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Abstract—Science learning is inherently multimodal, with students utilizing both drawings and writings to explain observations 
of physical phenomena. As such assessments in science should accommodate the many ways students express their 
understanding, especially given evidence that understanding is distributed across both drawing and writing. In recent years 
advanced automated assessment techniques that evaluate expressive student artifacts have emerged. However, these 
techniques have largely operated individually, each considering only a single mode. We propose a framework for the multimodal 
automated assessment of students’ writing and drawing to leverage the synergies inherent across modalities and create a more 
complete and accurate picture of a student’s knowledge. We introduce a multimodal assessment framework as well as two 
computational techniques for automatically analyzing student writings and drawings: a convolutional neural network-based 
model for assessing student writing, and a topology-based model for assessing student drawing. Evaluations with elementary 
students’ writings and drawings collected with a tablet-based digital science notebook demonstrate that 1) each of the 
framework’s two modalities provide an independent and complementary measure of student science learning, and 2) the 
computational methods are capable of accurately assessing student work from both modalities and offer the potential for 
integration in technology-rich learning environments for real-time formative assessment. 

Index Terms—Intelligent Tutoring Systems; Formative Assessment; Multimodal Assessment; Student Writing 
Analysis; Student Drawing Analysis.  

——————————   u   —————————— 

1 INTRODUCTION

SESSMENT plays a crucial role in learning. In the 
classroom, teachers rely on a combination of 

summative and formative assessments to help monitor 
student knowledge, diagnose areas of misunderstand-
ing, and refine instructional strategies [1]. Formative 
feedback provided during the learning process can be 
more beneficial than a single summative judgment at 
the end, which places a growing importance on accu-
rate and timely formative assessment [2], [3]. However, 
designing effective assessments is challenging, particu-
larly if they are to be minimally disruptive to learning.  

Interest in investigating how student learning data 
can be leveraged in real-time automated formative as-
sessment to support teachers in the classroom has in-
creased in recent years [4].  Compared to more distal, 
summative assessments, the rapid, cyclical nature of 
formative assessment provides a unique opportunity 

to integrate powerful computational systems that ef-
fectively diagnose student conceptual understanding 
and misunderstanding as learning progresses. Previ-
ous work makes clear that the more restrictive meth-
ods traditionally used in summative assessment, such 
as multiple-choice questions, are limited in their ability 
to provide the analyses necessary for guiding real-time 
scaffolded instruction for students (e.g., [5]). To ad-
dress this issue, recent approaches to real-time forma-
tive assessment have shown promise by leveraging the 
rich, multifaceted data generated by digital learning 
environments, including analyses of student interac-
tion logs in open-ended learning environments [6] and 
analyses of interactions with course materials and 
online tools to predict student performance [7]. 

In addition to measures of student interactions and 
interaction logs, analyzing artifacts of student work for 
formative assessment also shows great promise for 
making accurate inferences about student knowledge. 
However, student artifacts can take many forms de-
pending on the subject matter and curricular goals. 
Given the growing breadth of activities enabled by 
digital science inquiry environments, it is important to 
develop assessment tools that can conduct integrated 
assessments of student work across multiple activities 
and modalities. In the work reported here we focus on 
two modalities commonly used in science education: 
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short-text constructed responses and learner-generated 
drawings. 

Each of these modalities has typically been assessed 
individually. Short-text constructed response items 
have been shown to reveal cognitive processes and 
states in students that are difficult to infer through 
multiple-choice equivalents [8]. Even when it seems 
that items could be designed to address the same cog-
nitive processes, success in devising multiple-choice 
and constructed-response items that exhibit psycho-
metric equivalence has proven to be limited [9]. Be-
cause standards-based STEM education in the United 
States explicitly promotes the development of writing 
skills for which constructed response items are ideally 
suited [10], [11], the prospect of designing text analyt-
ics techniques for automatically assessing students’ 
textual responses has become even more appealing, 
spurring an acceleration of research in this area [12]. 

In a parallel development, drawing has become rec-
ognized as a central activity in science education, par-
ticularly in lower grades. Generating drawings of sci-
ence phenomena can engage students in inquiry pro-
cesses and foster a deeper understanding of concepts 
more than  simply viewing drawings [13]. A variety of 
studies show that instructional strategies focusing on 
learner-generated drawings can produce positive 
learning outcomes by improving science text compre-
hension and student engagement [14], facilitating the 
writing process [15], and improving the acquisition of 
content knowledge [16]. However, these assessments 
are very labor intensive to develop and evaluate. 
Combined with the natural affordances provided by 
the growing presence of tablet computing platforms, 
automated analytical techniques provide a promising 
solution for implementing drawing-based assessments 
at scale. 

Despite progress in evaluating each of these modali-
ties in isolation, there is limited work exploring inte-
grated frameworks for both writing and drawing. 
However, initial findings show that not only do stu-

dents reveal conceptual understanding through both 
modalities, but also that different aspects of their un-
derstanding are often distributed across the modalities 
[17]. Other studies have shown that student drawings 
can be used as a valuable source of evidence to resolve 
ambiguities in student writing [18]. 

In this work we investigated the potential of multi-
modal assessment by analyzing elementary student 
writings and drawings with a common rubric. We pre-
sent automated assessment techniques that are used to 
investigate two research questions. First, we explored 
how automated tools can assess student short con-
structed responses and symbolic drawings with re-
spect to human grading. We found that a convolution-
al neural network approach for analyzing writing and 
a topology-based approach for analyzing drawing 
closely mirror the assessments made by human grad-
ers. Second, we explored how accurately a multimodal 
assessment framework (Fig. 1) integrating writing and 
drawing assessments predict learning outcomes com-
pared to a single modality framework. We found that 
not only does each modality individually predict stu-
dent learning outcomes, as measured by a summative 
post-test, but the integrated multimodal framework 
outperforms both uni-modal assessments individually.  

This article is organized as follows. Section 2 dis-
cusses related work in the automated assessment of 
student short-text constructed responses and science 
drawings. Section 3 introduces the LEONARDO system 
used to collect the student science writing and drawing 
corpus, as well as the coding procedure used to ana-
lyze student writings and drawings. Section 4 provides 
an analysis of the human-coded scores. Section 5 in-
troduces the computational methods used to automati-
cally assess the writings and symbolic drawings. Sec-
tion 6 presents the results of the automated assessment 
as well as additional analysis. Finally, Section 7 dis-
cusses results and directions for future work. 

Fig 1. Multi-modal assessment framework 
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2 RELATED WORK 
Both the educational psychology community and the 
intelligent tutoring systems community have investi-
gated the modalities of writing and drawing as types 
of formative assessment. However, relatively little 
work has explored their integration. Below we describe 
prior work on the analysis and interpretation of both 
modalities, as well as prior work in automated assess-
ment. 

 
2.1 Short-text Constructed Response Analysis  
For many domains, a rich source of formative assess-
ment is student written responses. Short answer re-
sponses can generally be characterized as requiring a 
response between one phrase and one paragraph of 
natural language that recalls knowledge not stated in 
the question, and is evaluated on content rather than 
writing style [19]. For the science classroom in particu-
lar, these written responses are often structured to en-
courage students to both make claims about scientific 
principles and provide evidence to support these 
claims [20]. These responses serve the dual role of both 
revealing underlying student mental models as well as 
encouraging reflection [21]. 

Short-text constructed items have long been a sub-
ject of interest for the intelligent tutoring systems re-
search community, spawning a variety of approaches 
for automated analysis. Some of the simplest ap-
proaches to Constructed Response Analysis (CRA) are 
based on the assumption that the words a student uses 
can be used to analyze the content of his or her state-
ment. This assumption allows early approaches, 
known as “bag of words” approaches, to ignore many 
complexities of human language in an effort to in-
crease computational efficiency and portability across 
languages without the need to build or automatically 
learn complex grammars [22]. This makes “bag of 
words” approaches especially useful for cases of ill-
formed text. However, for many purposes, “bag of 
words” approaches can also significantly reduce preci-
sion of analysis.  

More recent approaches introduce greater sophisti-
cation and complexity in an attempt to capture the 
meaning lost in bag-of-words approaches. These tech-
niques are characterized by their strategy of finding an 
alignment between sentences. A student answer is de-
composed into constituent elements, generally words 
and short phrases, and these are annotated with lin-
guistic features that the system uses to establish a best 
match with the given reference answer. Another ap-
proach gaining traction in recent natural language pro-
cessing competitions combines complementary tech-
niques that each specialize in a different characteristic 
of student answers to form hybrid techniques that can 
successfully analyze both. In this section we present 
these approaches and some techniques that represent 
each.  

Latent Semantic Analysis is a widely used technique 
for the simple bag-of-words approach to CRA [23]. La-
tent Semantic Analysis makes a term-document co-
occurrence matrix from a large corpus and performs 
Singular Value Decomposition, a process that filters 
noise from the data to leave only the most significant 
patterns. The result can be used to represent a given 
word or document as a vector of high level features 
that each represent a latent concept in the text. Com-
paring these vectors gives us a numeric conceptual 
similarity measure of the two documents or words. 

As a bag-of-words technique, LSA is generally too 
imprecise, and therefore too permissive, in its grading. 
Because it cannot distinguish between “the water 
evaporates, leaving the salt” and “the salt evaporates, 
leaving the water,” it will assign them the same grade. 
If the reference answer is looking for the concepts 
“salt,” “water, and “evaporate,” this grade will indi-
cate a high level of student understanding even if the 
student has a serious misconception about the core 
concepts. 

Beyond bag-of-words, many current techniques take 
advantage of deeper linguistic understanding, which 
they use to align concepts between a reference answer 
and a student answer. Both the Content Assessment 
Module [24] and Educational Testing Services’ C-Rater 
[25] use a battery of linguistically sophisticated pre-
processing tools to automatically annotate words in an 
answer with linguistic features such as its morphologi-
cal stem, part-of-speech, and syntactic relationship 
with other words in the sentence. These features then 
allow the systems to map elements between the refer-
ence and student responses and assign a grade based 
on the resulting alignment. 

Many state-of-the-art techniques work by integrat-
ing multiple approaches, often a combination of bag-
of-words and alignment approaches. The philosophy 
behind this method is that while technique A may 
have certain weaknesses, and technique B may have 
other weaknesses, meta-technique AB can integrate the 
best features of both of its constituents and achieve 
better accuracy than either on its own.   

Educational Testing Services (ETS) uses a hybrid 
technique combining a bag-of-words technique with a 
translation evaluation technique BLEU [26] and its 
alignment-based system PERP [27]. ETS’s technique 
adapts to scoring either questions present in the train-
ing data or unseen questions by making multiple cop-
ies of each feature. One copy is learned only from an-
swers that share the same question as the answer to be 
graded, another from answers that share a domain, 
and a third from all the answers [28]. 

Dzikovska, Nielsen, and Brew propose an approach 
based on separating a reference answer into multiple 
facets and determining correctness of an answer for 
each facet to provide more fine-grained information 
about student understanding to intelligent tutors and 
human teachers [29]. Like the alignment approaches, 
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these facets are drawn from modified syntactic de-
pendency parses of the reference answer, but unlike 
alignment approaches, the goal is not to return one 
overall score but to identify the student’s expression of 
each facet individually.  

The approach we use in this paper, convolutional 
neural networks, builds on our previous work [30], but  
otherwise has not been applied to short answer as-
sessment. It has, however, demonstrated promise in 
several other text analytics tasks, including question 
identification, sentiment prediction, and semantic simi-
larity [31]–[33]. 

2.2 Learner-generated Drawing 
Unlike the well-studied areas of how people learn 
from writing text, viewing graphics, and reading, rela-
tively little is known about how creating graphical rep-
resentations affects learning. Van Meter and Garner 
[34] posit that students asked to draw a picture engage 
in three cognitive processes: selecting relevant infor-
mation, organizing the information to build up an in-
ternal verbal model, and constructing an internal non-
verbal representation to connect with the verbal repre-
sentation. Others suggest that drawing can be a mean-
ingful learning activity requiring both essential and 
generative processing to mentally connect multiple 
representations of the knowledge [35].  

The benefits of learning-generated drawing are best 
realized by thoughtfully designing activities and situ-
ating them within a well-formulated curriculum, as the 
positive effects of drawing strongly depend on the 
quality of the learner-generated products and scaffold-
ing [36]. The act of generating a visual representation 
can be a cognitively demanding task and as such, re-
quires scaffolds to guard against excessive and extra-
neous cognitive load [37]. Examples of effective scaf-
folds for more structured drawing include providing 
cutout figures, guiding questions, and targeted draw-
ing prompts [38]. Creating visual representations is 
also a crucial element of modelling in science educa-
tion, often times combined with simulations or written 

explanations to help students illustrate, explain, and 
predict phenomena [39]. Furthermore, preliminary 
studies at the elementary grades show that student 
understanding is distributed unequally across drawing 
and writing in science notebooks [40].  

Interpreting these visual artifacts poses significant 
computational challenges, with the majority of prior 
work focusing on entity recognition in free-hand 
sketches. The Mechanix system builds on this research 
by using free-hand recognition capabilities to convert 
student statics drawings into free-body equations 
which the system can then compare to a target solution 
and provide basic feedback on the students’ solutions 
[41].  

Bollen and van Joolingen’s SimSketch system merg-
es free-hand sketching with modeling and simulation 
of science phenomena [42]. In SimSketch, user free-
hand drawings are segmented into distinct objects by 
the system, and then manually annotated by the user 
with a variety of behaviors, attributes, and labels. Stu-
dents can then run a simulation based on their draw-
ing and see the results before revising their sketch. 
SimSketch has been evaluated in a planetarium setting 
and been shown to be both a functionally useable and 
enjoyable system for visitors.  

Another promising line of investigation for study-
ing learner-generated drawing in educational settings 
is the CogSketch system [43]. CogSketch has been de-
veloped as an open-domain sketch understanding sys-
tem, allowing users to annotate objects and relations in 
their drawings with entities and relations represented 
in the OpenCyc knowledge base. Short drawing activi-
ties, called Sketch Worksheets, have been built within 
CogSketch and used in a pilot study to collect under-
graduate geology student drawings, which were then 
clustered using an analogical generalization engine 
[44]. Researchers have also used CogSketch to identify 
differences in the way experts and novices copy exist-
ing diagrams, comparing not only the final drawings 
but the process with which the drawings are created 
[45].   

Fig 2. Students using LEONARDO on a tablet and in conjunction with physical experiments in the classroom 
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Additionally, there has been work combining lan-
guage and visual artifacts in tutoring systems. The AT-
LAS-ANDES system combined dialogue feedback and 
drawing, with students’ free body diagrams potential-
ly triggering feedback in a physics tutor [46]. More 
recently, a pilot study of the Design Buddy system 
combined drawing with Cogsketch and structured 
language input created with dropdown menus to pro-
vide feedback to students based on the consistency of 
the explanation [47]. Building on this work we explore 
the assessment of student writing and drawing with a 
common rubric. Then, utilizing the human codings of 
student artifacts we build automated assessment sys-
tems. Finally, we investigate how these codings can be 
used to compare student writing and drawing to better 
understand how the two modalities might be used 
synergistically in assessment. 

3 SYSTEM DESCRIPTION 

In order to study student writing and drawing in an 
ecologically valid setting, we developed a digital learn-
ing environment modeled after science notebooks. Sci-
ence notebooks are used extensively in elementary 
grades as a mechanism to promote and reveal reflec-
tive thought [48]. Science notebooks capture students’ 
inquiry-based activities in a variety of forms, including 
both written and graphical form, potentially providing 
a valuable diagnostic source of student understanding 
and misconceptions. Unfortunately in many cases ele-
mentary teachers are trained as generalists and often 
have limited training specifically in science pedagogy, 
which poses significant challenges in effectively using 
science notebooks in classroom learning activities [49].  

As computing technologies become more affordable, 
and ubiquitous in classrooms, we see opportunities to 
transition the paper science notebook to a virtual envi-

ronment capable of leveraging the advances of intelli-
gent tutoring systems. Over the past five years our la-
boratory has been developing a digital science note-
book for elementary school science education called 
LEONARDO (Fig. 2) [30]. 

LEONARDO integrates intelligent tutoring systems 
technologies into a digital science notebook that ena-
bles students to graphically model science phenomena 
with a focus on the physical and earth sciences. Capa-
ble of operating on both conventional and tablet com-
puting platforms, LEONARDO is designed to be used in 
the classroom in conjunction with physical experi-
ments and is aligned with the Next Generation Science 
Standards for elementary school science education.   

LEONARDO’s curriculum is organized around focus 
questions that encourage students to follow the scien-
tific method. For each focus question, students explore 
natural phenomena through writing and drawing 
about underlying scientific principles. Writing exercis-
es are in the form of short answer questions where the 
student reads a question and answers it in a sentence 
or two. Drawing exercises consist of students creating 
symbolic drawings of different concepts depending on 
the current topic. Given the challenges of machine 
recognition of freehand sketch, as well as concerns of 
excessive cognitive load for fourth graders working on 
such an unstructured task, LEONARDO supports sym-
bolic, diagrammatic drawing (Fig. 3). This can be con-
sidered analogous to existing class room activities such 
as students creating visual artifacts with paper cutouts, 
or working from a predefined glossary of symbols. 
During these activities, students choose from a variety 
of pre-authored symbols representing macroscopic and 
microscopic elements of a domain. Students can then 
add, remove, rotate, and move the elements to produce 
their visual representations. 

To date modules have been developed for three con-

Fig. 3. Screenshot of the LEONARDO learning environment  
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tent areas: Electricity and Circuits, Magnetism, and 
Weather. These modules represent over 16 classroom 
hours of content. Overall various versions of LEONAR-
DO have been used in over 35 schools spanning more 
than 11 states within the United States. 

3.1 Data Corpus 
The data analyzed in this study consists of student 
writing and drawing samples collected from a learning 
activity in the area of Magnetism. This particular activ-
ity guides students’ investigation of what happens to 
magnetic particles in the presence of a magnetic field.  
From this activity, two writings and two drawings 
were collected for each student. The first writing sam-
ple was taken at the beginning of the exercise in re-
sponse to the prompt, “What happens to the particles 
when an object is turned into a temporary magnet?”, 
and is referred to as Writing 1 in the results. After re-
sponding to the first prompt, students were then pre-
sented with a series of scientific explanations, as well 
as a brief physical experiment involving a magnet, a 
straw and a paperclip designed to help students de-
termine that some materials can undergo induced 
magnetism and others do not.  Examples of student 
answers are shown in Table 1 for each of the two writ-
ing prompts. 

TABLE 1 
EXAMPLES OF STUDENT WRITING  

 
Question Answer Score 

Writing 1 

When an object is turned into a 
temporary magnet, its particles 
become magnetic and attract 
magnetic stuff 

5 

Writing 2 
The particles in the paperclip 
face the same way as the parti-
cles in the temporary magnet 

6 

 
The students then completed two drawing activities 

(Drawing 1 and Drawing 2) using foundational sym-
bols. Both drawing exercises utilize the same set of 
symbols available to the student: paper clip, arrow, 
straw, magnetic particle, inert particle, and a magnify-
ing bubble. The first drawing prompt instructed stu-
dents to draw what a paperclip and straw’s particles 
look like when far from a magnet. The second prompt 
asked what the particles would look like when close to 
the magnet.  For these exercises, the magnet is placed 
by the system in the drawing space for the student and 
cannot be manipulated. Finally, the students were 
again presented with the focus question that began the 
exercise and asked to construct a written response giv-
en what they learned during the activity (Writing 2). 
The ideal answer combines the macroscopic concept 
that paperclips can undergo induced magnetism when 
near a permanent magnet with the microscopic reason 
being the change in the orientation of its particles.  

TABLE 2 
SHARED RUBRIC FOR WRITING AND DRAWING  

 

 
Instead of developing separate rubrics for evaluat-

ing writing and drawing, we used the common content 
focus of the activity to develop a shared rubric de-
signed to evaluate student responses in both written 
and graphic form. The rubric evaluates student re-
sponses against several criteria. Four of the criteria 
concern the usage of core ‘actors’ from the magnetism 
investigation: paperclips, straws, magnifiers, and par-
ticles, and were scored on a 0-1 scale for each actor. 
The scale attempted to account for more than just the 
presence of the actor, for example positional require-
ments for the actors in the drawing space as well as 
requiring the actor to be part of a complete thought in 
the writings. Three dimensions were related to the ac-
curate depiction of the particulate nature of permanent 
magnets, objects that could be magnetized (e.g., paper 
clips), and nonmagnetic objects (e.g., straws). These 
criteria were scored on a 0-2 scale for the magnet and 
straw particles, and a 0-3 scale for the paperclip parti-
cles, accounting for both the types and alignment of 
the particles. Coding of the written responses for the 
paperclip, magnet, and straw particles were scored on 
whether students understood the composition of the 
particles and whether the orientation of its respective 
particles was fixed or not. Written responses were 
scored on two additional criteria focusing on the dy-
namic and symbolic nature of the response. The dy-
namic dimension scored whether students referenced a 
change over time. The semiotic dimension indicated 
whether the nature of the written arguments was eval-
uated as iconic (only using words to represent concrete 
ideas) or symbolic (using words representing abstract 
concepts). These dimensions represented an implicit 
semantic property that couldn’t be assessed in the spe-
cific drawing activities studied in this work. For in-
stance, the first example shown in Table 1 received 1 
point for mentioning that the particles become magnet-
ic, 1 point for mentioning particles, 1 point for imply-
ing change occurred (dynamic), and 1 point for de-
scribing abstract concepts. The answer for Writing 2 
received 1 point for referencing the paperclip, 3 points 
for describing how the particles align in the paperclip, 

Rubric Item Writing Drawing 
Paper clip 0-1 0-1 
Straw 0-1 0-1 
Magnifier 0-1 0-1 
Particles 0-1 0-1 
Clip Particles 0-3 0-3 
Straw Particles 0-2 0-2 
Magnet Particles 0-2 0-2 
Dynamic 0-2 N/A 
Semiotic 0-3 N/A 
Total 16 11 
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and 1 point for particles. The full rubric is shown in 
Table 2. 

Students for this analysis were selected from a 
larger sample of implementing classrooms from the 
2013-2014 school year. Given the wide range of imple-
mentations, a subset of 20 classrooms, representing 14 
teachers, was selected due to a high degree of com-
monality in implementation protocol. Classrooms in 
this sample had teachers who had completed the pro-
fessional development session, implemented the sys-
tem over 10-14 days, had a large percentage of consent-
ing students, and reported only minor technological 
issues. From this sample, the work of 95 students was 
analyzed for this work. These students were selected 
due to their completion of all  evaluated written and 
drawing activities, as well as their completion of both 
the pre- and post-test assessments. To score the work, 
two raters coded the graphic and textual artifacts cre-
ated by students in response to specific prompts in 
LEONARDO. Inter-rater reliability was calculated via 
Cohen’s kappa (κ) and a protocol for drawing and 
writing coding using a separate 3-classroom training 
set featuring students not included in the analyzed 
corpus before coding the remaining corpus. Coders 
initially coded a portion of the training set and dis-
cussed differences in order to refine the coding process 
and resolve ambiguities in the initial rubrics. Coders 
then independently coded an overlapping set of draw-
ings for each question from the three training class-
rooms and achieved an acceptable level of agreement 
for each criterion (average κ = .88) before coding the 
remainder of the corpus. The procedure was then re-
peated for the writing prompts, achieving a κ = .76, 
after which the remainder of the corpus was coded. 

4 ANALYSIS OF CODED RESULTS 
After coding of the written and drawing artifacts was 
complete, we compared the scores across the two mo-
dalities in an effort to analyze how student knowledge 
was distributed across the two modalities. As shown in 
Table 3 below, overall students performed better on 
drawing tasks when expressing their conceptual un-
derstanding, scoring noticeably higher, 6.69 for draw-
ings versus 2.48 for writings, despite the writing rubric 
containing more possible points due to containing two 
categories not scored for the drawings. Converting 
these scores to a percentage, students on average 
scored 60.8% of possible points for drawing responses 
versus only 15.5% for written responses. This result is 
perhaps not surprising and aligns with previous re-
search showing younger students are typically much 
better at illustrating their understanding than provid-
ing the same detail with the written word [40]. Addi-
tionally, providing the symbols with which students 
draw provides more built-in support for the drawings 
than the support provided in writing prompts.  

The relationship between drawings and writings 

was also investigated using a Pearson correlation. Stu-
dent writing and drawing scores were weakly, but sig-
nificantly correlated (r = .299, p<.005). This indicates 
that while proficiency in the writing and drawing tasks 
is related, there is also a portion of the students who 
are capable of demonstrating knowledge through one 
modality better than the other. 

TABLE 3 
WRITING AND DRAWING SCORES BY PROBLEM 

 
Prompts  N Max  Mean SD 
Writing 1 95 16 2.96 1.37 
Writing 2 95 16 1.99 1.37 
Drawing 1 95 11 6.64 3.46 
Drawing 2 95 11 6.74 3.17 

 To further evaluate and validate the common rubric 
approach used to assess the artifacts, we investigated 
how well the scores on these activities predicted stu-
dent knowledge. As a proxy for student knowledge, 
we used their performance on a multiple-choice sum-
mative assessment given at the end of the 5-day LEO-
NARDO implementation. We also included the students’ 
performance on a similar instrument given before the 
implementation to attempt to control for prior 
knowledge. The instruments were validated through 
both expert review, as well as a reliability analysis 
yielding a Cronbach’s a = .77. A multiple linear regres-
sion was conducted with student post-test score as the 
dependent variable, and student pre-test score, the av-
erage of the two writing scores, and the mean of the 
two drawing scores used as the independent variables. 
Results for this regression are shown in Table 4. 

TABLE 4  
REGRESSION MODEL OF HUMAN SCORES 

 
Variable Β sig sr2 R2 

Model     .443 
Pre-test .356 .000 .109  
Human-Scored Writings .216 .010 .042  
Human-Scored Drawings .332 .000 .090  

  
The results show a strong relationship between 

post-test performance and both modalities. Writing 
score was less predictive than drawing score; however, 
it nevertheless accounted for 4% of the variance inde-
pendent of the other two factors and was a significant 
predictor even when including pre-test. Drawing score 
was a very strong predictor, accounting for approxi-
mately 9% of the variance independently and provid-
ing almost as much predictive power as the pre-test 
score. 

5 AUTOMATED ASSESSMENT METHODS 
Building on the strong results from the human-coding, 
we sought to develop computational methods to au-
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tomatically score student answers. We created a mul-
timodal assessment framework that considers the two 
modalities: 1) student writing, which is assessed with a 
convolutional neural network (a type of deep learning 
neural network) for short answer response analysis, 
and 2) student drawing, which is assessed with a to-
pology-based drawing analysis model. 

5.1 A Convolutional Neural Network for Short 
Answer Analysis 

To analyze students’ written responses, we used a con-
volutional neural network with max-pooling. A convo-
lutional neural network (CNN) differs from a feed-
forward network in that it can evaluate inputs of arbi-
trary length, which is useful in language processing 
where statements can be anywhere from one word to 
pages or chapters of text. We select it over a more tra-
ditional method such as latent semantic analysis be-
cause it takes word order into account and has proven 
to be effective in recent applications to other text ana-
lytics tasks, such as sentiment prediction and question 
type classification [32]. We also select this method be-
cause it automatically learns relevant features and con-
structs from the text itself, thus requiring no labor-
intensive human engineering of features. 

Analysis of a student short answer using our CNN 
is a four-step process: vectorization, convolution, max-
pooling, and sending the output to a shallow feed-
forward neural network. Fig. 4 shows how our CNN 
analyzes an example answer, “North and south poles.” 
Each of the circles in this figure represents a single val-
ue within the network, often referred to as a node. 
Starting at the bottom with the input layer, we repre-
sent each word as a vector of continuous values in n-
dimensional space. These distributed representations 
of words are learned, either by the model along with 
its other weights [50], or ahead of time from a large 
text corpus using an unsupervised technique such as 

GLoVe [51]. Fig. 4 uses three red nodes above each 
word to represent a three-dimensional word vector. 
This array of word vectors makes up the first layer of 
our model. 

The next layer is the convolution layer. This layer is 
different from a typical feed-forward neural network 
layer in that it is not fully connected, and the connec-
tions it has follow a pattern of shared weights. The 
convolutional layer is a network of a small fixed size 
that runs on a moving window across the input. For 
example, consider the input “North and south poles,” 
where each word is represented as a node. The weight 
assigned to a node is dependent on where it lies in the 
window. In this example, we have a window size of 
three, so our convolutional layer operates on {<empty> 
<empty> North}, {<empty> North and}, {North and 
south}, {and south poles}, {south poles <empty>}, and 
{poles <empty> <empty>}. We may use any size win-
dow, but we use three because it is the smallest, and 
therefore computationally most simple, size that still 
accounts for context (one word on either side). Note 
that we pad the ends of our input with dummy values 
so that the words on the end, “North” and “poles,” do 
not get underrepresented. Each dimension of the word 
vector space is convolved separately, meaning that the 
section of the convolution layer corresponding to a 
given set of three words has the same dimensionality 
as the word vectors themselves. The convolution layer 
is thus separated into w+2 groups of n values where w 
is the number of input words and n is the dimensions 
of the word vector space. Because each dimension in 
each group is dependent on the same dimension in the 
three words below it, these groups are effectively hid-
den representations of semantic meaning, or “hidden 
words.” 

The output of the convolution layer is based on the 
length of the input layer. This is an issue for the follow-
ing feed-forward layer because each input in the feed-

Fig. 4. A Convolutional Neural Network for short answer analysis 
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forward layer is a feature that the network learns to 
handle in training based on its position. If the features 
change positions or are added or removed it affects the 
network’s ability to learn. We must extract a fixed 
number of nodes to send to the feed-forward layers. To 
do this we use max pooling. For each vector dimen-
sion, max pooling simply selects the highest value 
from among all of the hidden words. We select the 
maximum value because, in addition to large values 
naturally having more impact on the output, a trained 
network will have learned in its convolutional layer to 
give the most relevant features the highest values. 

 To increase the representative power of our model 
we can add more parallel versions of the convolutional 
layer that have their own weights. These are known as 
“feature maps.” So with f feature maps, an arbitrary 
window size of k, and n-dimensional word vectors 
each pass of the window takes k words and makes f 
hidden words. Each of these f feature maps goes sepa-
rately through max-pooling, and together we end up 
with f*n values to send to the feed-forward network. 
As with feed-forward networks, training for a convolu-
tional neural network is done via backpropagation.  

A separate CNN was trained for each facet of the 
rubric, for each of the questions. We built the convolu-
tional neural networks for this task in Theano, a Py-
thon-based deep learning library [52]. For our word 
vectors we used the vectors available on GLoVe’s web-
site - 300 dimensions trained on 840 billion tokens in 
the common crawl corpus [51]. Because many students 
had written answers to the relevant questions but were 
missing data elsewhere, we also used these students’ 
answers for training. Our dummy values that padded 
the ends of each sentence were simply vectors with 
zeros in every dimension. Words that did not appear in 
the vectors list we used are also represented with the 
same dummy value. For training, the objective func-
tion is the root mean squared error between human 
and machine score, which is backpropagated through 
the network. For more details on CNNs for sentence 
modeling, see Kalchbrenner et al. [32]. We trained our 
system using full batch RPROP [53]. 

Hyperparameters were selected as follows. We se-
lected three as the smallest symmetric window size 
that still takes advantage of context, i.e., the previous 
and next word. For the number of feature maps, a 
sweep of one through nine showed five to be the best-
performing. We used only one feed-forward hidden 
layer, and it has one hidden word in size, i.e., 300 val-
ues. After experimenting with the L2 regularization 
coefficients at 0.0025 and at 0 (no regularization), we 
found that it was more effective to not regularize. We 
then tested 50, 100, 150, and 200 as options for epochs, 
with 50 performing best.  These hyperparameters were 
then used for all models. 

5.2 Topology-based Drawing Assessment  
Building on previous work on automatic assessment of 
symbolic drawings [30], we sought to emulate human 
assessment of student drawings through automated 
analyses of the topological relations between objects in 
the drawing space. We first defined a set of possible 
relations between objects for this domain. Because both 
target drawings used the same set of elements (paper-
clip, arrow, straw, magnetic particle, inert particle, 
magnifying bubble, magnet), we were able to use the 
same set of relations for both drawing prompts. In this 
domain, the relevant relationships between elements 
were identified as near, far, and contains. To limit the 
number of relationships generated, and to help prune 
irrelevant relationships, elements in the scene were 
assigned types, with each relation only being generat-
ed between objects of certain types. For example, near 
and far relations were only generated between 
straws/paperclips and magnet objects, but not magni-
fiers or particles. Next, a mapping was created be-
tween the 2-dimensional arrangement of the particles 
and the semantic relations. This mapping was hand-
authored by defining thresholds for distance between 
objects (using bounding boxes and rectangle-to-
rectangle distance) and checking for intersections be-
tween objects’ bounding boxes. Fig. 5 shows an exam-
ple student drawing and the corresponding topologi-
cal network. For these questions, far was defined as 

Fig. 5. Student drawing converted into semantic network 
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farther than 100 pixels from the magnet when calculat-
ing the rectangle to rectangle distance between the 
bounding boxes.  

The contains relation is more complex and based on 
multiple 2D relation between objects. For the activities 
presented here, the particles’ correctness can only be 
evaluated in relation to one of the macro-level objects, 
such as the straws, paper clips, or magnets. The system 
assigns particles to these objects by first determining if 
the particles are contained by a magnifier object. If a 
particle overlaps with multiple magnifiers, then it is 
assigned to the one whose center point is closest to the 
center point of the particle. After being assigned to a 
magnifier, the system then checks which macro-level 
objects the magnifier overlaps with. It does this by 
checking if the region representing each magnifier’s 
magnification point intersects with any such objects. If 
a magnifier happens to intersect multiple objects, it is 
also assigned to the object whose center is closest to 
the center point of the magnifier region. After assign-
ing magnifiers, a contains relationship is generated be-
tween the magnifier’s particles and the macro-level 
object. Any remaining unassigned particles are then 
checked to see if they overlap with a straw, a paperclip 
or the magnet, as some students did not use the mag-
nifier and instead placed particles directly on the ob-
jects. The orientation of any magnetic particles con-
tained by the same object is then checked to determine 
if the group is “aligned,” signaling that all particles are 
rotated to the target rotation, or “unaligned,” signaling 
that at least one particle’s rotation does not match the 
target rotation for this group. For example, the magnet-
ic particles associated with the paper clip in Fig. 5 are 
oriented in different directions, and are classified as 
“unaligned,” while the magnetic particles associated 
with the magnet are all oriented close to 0 degrees and 
are classified as “aligned.”   

After the final network is completed, it still needs to 
be converted into a set of scores corresponding with 
the rubric used in the human coding. To accomplish 
this task, a set of rules is authored for each facet of the 
rubric that corresponds to features of the topological 
graph. For example, in the network shown in Fig. 6 a 
point would be credited for the presence of a “far” 

edge between the magnet and the straw in the topolog-
ical graph. Other facets of the rubric combine multiple 
rules to produce a score, such as requiring the paper 
clip to contain both inert particles as well as either 
aligned or unaligned magnetic particles. This interme-
diate interpretation allows for flexible scoring of the 
drawings depending on the specific rubric of interest, 
as well as providing opportunities for more fine-
grained comparison of drawings for misconception 
identification and clustering.  

6 EVALUATION  
The first step of the evaluation of our computational 
models was to measure how well they align with the 
human scorings generated in Section 3. The CNN 
models used to score the writings produced a continu-
ous score for each facet of the rubric. The models were 
trained to minimize the root mean squared error 
(RMSE) for each facet. As mentioned earlier, a separate 
model was trained for each facet and evaluated on on-
ly that facet in test data. The models were trained us-
ing 10-fold student cross validation, so that each stu-
dent’s writings appeared in exactly one of the test data 
sets. The overall score represents the summation of all 
components of the rubric allowing for scores between 
zero and sixteen, though no student achieved a score 
above nine. The Pearson correlations between the hu-
man and machine scores can be seen below in Table 6 
for each of the facets of the writing rubric. The Straw 
Placement and Straw Particles facets are marked with 
N/A since no student received points for those catego-
ries making a correlation impossible. The system was 
able to significantly correlate with 3 of the facets in the 
1st problem, and 4 in the 2nd prompt, however the total 
score was significant for both prompts with a p-value 
< .0001. The r values of .466 and .489 are also in range 
with previous systems on a similar short answer anal-
ysis task [4]. Though it may be the result of the system 
converging to a local optimum, the results are promis-
ing given that CNNs typically require larger datasets 
though is likely due to including the pre-trained word-
embeddings that are trained on a massive amount of 
outside data. Overall, the model is underfitting the 

Fig. 6. Generating facet scores from the topological network 
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data, highlighting a need to investigate changes to the 
model architecture, or potentially replacing or aug-
menting the input with automatically generated fea-
tures of text, such as specific word occurrence and sen-
tence length. 

A support vector regression (SVR) model was 
trained for each facet to help determine if the CNN 
structure was responsible for the performance, or if it 
was entirely due to the pre-trained word embeddings. 
The input to the model used the same pre-trained em-
beddings as the CNN model, padded so that all sen-
tences were the same length, as in the CNN model. A 
grid search of the 𝜖	{0.1, 0.2, 0.5} and C {.5, 1, 2} param-
eters showed the best performing model to have val-
ues of .2 and 1 respectively.  The SVR model only pro-
duced a significant correlation with 1 facet of Writing 
1, and 2 facets of Writing 2, though in all 3 cases it was 
a negative correlation indicating the model did not 
learn well. The total score was not significant for Writ-
ing 1 (r = -.06, p=.57), though was significant for Writ-
ing 2, but with a negative correlation (r=-.29, p = .003). 

TABLE 5 
PEARSON CORRELATION OF AUTOMATED WRITING SCORES 

AND HUMAN SCORES BY RUBRIC FACET 

Rubric Facet Writing 1 Writing 2 
Clip Placement .253* .237* 
Straw Placement N/A -.059 
Particles .006 .241* 
Magnet Particles .205* .016 
Clip Particles .402** .285* 
Straw Particles N/A -.150 
Iconic/Symbolic .135 .081 
Static/Dynamic -.023 .297* 

  Overall Score .466** .489** 
Note. N=95; *p<=.05, **p<.0001 

For the drawings, our system produced ordinal 
scores for each of the rubric criteria. Cohen’s κ was 
calculated to measure agreement between machine 
and human scorings for each criterion of the two draw-
ings, shown in Table 6. The machine scores showed 
strong agreement with human codings, producing an 
average κ =.89 for the first drawing and an average κ = 
.85 for the second drawing. This result suggests that 
the drawing assessment model is capable of replicating 
human scoring with a high level of agreement and also 
suggest directions for improvement in future work. 
For example, since the topology is generated from a list 
of elements placed in the drawing space, it makes no 
assumptions about occlusion. In several student draw-
ings paperclips, particles, or other elements affecting 
the machine score were fully obscured from the image 
viewed by the human grader causing a mismatch in 
scoring. Other errors involved human coders giving 
credit for features that were not explicitly correct as 
defined by the rubric, such as particles placed near 
objects but not explicitly defined with a magnifier ob-

ject. Additional errors were observed when human 
coders would penalize for extra elements in the draw-
ing space that the topological assessment rules ig-
nored. 

We next investigated whether the machine-
generated scores of written and drawing artifacts were 
accurate enough to assess learning of conceptual 
knowledge by the students. As with the regression 
analysis using the human scores, we used performance 
on a multiple-choice assessment as a proxy for concep-
tual knowledge, and looked at the predictive power of 
the drawing and writing assessments. Separately each 
assessment was found to be a significant predictor of 
post-test performance, even when including pre-test 
performance as a proxy for prior knowledge and to 
provide a more rigorous standard with which to eval-
uate performance. We then ran a regression analysis 
using both drawing and writing, and found both 
scores to provide both independent and complemen-
tary value. The results of each of these models are 
shown in Table 7. For all models, the dependent varia-
ble predicted was the student performance on a sum-
mative multiple-choice post-test.  

TABLE 6 
COHEN’S Κ FOR DRAWING SCORES BY 

FACET AND PROBLEM 
 

Rubric Facet Drawing 1 Drawing 2 
Clip Placement .95 .82 
Straw Placement .93 .71 
Particles .93 .93 
Magnet Particles .92 .94 
Clip Particles .75 .87 
Straw Particles .87 .87 
Magnet Particles .90 .80 
Average .89 .85 
 
Both the writing only and drawing only models ex-

plain similar amounts of variance, with the drawing 
scores explaining about 3% more of the variance than 
the writing scores. Further supporting the complemen-
tary value of combining writing and drawing is the 
over 7% increase in variance explained by the third 
model containing averages of both scores. Auto Writing 
Score and Auto Drawing Score are both significant pre-
dictors in the full model, with analysis of the semi-
partial R2 values showing writing and drawing 
uniquely represent 7.2% and 10.4% respectively of the 
total variance captured by the model. These results 
suggest that the conceptual understanding expressed 
in the student writings and drawings are complemen-
tary, and that there is additive value in assessment 
across the modalities. 

A potential explanation for the cause of these en-
couraging results is the “cognitive complementarity” 
of the two modalities. Writing and drawing utilize dif-
ferent cognitive processes, leading to members of the 
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science education community to advocate the use of 
science notebooks in the elementary grades because 
they provide an effective tool for engaging student 
learning through both modalities [13]. Previous re-
search has shown that students demonstrate different 
aspects of their scientific knowledge across these 
sources [14], and not surprisingly, because both draw-
ing and writing shape and reveal underlying student 
mental models [15], there is a growing recognition that 
science notebooks offer a potent source of data for 
formative assessment of students’ scientific 
knowledge. 

TABLE 7 
REGRESSION MODELS USING 

AUTOMATED ASSESSMENT MODELS 
Variable 𝜷 t sr2	 Adj.	R2	 ΔR2	
Pre-Test Only    .262  
Pre-Test (PT) .52 5.87*    
PT + Writing    .367 .105 
Pre-Test .464 5.58* .210   
Auto Writing 
Score 

.337 4.04* .110   

PT + Drawing    .399 .032 
Pre-Test .370 4.30* .118   
Auto Drawing 
Score 

.405 4.71* .141   

Full Model    .468 .069 
Pre-Test .343 4.22* .101   
Auto Writing 
Score 

.277 3.58* .072   

Auto Drawing 
Score 

.353 .429* .104   

Note. N=95; *p<=.001 

Additionally, it is interesting to observe that both of 
our automated systems outperform their human 
equivalents in predicting post-test score, as seen by the 
performance of the human scores model shown in Ta-
ble 4. One potential explanation is that for both writing 
and drawing, the auto-scoring tends to produce scores 
lower than the human-coded scores. That these scores 
better predict post-test performance implies there may 
be aspects of the conceptual knowledge captured in 
the rubric that are not reflected in the multiple choice 
post-test assessment.  

7 CONCLUSIONS AND FUTURE WORK 
To investigate the potential of assessment utilizing 
multiple modalities, we have introduced an integrated 
multimodal assessment framework. At the foundation 
of the framework is a shared rubric for evaluating sci-
entific concepts regarding key “actors” in magnetism, 
as well as more complex interactions between magnet-
ic particles and distance. Evaluation of student writ-
ings and drawings found that drawings are more pre-
dictive of student conceptual knowledge, and student 

writings offer a complementary source of diagnostic 
information. 

The next step in integrating the framework was to 
create automated assessment models. To create the 
student writing assessment model, we used a convolu-
tional neural network approach leveraging word em-
beddings to accurately score student short answer 
questions without requiring any expensive, hand-
authored features. While not guaranteed to generate 
the optimal solution, this approach shows significant 
potential for rapidly developing accurate short answer 
scoring systems without extensive feature engineering. 
The results are particularly encouraging given the high 
level of misspellings and grammatical errors in the 
student writing. The student drawing assessment 
model uses a topology-based approach for drawing 
analysis. The system accurately produced drawing 
scores compared to human drawings.  

An evaluation shows that 1) both automated meth-
ods are capable of assessing student work accurately 
compared to a human scoring, and that 2) the multi-
modal assessment framework utilizing both models is 
predictive of students’ post-test performance, even 
when controlling for prior knowledge. These results 
suggest that multimodal assessment may be a valuable 
approach to utilizing the new generation of formative 
assessment approaches designed to evaluate students’ 
responses formulated in multiple modalities.  

 There are several limitations to our approach that 
will need to be addressed. While designed to be open-
ended and encourage longer responses, the writing 
prompts tended to produce short, often ambiguous 
explanations, as one would expect when working with 
students in this age range. The prompts should be re-
vised to ensure student artifacts fully align with the 
aspects of student knowledge we are hoping to assess, 
such as probing deeper levels of scientific understand-
ing.  To aid in this process we will leverage learning 
activity design techniques such as Evidence-Centered 
Design[54], to identify what scientific understanding 
we expect students to show evidence of for in each 
exercise and to align scoring rubrics accordingly.  Ad-
ditionally, the scoring rubrics for both modalities 
should be expanded to attempt to better evaluate the 
thinking and reasoning behind the artifacts, reflective 
of current assessment frameworks [55], potentially lev-
eraging the drawings to reason about ambiguities in 
the writings and vice-versa. 

With regard to the automated assessment, training a 
different model for each facet of the writing rubric will 
not scale well to new questions, and future work 
should seek architectures capable of outputting multi-
ple facet scores from one model. Additionally, while 
the writing models have the benefit of being data driv-
en and requiring minimal feature engineering, it will 
be valuable to compare them directly to existing bag-
of-words or linguistic feature-based approaches to po-
tentially identify ways of leveraging the expertise of 
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the content authors or evaluate the potential of ensem-
ble approaches. Different methods of incorporating 
known misconceptions or common errors into the 
model, or rubric, could benefit the system and make 
the output more meaningful instructors.  Finally, in 
order to scale this approach to larger numbers of ques-
tions, it will be necessary to investigate ways of gener-
alizing the model, so that a given model can at least 
accurately score writings from the same domain using 
similar vocabulary.  

In future work, it will be important to identify the 
families of modalities that offer the greatest potential 
synergistic benefits. We anticipate that some combina-
tions of modalities may have overlap in their diagnos-
tic power, while others will exhibit great complemen-
tarity. To investigate this complementarity, more de-
tailed rubrics mapping to a wider range of concepts 
need to be developed and combined with assessment 
methods that accurately extract this knowledge from 
the many forms of student artifacts. Regarding writing 
and drawing specifically, future studies should explore 
how loosely coupled drawing and writing tasks en-
courage explicit references between artifacts, and how 
confounding evidence between the modalities can be 
used by the system to potentially identify conceptual 
knowledge that was not expressed due to either poor 
writing or drawing ability. Moreover, the writing and 
drawing artifacts can be analyzed to both discover and 
detect patterns of common misconceptions that could 
be used by the teacher or automated system to appro-
priately modify future lessons. These features will be 
important for investigating the impact of multimodal 
assessments after they have been integrated into a real-
time formative assessment system.  
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