded worked examples15 based on a learner’s

demonstrated level of mastery in order to improve learning

outcomes and learning experiences. AISs can also present

new learning content that is tailored to a learner’s current

skill in order to keep them motivated and engaged.16

A significant challenge in the design of AISs is deter-

mining how pedagogical interventions should be structured

and delivered to learners. Decisions about what to adapt,

how to adapt, and when to adapt are often formalized as a

set of production rules within an AIS’s pedagogical model.

Although these rules are often rooted in learning theory,

the guidance they provide may be too coarse to provide

effective remediation for many learners. Further, because

the rules are manually encoded, they can be burdensome

to update, adding to AIS development time and sustain-

ment costs.17,18

Data-driven tutorial planning offers a method for auto-

matically formulating how pedagogical support and scaf-

folding are delivered to learners to create personalized

learning experiences.8,19,20 Data-driven tutorial planners

use observations about student actions and their impact on

training performance to determine when and how to pro-

vide pedagogical support. This bottom-up, data-driven

approach complements traditional top-down approaches to

the design of tutorial planners, in that the system can

observe which actions and pedagogical decisions are most

effective and update its production rules accordingly. In

particular, RL techniques have shown promise for auto-

matically inducing tutorial planning rules that optimize

student learning outcomes and do not require pedagogical
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rules to be manually programmed or demonstrated by

expert tutors.

1.2. Reinforcement learning

RL is a family of ML techniques that center on creating

software agents that perform actions in a stochastic envi-

ronment to optimize numerical reward.21 In classical RL,

an agent seeks to learn a policy for selecting actions in an

uncertain environment in order to accomplish a goal. The

environment is characterized by a set of states and a prob-

abilistic model describing transitions between those states.

The agent is capable of observing the environment’s state

and using its observations to guide decisions about which

actions to perform. In contrast to supervised ML, RL

agents are not provided with external instruction about

which actions to take. Instead, the environment produces

rewards that provide positive or negative feedback about

the agent’s actions. The agent’s task is to utilize the reward

signal in order to learn a policy that maps observed states

to actions and maximizes its total accumulated reward. RL

problems are often formalized using MDPs. MDPs provide

a principled mathematical framework for modeling sto-

chastic control problems, such as tutorial planning, which

involve sequential decision-making under uncertainty.

Over the past decade, RL- and MDP-based techniques

have been the subject of growing interest in the AIS com-

munity.4,8,22–26 This work has emphasized probabilistic

models of behavior, as opposed to explicit models of cog-

nitive states, in order to analyze student learning. For

example, Chi et al.23 used MDPs to model tutorial dialo-

gues, devising pedagogical tactics directly from student

data in the Cordillera physics tutor. Rowe and Lester8 uti-

lized modular RL to induce policies for narrative-centered

tutorial planning in an educational game for middle school

microbiology education. More recently, Ausin et al.22

investigated deep RL techniques to model tutorial

decision-making in an intelligent tutoring system for

undergraduate logic proofs. Complementary work investi-

gated partially observable MDPs to model tutorial

planning, yielding novel approaches for compactly repre-

senting MDP state representations.27,28

The driving motivation of the current study was to

demonstrate how RL could be used to create a set of tutor-

ial planning policies that could be implemented in an AIS

to provide learners with adaptive remediation as they com-

pleted an online training course. To address this objective,

we engaged in two key activities. The first activity

involved conducting a human subjects’ study to collect a

rich dataset of learning interaction log data from users

who completed an online adaptive training course about

COIN and stability operations implemented with the GIFT

framework. During the course, learners were presented

with feedback and remedial content that was designed to

elicit different levels of cognitive engagement. The goal of

the second activity was to utilize RL to create a set of

tutorial planning policies trained on the learner interaction

log data collected from the human subjects’ study, which

could be used to provide learners with adaptive remedia-

tion in an AIS. We refer to these two activities as Study 1

and Study 2, respectively, throughout the remainder of the

paper.

2. Study 1 – human subjects’ study to
develop a training dataset

RL techniques are data-intensive, so in order to collect

sufficient data to induce RL-based tutorial policies we

devised a study to collect learning outcome and learner

interaction log data from a sample of users who completed

an online adaptive training course. The online training

course was designed to meet three objectives: (a) it con-

tained numerous opportunities for learners to receive

instructional remediation; (b) it could be deployed through

online crowdsourcing platforms to facilitate broad distri-

bution to many learners; and (c) the course initially

enacted an exploratory (i.e., random) remediation policy

in order to broadly sample the space of possible pedagogi-

cal decisions to produce a dataset for inducing RL-based

policies for adaptive tutorial planning.

The instructional remediation activities presented in the

adaptive training course were modeled after the ICAP

framework of cognitive engagement, which identifies four

levels of learner engagement activities: Interactive,

Constructive, Active, and Passive, each of which has asso-

ciated learning behaviors and cognitive processes.10

Interactive activities involve learning that centers on back-

and-forth discourse between a student and teacher, student

and machine, or student and peer. Constructive activities

refer to learning that involves the creation of novel arti-

facts (e.g., written summaries, concept maps) to reify

one’s understanding of a subject or topic, producing out-

puts that go beyond content that was previously presented.

The active category refers to learning that involves point-

ing, highlighting, note taking, or other forms of physical

engagement that exceed passive learning in its impact.

Passive learning refers to learning that involves listening

or viewing direct instruction on a topic.

The ICAP model predicts that as students are more

actively engaged with learning material, their learning will

increase (i.e., passive < active < constructive < interac-

tive).29 We aimed to investigate whether our results would

support the predictions of the ICAP model or whether

trade-offs in terms of remediation effectiveness would

emerge as learners advanced through a 90-minute online

training course. If trade-offs in remediation effectiveness

are observed during the training course, then the results
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would highlight the potential for using data-driven tech-

niques, such as RL, to develop pedagogical policies that

provide tailored forms of remediation. We also aimed to

investigate the feasibility of using the dataset to devise

data-driven tutorial planning policies. Specifically, the first

study was guided by the following research questions.

(1) Did participants demonstrate positive learning

gains as a result of completing the adaptive train-

ing course?

(2) Did the dataset contain a sufficiently large number

of remediation instances to support data-driven

tutorial planning? How many instances of reme-

diation, on average, did learners receive while

completing the course?

(3) Which forms of ICAP-inspired remediation were

most effective for helping learners overcome an

impasse? Are there any trade-offs in terms of

remediation effectiveness across successive reme-

diation attempts?

2.1. Method
2.1.1. Adaptive training course. The online training course

was created and deployed using GIFT, an open-source

software framework for designing, deploying, and evaluat-

ing adaptive training systems.30,31 The course’s training

content built upon materials from the UrbanSim Primer, a

self-paced hypermedia training course that provides direct

instruction on the themes, terms, and principles associated

with leading COIN and stability operations.32 The course

was organized into four chapters, each of which included

a series of short videos, multiple-choice quiz questions,

remedial training activities, and glossary terms that aimed

to teach learners about the tenets and principles of leading

COIN operations.33 The instructional videos were each

approximately 90 seconds in length and covered topics

such as ‘‘Identifying the center of gravity in COIN opera-

tions,’’ ‘‘Defining intelligence preparation for the battle-

field,’’ and ‘‘Understanding lines of effort in COIN

operations.’’ The multiple-choice quiz questions, which

were presented to learners after viewing an instructional

video, consisted of single- or multi-concept review ques-

tions that aligned with the course’s learning objectives.

Single-concept review questions required learners to recall

and apply concepts presented within the video lesson they

had just viewed (see Figure 1). Multi-concept review ques-

tions required learners to demonstrate a deeper under-

standing of the course material by integrating concepts

from multiple lesson videos.

The remediation interventions included in the course

were structured according to the ICAP framework of cog-

nitive engagement and presented learners with either pas-

sive, active, or constructive remediation activities if they

incorrectly answered a quiz question. Passive remediation

required learners to passively read the narrated content in

text format that was just presented in the lesson video.

After they finished reading the content, they returned to

the previously missed quiz question and attempted to

answer it correctly. Active remediation required learners to

read the narrated content and actively highlight the portion

of text that answered the quiz question that was just

missed. Constructive remediation content required learners

to read the narrated content and constructively summarize

the answer to the quiz question that had just been missed

in their own words (Figure 2). The active and constructive

Figure 1. Single-concept recall quiz question from the online training course.
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remediation prompts also included expert highlighting/

summaries and asked students to rate the similarity of their

responses to the expert responses using a five-point Likert

scale (from 1 – not similar to 5 – very similar). The system

could also provide no remediation after a missed quiz

question, in which case learners would receive a simple

feedback message stating they incorrectly answered the

question. Interactive remediation activities, which typi-

cally consist of tutorial dialogue between a learner and an

AIS, were not included in this study because the feature

had not yet been integrated with GIFT’s remediation

framework.

The adaptive training course presented remediation

activities to learners whenever they answered a recall quiz

question incorrectly. Upon completing the remediation

activity, participants attempted to correctly answer the pre-

viously missed quiz question again. The order of the

answer choices was randomized upon each successive

question attempt. Students continued to receive remedia-

tion until they demonstrated concept mastery (i.e., cor-

rectly answered the quiz question; Figure 3). The course

utilized a random policy to determine the type of remedia-

tion participants received after each missed multiple-

choice quiz question. Thus, participants were not assigned

to specific remediation conditions (i.e., only passive, only

active, only constructive) but instead received a random

combination of all types of remediation throughout the

course.

In total, 12 instructional videos and 39 multiple-choice

quiz questions were distributed throughout the four-chapter

training course. The online training course also included a

set of web-based surveys designed to collect information

about the participants’ age, education, interest in COIN

operations and military science topics, and goal orienta-

tion, as well as parallel forms of a 12-item pre- and posttest

that measured knowledge of COIN topics, terminology,

and principles.33

2.1.2. Participants. To address the goal of collecting data

from a large sample of learners, we recruited participants

through Amazon’s Mechanical Turk (MTurk) platform.

We collected completed training data from 533 partici-

pants (42% female, ages ranged from 18 to 65). To be eli-

gible, participants had to be at least 18 years of age, reside

in the USA, and have completed at least 95% of the tasks

through MTurk that they previously accepted to complete

(e.g., 5% dropout rate). Participants were compensated

US$8 for completing the training course, which took on

average 90 minutes to complete. Analysis of pretest scores

revealed that participants answered approximately one

third of the pretest questions correctly (M = .35, SD =.18),

suggesting they had low prior knowledge of the concepts

covered in the training course prior to taking the course.33

2.1.3. Procedure. A description of the study was posted on

the MTurk website where participants were able to read a

short description of the study. Participants who were inter-

ested in completing the study were directed via a hyper-

link to read and electronically sign an informed consent.

Afterwards, participants proceeded to the training course,

which was hosted on the cloud-based instance of GIFT.

The course began with a general welcome message.

Following this introduction, participants completed a

Figure 2. Constructive remediation activity.
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demographic questionnaire that gathered information

about their age, years of education, and familiarity with

COIN topics and concepts. Then, they completed a goal

orientation questionnaire that measured task-based and

intrinsic motivation to learn,34 followed by a 12-item pret-

est that measured prior knowledge of COIN principles and

terminology.33

After completing the pre-training surveys, participants

began the adaptive online COIN training course.

Participants watched a series of narrated videos that cov-

ered lesson topics such as the importance of population

support, processes for intelligence gathering, and issues in

successful COIN operations. After each video, participants

answered a series of multiple-choice quiz questions that

consisted of single- or multi-concept review items that

aligned with the content covered in the video. An incorrect

response to a quiz question resulted in participants receiv-

ing an ICAP-inspired remediation activity that required

them to either passively, actively, or constructively engage

with the training content, unless the system selected to

provide no remediation. After completing the remediation

exercise, participants were gated back to the previously

attempted quiz question. Learners continued to receive

remediation until they correctly answered the multiple-

choice quiz question. This meant that on some attempts,

participants received multiple rounds of remediation

before they advanced to the next question. The type of

remediation students received varied randomly across

attempts.

Upon finishing the final video lesson and quiz question,

participants completed a series of post-training surveys that

included a multiple-choice posttest to measure retention of

the concepts and principles presented in the training and a

short questionnaire to collect opinions about the training

experience. After completing these activities, participants

received a unique completion code that could be used to

verify course completion through the MTurk website and

were thanked for their participation.

2.2. Results

To evaluate participants’ interaction behaviors with the

course content, the pretest, posttest, survey, and learner

interaction log data were recorded and analyzed. The lear-

ner interaction log data consisted of a timestamped record

of learner actions, course states, and pedagogical requests

made by GIFT as well as information regarding how many

times learners received remediation, how long they spent

interacting with the different forms of remediation, correct-

ness of responses, and remediation helpfulness ratings. We

conducted a set of preliminary analyses to identify how

well participants performed on the pre- and posttest assess-

ments, how often learners received remediation, and which

forms of remediation were most effective at helping lear-

ners overcome an impasse. The results presented below

summarize and expand analyses that are presented in pre-

vious research.35,36

2.2.1. Learning gains. Participants’ pretest and posttest

scores were analyzed to determine if the course was effec-

tive in promoting participants’ knowledge of COIN con-

cepts, terminology, and principles. Pretest and posttest

scores were calculated by summing the total number of

correct responses on the 12-item tests. Results showed that

posttest scores (M = 8.68, SD = 2.50) were significantly

higher than pretest scores (M = 4.35, SD = 2.25), F(1, 482)

= 1590.88, p< .001, suggesting that the course was suc-

cessful in meeting its instructional objectives. In addition

to examining differences in pre- and posttest scores, we

Figure 3. Instructional workflow for the online course and remediation delivery.
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also examined participants’ normalized learning gains

(NLGs), which were calculated to account for participants’

pretest performance. NLGs reflect an individuals’ relative

learning in a course. These scores are derived by calculat-

ing the ratio of actual improvement from pre- to posttest

over the maximum possible improvement.37 NLG values

range from –1 to + 1 with, values below 0 indicating

learning losses (i.e., students performed worse on the postt-

est than pretest), 0 indicating no gains, and positive values

indicating higher learning gains. NLG allows for fair com-

parison among learners who scored high on the pretest

with learners who scored low on the pretest by standardiz-

ing gains. Results showed participants made significant

learning gains from completing the course, improving their

posttest scores by more than 57% of the total possible

gains available.

2.2.2. Remediation statistics. Because RL techniques are

data-intensive, our second set of analyses aimed to deter-

mine whether the dataset contained a sufficiently large

number of remediation instances to support data-driven

tutorial planning. Results showed the dataset included a

total of 5197 instances of remediation. On average, lear-

ners received 10 instances of remediation while complet-

ing the online course (SD = 12.60; range 1–113). Given

the wide range of remediation instances, we conducted a

closer examination of the remediation distribution data

and found that 90% of participants received fewer than 20

instances of remediation while completing the training

course. Analyses also showed that although the course was

designed to implement a uniform random control policy, a

software error resulted in approximately 40% of all reme-

diation interventions being constructive interventions,

40% being active, 10% passive, and 10% no remediation.

Table 1 presents the total count of each remediation type

as well as the how many instances corresponded to the

first three remediation instances.

2.2.3. Remediation effectiveness. Next, a set of exploratory

analyses were conducted to identify which form of reme-

diation was most effective at helping learners overcome

an impasse on a missed recall question. The ICAP model

predicts that constructive remediation should be more

effective than active remediation at helping students over-

come an impasse, and that active remediation should be

more effective than passive remediation. However, there

could be trade-offs between these different forms, because

higher levels of cognitive processing require additional

time and effort on the part of learners, particularly as lear-

ners progress through a training course. For this set of

analyses, remediation effectiveness was operationally

defined as the proportion of cases in which participants

correctly answered a recall question after receiving a given

type of remediation (constructive, active, passive, none).

Remediation effectiveness was calculated for the first, sec-

ond, and third remediation instances delivered following

missed attempts on a given recall question. By examining

remediation effectiveness over successive attempts, we aimed

to identify trade-offs in remediation effectiveness that may

have occurred as learners transitioned from one unsuccessful

remediation attempt to another. A series of z-tests were com-

puted to examine the effectiveness of the remediation types

(Table 2).

Results showed learners were more likely to correctly

answer a previously missed quiz question after the first

remediation if they received constructive remediation (.84)

compared to active remediation (.80; z = 2.45, p < .05,

two tailed), that active remediation (.84) was more effec-

tive than passive (.63; z = 6.57, p < .01, two tailed), and

passive remediation (.63) was more effective than no

remediation (.53; z = 2.71, p < .01, two tailed; Figure 4).

For cases in which participants received two rounds of

remediation before correctly answering a recall question,

results showed that constructive was not more effective

than active remediation (z = 1.10, p = .27, two tailed), but

that active remediation was more effective than passive

remediation (z = 2.77, p < .01, two tailed). Interestingly,

presenting no remediation appeared to be more effective

than presenting passive remediation; however, this

observed effect did not reach statistical significance (z =

1.47, p = .14, two tailed). Finally, for cases in which parti-

cipants correctly answered a recall question after the third

remediation attempt, active remediation appeared to be the

most effective form of remediation, followed by construc-

tive remediation. Results showed no difference in reme-

diation effectiveness between constructive and active

remediation (z = 3.04, p < .05).

2.3. Discussion

The goal of the first study was to capture learning out-

comes as well as learning trace-data from a sample of lear-

ners who completed an online adaptive training course that

could be used for evaluating student learning behaviors

and developing RL-based tutorial policies. Learner

Table 1. Total count of remediations presented over the
duration of the course and for remediation attempts.

Remediation
type

Total count of
remediations

1st
attempt

2nd
attempt

3rd
attempt

Constructive 2098 1529 304 88
Active 2147 1544 323 105
Passive 465 315 78 30
None 487 365 50 30
Total 5197 3753 755 253
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interaction data were collected from 500 participants.

Analyses indicated the dataset contained over 5000

instances of remediation and that participants demon-

strated learning gains as a result of completing the course.

Results also showed that the ICAP-inspired remediation

presented to learners broadly follows trends predicted by

the ICAP model concerning instructional effectiveness and

student cognitive engagement. However, results also sug-

gest that the effectiveness of ICAP-inspired remediation

may change over time and under different conditions,

pointing toward the need for adaptive tutorial policies to

control how and when different forms of remediation are

Table 2. Remediation effectiveness comparisons among remediation types.

First remediation attempt

Constructive Active Passive None Comparison z p

Effective on 1st attempt 1278 1238 199 193 C vs A 2.45 0.014
Total instances provided 1529 1544 315 365 A vs P 6.57 0.000
Effectiveness ratio 0.84 0.80 0.63 0.53 P vs N 2.71 0.007

Second remediation attempt

Constructive Active Passive None Comparison z p

Effective on 2nd attempt 212 212 38 31 C v A 1.10 0.273
Total instances provided 304 323 78 50 A vs P 2.77 0.006
Effectiveness ratio 0.70 0.66 0.49 0.62 P vs N 1.47 0.141

Third remediation attempt

Constructive Active Passive None Comparison z p

Effective on 3rd attempt 44 61 8 8 C vs A 1.12 0.261
Total instances provided 88 105 30 30 A vs P 3.04 0.002
Effectiveness ratio 0.50 0.58 0.27 0.27 P vs N 0 1

C: constructive; A: active; P: passive; N: none.

Figure 4. Remediation effectiveness across remediation attempts.
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delivered to learners. In particular, the effects observed in

Study 1 suggest that providing remediation that requires

less cognitive engagement (e.g., active rather than con-

structive remediation, or passive rather than constructive)

could be an effective instructional approach, particularly

when a learner requires multiple instances of remediation

to master a specific learning objective or knowledge com-

ponent. It is important to note that the present study only

examined remediation effectiveness. If AIS designers were

interested in maximizing multiple rewards, such as learn-

ing and engagement, then additional features about the

learner such as their pre-existing knowledge or perfor-

mance and interaction patterns with previous remediation

activities could impact which form of remediation would

be most effective. These findings set the stage for investi-

gating the application of RL techniques to automatically

induce tutorial policies for controlling how and when

ICAP-inspired remediation is delivered to learners.

3. Study 2 – inducing Markov decision
process-based tutorial policies with
reinforcement learning

Building on the preliminary analysis and the dataset gath-

ered from Study 1, we next utilized offline RL techniques

to investigate the creation of data-driven tutorial policies

for controlling ICAP-inspired remediation within the

online training course. The purpose of the investigation

was to address three primary research questions.

(1) To what extent does RL-based tutorial planning

reproduce the pairwise ordering predicted by the

ICAP framework, that is, constructive remedia-

tion interventions are preferred to active remedia-

tion interventions, which are in turn preferred to

passive remediation interventions?

(2) How do alternative representations for encoding

MDP states and rewards in RL-based tutorial

planners impact induced tutorial policies to con-

trol ICAP-inspired remediation within an adaptive

online course for COIN training?

(3) Under what circumstances do RL-based tutorial

policies for ICAP-inspired remediation select

constructive remediation? Active remediation?

Passive remediation? No remediation?

3.1. Method

To formalize tutorial planning as a RL task, we adopted a

tabular policy representation, which utilizes discrete state

and action representations to encode the model in terms of

a MDP. We utilized a tabular representation due to the rel-

atively small size of the training dataset, which is common

in applications of RL with educational data.8,9,23 In addi-

tion, tabular representations increase the simplicity of inte-

gration with run-time AIS platforms like GIFT, which was

an eventual objective of the research. We investigated sev-

eral alternate formulations of the MDP model to investi-

gate how different combinations of state features and

reward influence tutorial policies induced from the training

dataset. For each MDP formulation, a shared action set

representation was utilized that consisted of four actions:

(a) constructive remediation; (b) active remediation; (c)

passive remediation; and (d) no remediation. Tutorial plan-

ning was modeled as an episodic task, where each student

log corresponded to a single RL episode. Each decision

point for the MDP coincided with the occurrence of a

missed recall question in the course, which triggered a

tutorial decision about how to deliver feedback and reme-

diation to the learner. MDP states were computed at each

of these decision points, and state transitions corresponded

to changes in state between two successive decision points,

or between a decision point and the terminal state of the

session. Rewards were computed at the conclusion of a

session based on the participant’s performance on the

COIN content pretest and posttest assessments.

To induce tutorial policies, we utilized a certainty

equivalent approach, a simple form of model-based RL

that has been used widely in research on intelligent tutor-

ing systems.8,9,23,38 In this approach, the MDP state transi-

tion model P and reward model R are estimated directly

from the training dataset. After estimating the state transi-

tion and reward models, we applied the value iteration

algorithm to estimate the value-function that quantified

the estimated reward associated with each possible combi-

nation of state–action pairs. Next, we devised an action-

selection policy that chose actions according to a greedy

strategy with respect to the induced value-function, thus

producing an ‘‘optimal’’ policy for controlling ICAP-

inspired remediation decisions.21 (Value iteration yields a

theoretically optimal policy for given a state transition

model and reward model if the MDP observes the Markov

property. The Markov property holds for a decision pro-

cess when future states are independent of past states and

actions.)

Throughout all of the analyses, a discount rate g = 0.9

was utilized. All policies were induced using the PyMDP

software toolkit. Developed at North Carolina State

University, PyMDP is a simple Python library for imple-

menting MDP-based models of tutorial planning that can

be induced from learner interaction log data and pre–post

assessment data.39 For small state representations, such as

those described in this study, policies took less than 1 min-

ute to be induced. Policies were encoded as a direct map-

ping between MDP states and tutorial actions.
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3.1.1. MDP state representation. In devising the RL models,

we investigated four different state representations and two

different reward models. Each state representation con-

sisted of a unique combination of the following four dis-

crete state features.

• Pretest_Score_Level: a binary indicator of a lear-

ner’s performance on the COIN knowledge pretest.

Pretest_Score_Level was calculated by performing

a median split on all learner pretest scores and

assigning learners with less than median score to a

value of 0, and learners with equal or greater than

median score to a value of 1.
• Current_Chapter: an ordinal variable that denoted

which chapter of the course that the learner was in

during a decision point about delivering ICAP-

inspired remediation. This feature could have four

possible values: 1, 2, 3, or 4.
• Remediation_Count_High_Low: a binary indica-

tor denoting whether a learner received a high or

low amount of remediation thus far based on aver-

age rates of remediation estimated from all partici-

pants in the MTurk study. Specifically, we

estimated that learners received approximately two

instances of remediation per chapter on average by

taking the mean number of remediation instances

per student and dividing by the total number of

chapters in the online course. Thus, this feature was

calculated by evaluating whether the total number

of remediation instances the learner had received

thus far was less than 2 * Current_Chapter. If so, it

had a value of 0. Otherwise, it had a value of 1.
• Previous_Remediation_Type: a nominal variable

describing what type of ICAP-inspired remediation

was most recently delivered prior to the current

remediation decision point. This feature could have

four possible values, each representing a different

type of remediation: Constructive, Active, Passive,

or None.

The four state representations were additive; they built

upon one another by concatenating additional state fea-

tures to enrich the information utilized to determine what

form of remediation to deliver at a particular decision

point in the training course. The simplest state representa-

tion consisted of a single feature: Pretest_Score_Level.

This was a static feature with a value that was determined

prior to the student engaging with the online course; it was

based entirely on the learner’s pretest score, and it did not

change during the training session. This state representa-

tion is denoted as PretestOnly.

The second state representation that we investigated

consisted of a pair of features: Pretest_Score_Level and

Current_Chapter. This state representation accounted for

both the learner’s prior knowledge and current progress

within the online training course. Although the

Pretest_Score_Level feature did not change during the ses-

sion, the Current_Chapter feature incremented each time

the learner progressed to a new lesson that coincided with

a subsequent chapter. This state representation is denoted

as Pretest+Chapter.

The third state representation consisted of three fea-

tures: Pretest_Score_Level, Current_Chapter, and

Remediation_Count_High_Low. This state contributed

additional information about how often the learner had

received remediation in the course thus far. The

Remediation Count feature could fluctuate up and down

depending on how many recall questions the learner

missed in the course, and thus, how many instances of

remediation he/she received in the course thus far. This

state representation is denoted as Pretest+Chapter+
RemCount.

The fourth state representation consisted of all four

features: Pretest_Score_Level, Current_Chapter, Reme

diation_Count_High_Low, and Previous_Remediation_

Type. This provided the richest state information, and thus

the greatest amount of information, to inform pedagogical

strategy decisions about remediation. The initial value of

the Previous_Remediation_Type feature was None, and its

value changed each time a learner missed a recall question

and the system selected a form of ICAP-inspired remedia-

tion to deliver. This state representation is denoted as

AllFeatures.

The selection of these specific state representations and

features was informed by previous research,35,36 as well as

the results of Study 1. Results suggested that the effective-

ness of ICAP-inspired remediation may change over time

and under different conditions. Remediation that requires

less cognitive engagement may be an effective instruc-

tional approach when a learner requires multiple instances

of remediation or has reached a later stage of the online

training course. We sought to devise empirically based

state representations to investigate alternative designs of

the MDP-based pedagogical model, enabling the creation

of adaptive tutorial policies to control how and when dif-

ferent forms of remediation are delivered to learners.

Specifically, the PretestOnly state representation pro-

vided a personalized remediation policy that would not

adapt its remediation behavior at run-time. Pretest scores

are an important predictor of student learning outcomes.

The PretestOnly state representation provided a means for

inducing a baseline policy that would be adaptive to indi-

vidual learners but not contextually adaptive during the

online training course. In contrast, features such as

Current_Chapter and Remediation_Count_High_Low

could change in value during a student’s interaction with

the online training course. Previous research has shown

that student engagement with ICAP-inspired remediation
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decreases over time, and an increased number of remedia-

tion activities is associated with reduced learning.35,36

Therefore, Current_Chapter and Remediation_Count_

High_Low served as empirically based features to inform

run-time decisions about remediation based upon a stu-

dent’s current learning conditions. The fourth feature,

Previous_Remediation_Type, was selected to provide a

mechanism for introducing variety to the types of remedia-

tion activities delivered to learners for the purpose of

maintaining student interest and motivation. Previous_

Remediation_Type was included as the last feature in the

additive state representation. Although its inclusion was

theoretically based, we did not have empirical evidence

from Study 1 to directly link remediation variety with

student interest.

Discretized features were used to minimize issues

related to data sparsity, which are an important factor in

tabular RL with policies induced from learning interaction

data. Specifically, we used a binary split to encode the

Pretest_Score_Level and Remediation_Count_High_Low

features in order to increase the number of data points

associated with each possible state of the MDP. Although

the state space for MDPs in this work is highly con-

strained, it is in line with prior research on RL-based tutor-

ial planning in advanced learning technologies.8,9,23 An

alternative approach to developing state representations in

RL-based tutorial planning is to utilize automated feature

selection, which involves developing a large pool of candi-

date features and then algorithmically selecting a small

subset for use in the MDP.9 We did not use this approach

in the current study, because our aim was to examine how

different combinations of empirically and theoretically

based state features impact RL-based tutorial policies.

Further investigation of richer state representations is a

promising direction for future work, and it calls for utiliz-

ing function approximation techniques, which we do not

consider here.

3.1.2. MDP rewards. In devising the RL tutorial policies,

two different rewards models were utilized: FullNLG and

ChapterNLG. Both reward models were based upon par-

ticipants’ NLGs. NLG was computed for each learner. The

FullNLG reward model computed pretest and posttest

scores based upon sum performance across the entire 12-

item test. This metric is commonly used as a reward model

in RL-based tutorial planning in advanced learning tech-

nologies.8,23,25,26 A strength of this model was that it

leveraged the full set of available items on the pretest and

posttest to estimate learner knowledge. A weakness of this

approach was that the connection between pretest/posttest

score and a specific instance of remediation could be

weak. For example, if a learner received remediation dur-

ing Chapter 1 of the online training course, but

demonstrated pre–post improvement only on items per-

taining to Chapter 4, then a policy that optimized the

FullNLG reward model would utilize the improvement in

Chapter 4 items to reinforce pedagogical strategy deci-

sions about remediation related to Chapter 1 concepts.

This could introduce noise related to credit assignment

within RL.

The ChapterNLG model was designed to address this

issue by introducing a more granular representation of

NLG that was connected to specific remediation decisions

enacted during learner interactions with the training

course. The ChapterNLG reward model computed pro-

portional improvements in test scores, but the posttest and

pretest scores were computed based upon performance

across only those items that aligned with course chapters

on which tutorial decisions about ICAP-inspired remedia-

tion were enacted. For example, if a student missed recall

questions in Chapters 1 and 4 of the online course, then

ChapterNLG would be computed based upon pretest and

posttest scores on the subset of items that aligned with

Chapters 1 and 4; gains or losses on items aligned with

Chapters 2 and 3 would be ignored. This enhanced the

connection between the effects of instructional remedia-

tion and reward, but it came at the cost of estimating lear-

ner knowledge from a smaller number of test items,

raising potential reliability issues.

Both FullNLG and ChapterNLG reward were

assigned at the conclusion of an episode corresponding to

a single learner’s training session with the online training

course. They were formatted as a real-valued number with

a range of –1 to + 1. No incremental rewards were given

within a training episode. Thus, FullNLG and

ChapterNLG serve as the only optimization criteria con-

sidered for inducing tutorial policies during RL in this

work.

3.2. Results

We induced eight different policies corresponding to dif-

ferent combinations of the four alternate state representa-

tions and two reward models described above. We

examine a subset of the induced policies here in-depth,

and we report descriptive statistics on remediation strate-

gies recommended by each policy trained using the train-

ing interaction dataset.

3.2.1. Research question 1: to what extent does MDP-based
tutorial planning reproduce the pairwise ordering predicted by
the ICAP framework? To investigate this question, we

examined policies induced for the

Pretest+Chapter+RemCount state representation.

Tables 3 and 4 show the full induced policies for this state

representation and the ChapterNLG and FullNLG
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reward models, respectively. Within the tables, the sets of

tutorial planner states mapped to each type of remediation

(i.e., planner action) are shown in the columns. States are

formatted as feature vectors within square brackets. The

first feature of each vector is Pretest_ Score_Level. The

second feature is Current_Chapter, and the third is

Remediation_Count_High_Low.

Overall, both policies selected active remediation as the

preferred intervention in the majority of states. In the case

of the FullNLG reward model, the second most fre-

quently selected action was constructive remediation.

However, passive remediation was the second most fre-

quently selected action for the ChapterNLG reward

model. In total, active and constructive remediation were

selected in 69% of states.

Active remediation was most strongly represented

among states associated with high Pretest_Score_Level.

For the ChapterNLG reward model, active remediation

was selected in all but one high Pretest_Score_Level state.

For the FullNLG reward model, active remediation was

selected in all but two high Pretest_Score_Level states.

Constructive remediation was selected only during

Chapters 1 and 2 of the course. For the FullNLG reward

model, constructive remediation was selected in three-

quarters of states in which a learner had a low

Pretest_Score_Level and was in the first half of the course.

Conversely, the policy recommended the ‘‘no remedia-

tion’’ action only during the latter half of the course.

Furthermore, it was reserved for learners who had already

received a high amount of remediation thus far.

Similar trends were observed for policies induced with

the Pretest+Chapter state representation (Tables 5

and 6). Active remediation was again the most commonly

selected intervention in these policies, particularly for lear-

ners with high prior knowledge about COIN. Constructive

remediation was selected for a mixture of high prior

knowledge learners, as well as low prior knowledge lear-

ners who were early in the course. The remaining remedia-

tion selections were distributed across passive and no

interventions. Delivering no remediation was reserved for

learners in the latter half of the course.

The PretestOnly state representation yielded policies

that exclusively selected active remediation regardless of

Pretest_Score_Level. The AllFeatures state representa-

tion yielded policies that did not clearly favor particular reme-

diation strategies over others. In summary, neither of these

policies showed strong resemblance to the ICAP model.

3.2.2. Research question 2: how do alternative representations
for encoding MDP states and rewards impact induced RL-based
tutorial policies that control ICAP-inspired remediation? To

investigate how the induced policies prioritized different

ICAP-inspired remediation approaches across different

state representations and reward models, we examined the

action frequency distributions across states for the induced

policies. Figure 5(a) shows the frequency distributions

Table 4. Induced Policy for Pretest+Chapter+
RemCount state representation and FullNLG reward.

Action 1:
no remediation

Action 2:
passive

Action 3:
active

Action 4:
constructive

[0,3,1] [0,4,0] [0,3,0] [0,1,0]
[0,4,1] [0,1,1] [1,2,0] [0,2,0]

[1,1,0] [1,3,0] [0,2,1]
[1,4,0] [1,2,1]
[1,1,1]
[1,3,1]
[1,4,1]

Table 3. Induced policy for Pretest+Chapter+
RemCount state representation and ChapterNLG reward.

Action 1:
no remediation

Action 2:
passive

Action 3:
active

Action 4:
constructive

[0,3,1] [0,4,0] [0,2,0] [0,1,0]
[0,4,1] [0,1,1] [0,3,0] [0,2,1]

[1,1,0] [1,2,0]
[1,3,0]
[1,4,0]
[1,1,1]
[1,2,1]
[1,3,1]
[1,4,1]

Table 5. Induced policy for Pretest+Chapter state
representation and ChapterNLG reward.

Action 1:
no remediation

Action 2:
passive

Action 3:
active

Action 4:
constructive

[0,4] [0,1] [0,3] [0,2]
[1,2] [1,1]
[1,3]
[1,4]

Table 6. Induced policy for Pretest+Chapter state
representation and FullNLG reward.

Action 1:
no remediation

Action 2:
passive

Action 3:
active

Action 4:
constructive

[0,4] [0,1] [0,3] [0,2]
[1,3] [1,2] [1,1]

[1,4]
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across different types of remediation associated with the

ChapterNLG reward model. Figure 5(b) shows the fre-

quency distributions across different types of remediation

associated with the FullNLG reward model. In the fig-

ures, the four types of remediation are shown along the x-

axis. The proportion of states in which a particular type

of remediation was selected for a given policy is shown

on the y-axis. The frequency distribution for the

AllFeatures policy is shown in green. The

Pretest+Chapter+RemCount policy is shown in

red. The Pretest+Chapter policy is shown in blue.

The Pretest remediation policy distribution is not

shown. As mentioned previously, the PretestOnly pol-

icy always selected active remediation regardless of

Pretest_Score_Level, which is a significant departure from

the ICAP model. Therefore, we omit it from this analysis.

For both reward models, the Pretest+Chapter+
RemCount policy and Pretest+Chapter policy

shared similar frequency distributions across the four types

of remediation. Both policies selected active remediation

in 38–56% of states, depending on the reward model. In

comparison, the policies selected constructive remediation

in 12–25% of states, passive remediation in 12–19%

of states, and no remediation in 12–25% of states. These

frequency distributions are contrasted with the All
Features policies, which yielded a nearly uniform dis-

tribution across the four different types of remediation.

The AllFeatures policies were the configuration that

least resembled the pairwise ordering predicted by ICAP.

For the ChapterNLG reward model, the AllFeatures
policy selected every type of remediation in 23–27% of

states. For the FullNLG reward model, the All
Features policy selected every type of remediation in

19–33% of states. This is notable because the All
Features policies had the greatest access to state infor-

mation relative to the policies that used competing state

representations.

A possible explanation for the disconnect between the

ICAP model and the AllFeatures state representation

is data sparsity; the training dataset may have simply con-

tained too little data to train an effective tabular policy

using certainty equivalent RL techniques. Table 7 shows

descriptive statistics summarizing the number of data

points utilized to compute value-function estimates for

each state–action pair within the induced policies. From

the table, it is apparent that as the richness of the state rep-

resentation increased, the number of data points available

to estimate the values of state–action pairs decreased. For

example, value estimates in the AllFeatures policies

were computed based upon 19 data points, on average,

from the training dataset. In contrast, value estimates in the

Pretest+Chapter policies were computed based

upon over 180 data points, on average. Furthermore, one

can observe that some state–action pairs in the

AllFeatures policy were never observed in the training

data at all. This inverse relationship has the effect of

increasing the uncertainty of value estimates for policies

that leverage richer state representations. In other words,

there was greater uncertainty about whether an induced

policy was in fact optimal for that state representation and

reward model whenever more information was made avail-

able to the tutorial planner through the state representation.

Figure 5. Bar charts showing overall frequencies of remediation strategies across alternate state representations and reward
models: (a) policies induced with ChapterNLG reward; (b) policies induced with FullNLG reward. (Color online only.)
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Table 7. Descriptive statistics of observation counts for each state–action pair in induced reinforcement learning-based tutorial
policies.

Policy Reward Mean St. dev Max Min Mode

AllFeatures ChapterNLG 19 28.5 132 0 2
AllFeatures FullNLG 18.8 26.6 125 0 2
Pretest+Chapter+RemCnt ChapterNLG 100.6 98.4 299 2 –
Pretest+Chapter+RemCnt FullNLG 101.8 100.8 299 2 –
Pretest+Chapter ChapterNLG 223.2 151.9 415 11 –
Pretest+Chapter FullNLG 182.1 138.3 401 11 –
Pretest ChapterNLG 1037 292 1329 745 –
Pretest FullNLG 1037 292 1329 745 –

Figure 6. Bar charts showing overall frequencies of remediation strategies across alternate state representations and reward
models during the initial half (Chapter = 1 or 2) of the online training course: (a) policies induced with ChapterNLG reward;
(b) policies induced with FullNLG reward. (Color online only.)

Figure 7. Bar charts showing overall frequencies of remediation strategies across alternate state representations and reward
models during the latter half (Chapter = 3 or 4) of the online training course: (a) policies induced with ChapterNLG reward; (b)
policies induced with FullNLG reward. (Color online only.)
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3.2.3. Research question 3: under what circumstances do RL-
based tutorial policies for ICAP-inspired remediation select con-
structive interventions? Active interventions? Passive interven-
tions? No intervention?. To investigate how the induced

tutorial policies selected ICAP-inspired remediation under

different conditions, we examined the policies’ action fre-

quency distributions during different phases of the training

course and for different learners. Figures 6 and 7 show the

frequency distributions across different types of remedia-

tion during the initial half of the course and the latter half

of the course, respectively. Axes and bar colors are the

same as previous frequency distribution figures.

During the first half of the course, the Pretest+
Chapter and Pretest+Chapter+ RemCount
state representations yielded policies that partially

resembled the pairwise ordering predicted by the ICAP

framework. Regardless of the reward model, the

Pretest+Chapter policies selected constructive

remediation in twice as many states as active and passive

remediation, respectively, during this phase of the course

(Figures 6(a) and (b)). They refrained from selecting ‘‘no

remediation’’ in any states. The Pretest+Chapter
+RemCount state representation combined with the

FullNLG reward model (Figure 6(b)) produced the same

Figure 8. Bar charts showing overall frequencies of remediation strategies across alternate state representations and reward
models for high Pretest_Score_Level learners: (a) policies induced with ChapterNLG reward; (b) policies induced with FullNLG
reward.

Figure 9. Bar charts showing overall frequencies of remediation strategies across alternate state representations and reward
models for low Pretest_Score_Level learners: (a) policies induced with ChapterNLG reward; (b) policies induced with FullNLG
reward.
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frequency distribution: constructive remediation was

selected in twice as many states as active and passive

remediation, and ‘‘no remediation’’ was never selected.

The latter half of the course yielded a significantly

different remediation action frequency distribution

(Figure 7). The Pretest+Chapter and Pretest+
Chapter+RemCount policies did not select construc-

tive remediation in any states during the second half of the

course. Rather, active remediation and no remediation

were selected most often for both sets of state representa-

tions and reward models. Across both halves of the course,

the AllFeatures state representation yielded policies

with action frequency distributions that were relatively

close to uniformly distributed across different remediation

types.

Figures 8 and 9 show remediation action frequency dis-

tributions of the induced policies for learners with high

Pretest_Score_Level and low Pretest_Score_Level, respec-

tively. Figure 8 shows that both Pretest+Chapter
and Pretest+Chapter+RemCount policies

selected active remediation much more frequently than

they selected other forms of remediation for learners with

high prior COIN content knowledge. In contrast, Figure 9

shows relatively little differentiation in the frequency of

remediation selections across induced policies for learners

with low prior COIN content knowledge.

3.3. Discussion

Overall, the results of Study 2 provide partial support for

the hypothesis that RL-based tutorial planning will auto-

matically reconstruct the pairwise ordering predicted by

the ICAP model for remediation in adaptive online train-

ing environments. For the Pretest+Chapter+
RemCount policies, active remediation was consistently

prioritized over passive remediation, which was selected

more often than no remediation. Constructive remediation

was selected less often than anticipated, but it was priori-

tized for those learners who had lower prior knowledge

and missed recall questions during the first half of the

course. This pattern is consistent with the instructional

technique of fading scaffolding over the span of a training

course.40 Furthermore, the results were consistent with

expectations about the presence of a trade-off between, on

the one hand, higher levels of cognitive engagement, and

on the other hand, time and cognitive load associated with

ICAP-inspired remediation. Rather than universally priori-

tize constructive remediation in the majority of states, the

induced policies differentially selected remediation requir-

ing varying levels of cognitive engagement in different

states.

In our examination of how alternative representations

for encoding MDP states and rewards impact induced RL-

based tutorial policies that control ICAP-inspired

remediation, results showed that for the different state

representations, the policies selected active remediation

most frequently except in the case of the AllFeatures state

representation. Results also showed that differences

between policies that shared the same state representation

but optimized different reward models were relatively

minor. For the Pretest+Chapter+RemCount state

representation, the FullNLG reward model yielded poli-

cies that selected constructive remediation in more states

than the ChapterNLG reward model. However, there

were no differences in constructive remediation selections

between policies for the Pretest+Chapter state rep-

resentation. In contrast, the FullNLG reward model

yielded a policy for the Pretest+Chapter state rep-

resentation that more frequently selected no intervention

than did the ChapterNLG reward model. In general, poli-

cies induced with the same state representation but differ-

ent reward models were more than 87% similar for the

Pretest+Chapter and Pretest+Chapter+
RemCount state representations.

Our third research question asked under which circum-

stances do the tutorial policies select the different kinds of

ICAP-inspired remediation. Results showed the selected

policy depended on where students were in the course,

prior knowledge, and the number of remediation instances

they had received.

4. General discussion

This paper presents results from a pair of studies that

aimed to devise and investigate data-driven tutorial plan-

ning policies using RL techniques to provide learners with

adaptive remediation. The dataset included training inter-

action data from over 500 learners who completed a 90-

minute online training course and received different forms

of remediation that were based on the ICAP framework

for cognitive engagement. Preliminary analysis of the

training data showed learners demonstrated modest learn-

ing gains by completing the course and that constructive

and active forms of remediation, which are more cogni-

tively engaging, helped learners correct errors that led to

incorrect responses on recall quiz items. Preliminary anal-

yses from the training dataset also suggest that the effec-

tiveness of ICAP-inspired remediation may change over

time and under different conditions, pointing toward the

need for adaptive tutorial policies to control how and when

different forms of remediation are delivered to learners.

The RL policy analyses, or Study 2, demonstrated that

certainty equivalent RL can yield instructional policies that

operationalize key aspects of the ICAP model of cognitive

engagement in learning. Results showed that induced poli-

cies reconstructed several components of the pairwise

ordering predicted by the ICAP framework: a policy that
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utilized the Pretest+Chapter+RemCount state

representation and in which the FullNLG reward model

selected active remediation more frequently than passive

or no remediation. The policy also selected constructive

remediation more frequently than passive or no remedia-

tion. In addition, it selected passive remediation more fre-

quently than no remediation. The pairwise ordering was

especially prominent during the first half of the training

course. The induced policy prioritized active remediation

for learners with higher prior content knowledge – this

shows promise for yielding more efficient training times –

and it prioritized constructive remediation for learners with

lower prior knowledge during the first half of the course.

Finally, the policy only selected no remediation during the

latter half of the course for learners who had already

received an above-threshold amount of remediation. This

component of the policy was consistent with the instruc-

tional approach of fading, which is a surprising but inter-

esting result. Overall, the findings provide evidence that

lends support to the ICAP model, and they show that RL-

based tutorial planning yields adaptive remediation poli-

cies that show significant promise in online training

environments.

Notably, Study 1 demonstrated that constructive reme-

diation was most helpful for correctly addressing a missed

recall question, whereas Study 2 indicated that active

remediation was most helpful for promoting learning

gains. This difference in prioritized remediation strategies

between the studies could be explained by a number of

factors, including differences in the dependent variables

and reward states used in each study. Study 1 used an

operationalization of remediation effectiveness that exam-

ined the probability that a remediation activity led to a suc-

cessful response on a previously missed quiz question.

Study 2 utilized NLGs from pretest to posttest, at the chap-

ter and course levels, as reward states while also account-

ing for differences in pretest scores, course progress, and

remediation interaction history. The differences in the

dependent variables and states may have driven the differ-

ences between the behavioral results and the RL results.

Reward engineering is a critical issue in the design of RL

systems, and this includes RL-based tutorial planners.

NLGs have been previously used as a reward in adaptive

learning environments, but there are other rewards that

merit investigation. This is a promising direction for future

work.

Results of the RL policy investigation also showed that

state representation has an important effect on the content

and action frequency distribution of induced tutorial poli-

cies. State representations that contain too few features

(e.g., PretestOnly) or too many features (e.g.,

AllFeatures) produced policies that were ineffective

at differentiating how to select remediation in different cir-

cumstances. For policies with too many features, data

sparsity issues may arise that increase the uncertainty of

computed value-function estimates, which are utilized to

identify the optimal tutorial policy. The results of Study 2

did not find evidence showing that alternative reward

models – particularly rewards computed from granular

versus aggregate measures of learning – had a major

impact on RL-based tutorial policies.

Results also suggested that RL-based tutorial planning

may produce different policies for learners with higher

prior content knowledge than learners with lower prior

content knowledge. For learners with higher prior knowl-

edge, induced policies selected active remediation most

frequently, whereas for learners with lower prior knowl-

edge, induced policies selected remediation strategies with

near-uniform probability. These findings are reminiscent

of related work on RL-based tutorial planning that has

found evidence of an aptitude–treatment interaction effect

in studies involving student classroom interactions with an

intelligent tutoring system.9 The results point toward RL-

based tutorial policies that implement different remedia-

tion strategies, depending on learners’ prior knowledge,

and furthermore, have different levels of effectiveness in

promoting learning outcomes. Given that a key objective

of adaptive learning technologies is to aid learners who

might struggle without individualized support, investigat-

ing these trends further is an important direction of future

work.

4.1. Practical implications

What do the results of our study mean in the context of

using theoretically grounded frameworks, such as ICAP,

to guide pedagogical decisions in AISs? The results of the

current study lend support for the predictions made by the

ICAP framework and provide evidence that an adaptive

approach to operationalizing ICAP-inspired remediation in

AISs, as opposed to strictly following the prescribed

ordering of ICAP, is appropriate, at least in the specific

context examined in this work. AISs that have the flexibil-

ity to tailor the type of ICAP-inspired activity provided to

learners offer a promising approach for maintaining stu-

dent engagement and maximizing learning outcomes.

Rather than receiving one form of remediation over the

course of training or receiving different types of remedia-

tion that are scaffolded according to a fixed schedule (e.g.,

constructive, active, passive), the current results show that

using RL to learn tutorial policies from data offers an

approach for delivering tailored remediation in AISs.

Using a data-driven tutorial planning approach to learn

which remediation activities work better for different
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learners under different circumstances, and further refining

these policies over time as more data becomes available,

offers a pathway to deeply adaptive training experiences.

4.2. Directions for future research

There are several limitations of this work that merit

acknowledgment. Firstly, the study would have benefited

from a larger sample size. RL analyses are data-intensive

and require large training datasets to avoid data sparsity

issues. Our sample included responses from over 500 stu-

dents. Training datasets of this size are not uncommon

when applying RL to induce policies with human-subjects’

datasets, particularly in education-based settings where

training datasets can range from 200 to more than 1000

subjects.42–44 Developing RL methods that account for

limited samples sizes is an active area of research.45

Secondly, the analyses presented in Study 1 could have

been strengthened if a control condition were included in

the study. This would have allowed us to examine if the

learning gains observed were a result of being exposed to

remediation or an artifact of completing the training.

Because the purpose of this data collection was to generate

a training dataset and not to conduct an experiment, a con-

trol group was not included in the study design. Thirdly,

our analysis of the RL policies did not include statistical

hypothesis testing, which raises questions about reliability.

An approach to address this issue would be to run the RL

analyses multiple times to examine whether the observed

differences between remediation types, state representa-

tions, and reward models are observed consistently. We

have elected not to do this in the current work because it

would involve running value iteration multiple times on

randomly selected subsets of the data, which would

exacerbate data sparsity concerns, which we have high-

lighted as being an important issue. The real test of the

reliability of the RL-based tutorial planning results would

be to observe how frequently constructive, active, passive,

and no remediation activities are delivered to learners in a

run-time setting, and then evaluate whether there are sig-

nificant differences in their frequency. This is a promising

direction for future work.

There are several promising directions for future

research on the design, development, and evaluation of

RL-based tutorial policies in online training environments.

Recent years have seen dramatic advances in RL tech-

niques and applications, especially in the area of deep RL,

which leverages deep neural networks to capture patterns

in high-dimensional input data and approximate nonlinear

value-functions, and optimize parameterized policy repre-

sentations.41 There is also growing interest in human-in-

the-loop RL, which seeks to augment RL with human

input to improve the efficiency and effectiveness of

induced control policies.46 These methods show signifi-

cant promise for devising data-driven tutorial planners in

AISs. They provide principled mechanisms for implement-

ing richer state representations with large numbers of input

features, as well as methods for utilizing human demon-

strations and feedback to guide the learning process. Deep

RL techniques, such as deep Q-networks and A3C, have

been investigated for tutorial planning in game-based

learning environments and intelligent tutoring systems,

respectively.9,22,25,26 Research on Deep RL frameworks

for tutorial planning has focused primarily on adaptive

learning technologies for K-12 and undergraduate stu-

dents, as well as traditional academic subjects, such as

microbiology and logic.22,23,25 Deep RL has not been

widely investigated for data-driven tutorial planning in

military training domains, which is an important direction

for investigating generalizability to alternative subjects

and educational contexts.

A second promising direction is validating the frame-

work with data from a military population. This project

included participants from Amazon MTurk to investigate

the impact of ICAP-inspired remediation and the creation

of RL-based tutorial policies for an online training course

on COIN. A major benefit of working with the MTurk

population was the relative ease of collecting data to train

RL-based tutorial planning models. However, study parti-

cipants may have differed in their prior knowledge, experi-

ence, motivation, and demographics relative to participants

from a military population. Investigating how well the

adaptive training materials and tutorial planning methods

utilized in this study translate to a military audience is an

important future step for the work. Similarly, investigating

how the RL-based tutorial planning approach and ICAP-

inspired remediation policies transfer to other training

domains and educational settings are key future directions.

An attractive attribute of the policies induced in this

project is their relative simplicity, making their implemen-

tation within an adaptive training platform, such as GIFT,

relatively straightforward. Although results suggest that

RL-based tutorial planning can yield data-driven remedia-

tion policies that reproduce major components of the ICAP

model, investigating their impact on learning outcomes

through randomized experimentation is the ‘‘gold stan-

dard’’ for empirical evaluation. There are several study

designs that merit consideration. Induced policies could be

compared to a control condition that provides no remedia-

tion. Alternatively, induced policies could be compared to

a random policy that emulates the remediation strategy uti-

lized in the MTurk study. Induced policies could also be
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compared to a heuristic model that utilizes a set of consis-

tent rules for driving remediation (e.g., always deliver

passive remediation, always deliver constructive remedia-

tion, etc.). By isolating the impact of induced remediation

policies on learning outcomes, the efficacy of RL-based

tutorial planning can be examined and our understanding

of data-driven approaches for design and development of

adaptive training environments can be extended.

Finally, future research should examine the impact of

RL-based instructional policies within a run-time virtual

training environment. Across the military, virtual and

game-based training is being applied more than ever to

assist in skill acquisition through rapid exposure to sets

and reps that provide novel opportunities to practice.

Extending the RL-based policies to support remedial

coaching interventions that target human-performance

dimensions is an important next step.

5. Conclusion

Data-driven approaches to tutorial planning, such as RL,

show significant promise for devising effective models of

instructional techniques and strategies for complex

domains and learning environments. This paper summar-

ized research on a RL-based approach for data-driven

tutorial planning. We investigated tutorial planning in the

domain of COIN training, with a focus on online training

environments. We devised a set of adaptive remediation

policies that are applicable to multiple learning environ-

ments and that are inspired by the ICAP framework.10

Results from a study involving more than 500 participants

recruited through Amazon MTurk found that participants

achieved significant learning gains by completing the

course. The effectiveness of different remediation inter-

ventions largely followed the ICAP model.10,29 An exami-

nation of RL-induced policies found that they reproduced

key components of the ICAP model. Induced policies

selected active remediation more frequently than passive

and no remediation. Similarly, constructive remediation

was selected more often than passive and no remediation,

and it was prioritized for learners with low prior knowl-

edge during the first half of the course, when remediation

was observed to be most effective. Passive remediation

was selected more frequently than no remediation, and no

remediation was reserved for the latter half of the

course, which was consistent with a pedagogical strategy

of faded scaffolding. These findings demonstrate that

RL-based tutorial planning shows significant promise as

a framework for devising generalizable, data-driven

tutorial planning models that automatically improve

instructional techniques, strategies, and tactics based

upon data from learner interactions with online training

environments.
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