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Abstract. Game-based learning environments create rich learning experiences 

that are both effective and engaging. Recent years have seen growing interest in 

data-driven techniques for tutorial planning, which dynamically personalize 

learning experiences by providing hints, feedback, and problem scenarios at run-

time. In game-based learning environments, tutorial planners are designed to 

adapt gameplay events in order to achieve multiple objectives, such as enhancing 

student learning or student engagement, which may be complementary or 

competing aims. In this paper, we introduce a multi-objective reinforcement 

learning framework for inducing game-based tutorial planners that balance 

between improving learning and engagement in game-based learning 

environments. We investigate a model-based, linear-scalarized multi-policy 

algorithm, Convex Hull Value Iteration, to induce a tutorial planner from a corpus 

of student interactions with a game-based learning environment for middle school 

science education. Results indicate that multi-objective reinforcement learning 

creates policies that are more effective at balancing multiple reward sources than 

single-objective techniques. A qualitative analysis of select policies and multi-

objective preference vectors shows how a multi-objective reinforcement learning 

framework shapes the selection of tutorial actions during students’ game-based 

learning experiences to effectively achieve targeted learning and engagement 

outcomes. 

Keywords: Tutorial Planning, Multi-Objective Reinforcement Learning, Game-

Based Learning Environments, Narrative Centered Learning  

1   Introduction 

Game-based learning environments enable students to engage in rich problem-solving 
scenarios that enhance student learning. There is compelling evidence that game-based 
learning environments improve student learning outcomes compared to traditional 
instructional methods [14, 15]. A key advantage of game-based learning environments 
is their potential to foster student engagement through features such as 3D virtual 
worlds and believable characters [6]. However, important questions have been raised 
about whether specific features of digital games that foster engagement, such as 
narratives, are beneficial for learning [1]. A one-size-fits-all approach to designing 
game-based learning environments has significant limitations in terms of balancing 
effectively between learning and engagement for all students. Recent years have seen 
growing interest in tutorial planners for game-based learning environments, which 



 

 

personalize game elements to individual students at runtime [4, 16]. Reinforcement 
learning (RL) techniques have shown particular promise for devising tutorial planners 
from logs of student interactions with a virtual learning environment [3, 10]. 
 RL-based tutorial planners are often tasked with making personalization decisions 
that impact both student learning and engagement. Yet, there has been little systematic 
investigation of multi-objective RL techniques for tutorial planning. Multi-objective 
techniques are particularly relevant to game-based learning environments because there 
may be tradeoffs between game elements designed to foster learning and game elements 
designed to foster engagement. Prior work on RL-based planners has typically focused 
on single-objective reward models [3, 9] and weighted sum-based evaluation functions 
with author-specified weights [5]. Single-objective RL techniques provide no 
guarantees about generating policies that balance across multiple objectives. A tutorial 
planner that is effective for one objective (e.g., learning) may be ineffective for a 
secondary objective of comparable importance (e.g., engagement). Further, the weight 
preferences between objectives for a particular game-based learning environment may 
not be known a priori, as they may be dependent upon the educational setting in which 
a game-based learning environment will be deployed. For example, a tutorial planner 
intended to support classroom practice before end-of-grade tests might prioritize 
content learning gains, whereas a game utilized in an after-school setting might 
optimize engagement and interest in the subject matter. 
 In this paper, we present a multi-objective RL framework for tutorial planning in 
game-based learning environments. Using game interaction log data from over four 
hundred students, we induce a tutorial planner for a game-based learning environment 
for middle school microbiology education, CRYSTAL ISLAND. 
 
 
2 Related Work 
 
Data-driven methods for tutorial planning have been the subject of growing interest in 
recent years. RL techniques have shown particular promise, potentially reducing the 
need for labor-intensive knowledge engineering processes and large datasets of human 
demonstrations [3, 5, 10]. Many RL techniques formalize tutorial planning in terms of 
Markov decision processes, which encode sequential decision-making tasks with 
stochastic environments and delayed rewards.  Chi et al. [3] utilized model-based RL 
to induce models of pedagogical micro-tactics in a tutorial dialogue system for physics 
education. More recently, Mandel et al. [16] investigated techniques for offline RL 
policy evaluation to examine alternate tutorial planning models in the educational game 
Refraction. Rowe et al. [9] investigated a modular reinforcement learning framework 
for tutorial planning in educational interactive narratives. Their model, which was 
evaluated in a classroom study, was found to yield improved student learning behaviors 
relative to a baseline system [10]. Each of these systems utilized single-objective 
reward functions to guide RL techniques for inducing tutorial planning models. 
 In related work on user-adaptive games, Nelson et al. [5] proposed an RL framework 
for experience management that leveraged a hand-authored evaluation function to 
personalize events in interactive fiction games. Notably, the evaluation function 
utilized by Nelson et al. adopted the form of a linear scalarization function with weight 
preferences. This approach required the system designer to specify weights among 
objectives prior to training the experience manager. This approach is intuitive, but it is 



 

 

unlikely to generalize effectively across different deployment settings with distinct 
priorities for users’ gameplay experiences. 
 Multi-objective RL techniques consist of methods for solving a wide array of multi-
objective Markov decision processes, with solutions consisting of a single policy or 
multiple policies depending on the problem context [7]. Recent work by Wiering, 
Withagen, and Drugan [12] presented a model-based approach for solving deterministic 
multi-objective Markov decision processes yielding the set of Pareto optimal policies 
for a given task. Barrett and Narayanan [2] devised a method for calculating all optimal 
policies for any weight preference vector used in linear scalarization. Their approach 
enables a system designer to defer specifying weight preferences for each objective 
until the RL model is deployed, when a specific policy is extracted at run-time by 
utilizing properties of convex hulls. Multi-objective RL has been applied successfully 
in a variety of domains, including traffic light control [18] and water reservoir control 
[17], but to date there has been little work investigating multi-objective RL techniques 
for educational software. 
 
 
3 CRYSTAL ISLAND Game-Based Learning Environment 
 
To investigate multi-objective RL for tutorial planning, we utilize a game-based 
learning environment for middle school microbiology education as a testbed 
application, CRYSTAL ISLAND.  In CRYSTAL ISLAND, students adopt the role of a 
medical field agent, who has been tasked with investigating a mysterious epidemic on 
a remote island. The student must determine the source and identity of the illness by 
interviewing virtual characters, gathering clues, and running tests in a virtual 
laboratory. As students solve the mystery, they learn relevant microbiology concepts 
and utilize the scientific method to complete the science problem-solving scenario. 
CRYSTAL ISLAND has been used by over 4,000 students in middle school classrooms 
across the United States. 
 Tutorial planning in CRYSTAL ISLAND encompasses a broad range of possible 
decisions about scaffolding student learning and tailoring different elements of the 
game environment. We seek to induce tutorial planning policies directly from a corpus 
of student interaction data off-line. To address issues of data sparsity, we decompose 
tutorial planning in terms of several distinct sub-problems, denoted as adaptable event 
sequences (AESs). An AES is an abstraction for one or more recurring tutorial decision-
making events that center on a particular facet of the game-based learning environment, 
such as the behavior of a non-player character, the properties of a virtual object, or the 
delivery of a scaffolding-related message. We model CRYSTAL ISLAND’s tutorial 
planner with a set of 12 AESs, each separately encoding a series of sequential game 
events, which interleave with one another and collectively span the game’s problem 
scenario (Figure 1). 

In our multi-objective RL framework, each AES is modeled as a multi-objective 

Markov decision process (MOMDP) with its own state representation, action set, state 

transition model, and reward model.  Every occurrence of an AES corresponds to a 

decision point for the MOMDP.  The possible gameplay adaptations that can be 

performed by the tutorial planner represent the sets of actions for the MOMDPs. In 

order to collect a corpus of student interaction data for off-line RL, we deployed 

CRYSTAL ISLAND to students using a version of the tutorial planner that controls AESs 

according to a uniform random policy, deliberately sampling the manager’s state-action 



 

 

space. As long as each possible combination of gameplay adaptations produces a 

coherent user experience, we can collect a corpus of student responses to the tutorial 

planner’s decisions for off-line, model-based RL.   

 Data for inducing tutorial planning policies from student interactions with CRYSTAL 

ISLAND were collected from two studies. The first study involved 300 students from a 

middle school and the second study involved 153 students from a different middle 

school. Students interacted with the game until they solved the mystery, or 55 minutes 

elapsed, whichever occurred first. Students completed pre- and post-tests one-week 

before, and immediately after using the game, respectively. These tests gathered data 

on students’ learning gains, prior gameplay experience, and perceptions of presence 

(i.e., the sense of “being there” in the virtual environment) experienced in the game. 

 Each student’s trace of in-game problem-solving actions was logged, including 

which AESs they encountered, what actions were performed by the tutorial planner 

(according to a uniform random policy), and timestamps for all game events. After 

removing data from participants with incomplete or inconsistent records, the resulting 

data set consisted of 10,057 instances of tutorial planner decisions, corresponding to 

approximately 25 gameplay adaptations per player. 

 Each MOMDP shared the same state representation, which consisted of 8 binary 

features drawn from three categories: narrative state, gameplay behavior, and player 

traits. We limited the state representation to 8 binary features to mitigate potential data 

sparsity issues. The first four features were narrative-focused. Each feature was 

associated with a salient plot point from CRYSTAL ISLAND’s storyline and indicated 

whether the plot point had been completed thus far. The next two features were 

computed from a median split on players’ microbiology pre-test scores and previous 

video game experience. The final two features were computed from players’ observed 

gameplay behaviors. Specifically, we computed running median splits on the frequency 

of students’ laboratory testing and book-reading behaviors within CRYSTAL ISLAND. 

Fig 1. Screenshot of Bryce Symptoms AES in CRYSTAL ISLAND 



 

 

The action sets for the 12 MOMDPs corresponded to the range of gameplay 

personalization decisions for the associated AESs. The action sets’ cardinalities ranged 

from binary to 6-way decisions.  

  

 

 The AESs ranged broadly in terms of how they affected student gameplay, as well 

as their frequency of occurring during a typical gameplay episode. Detailed information 

regarding each AES is provided in [8], and these groupings are summarized in Table 1. 

If the entire tutorial planning task were modeled as a single MOMDP, it would require 

encoding approximately 1,644,000 parameters to populate the entire state transition 

model (256 states × 25 distinct actions × 257 states, including the terminal state), 

although not all state transitions were possible. 

 Two distinct reward sources were computed using data from the corpus described 

above to induce RL-based tutorial planning policies. Each MOMDP utilized the same 

set of two reward models, which were based upon: (1) participants’ normalized learning 

gains, and (2) self-reported presence after gameplay. Both of these reward sources were 

calculated using data collected from the pre- and post-tests; no incremental rewards 

were assigned during gameplay. 

 The first reward source, normalized learning gain, was selected to obtain a tutorial 

planner that maximized student learning on microbiology content. Normalized learning 

gain (NLG) is the normalized difference between pre- and post-game science content 

knowledge test scores, assessed using a 19-item multiple-choice test. We use NLG 

because it provides a singular metric for student learning that accounts for individual 

differences in students’ prior knowledge, in contrast to alternative metrics like post-test 

score or un-normalized learning gain. The reward values for NLG were determined by 

calculating the NLG for each participant at the conclusion of their gameplay episode. 

Table 1. Summary of AESs by type, name, and number of possible actions. R refers to recurring 

AESs and O refers to AESs that occur once per episode. Asterisks denote policies selected for 

additional qualitative analysis in the results section below. 

 



 

 

 The second reward source was based upon players’ self-reported perceptions of 

presence, as measured by the Presence Questionnaire [13]. Presence refers to a 

participant’s perception of transportation into a virtual environment. We use it here as 

a proxy indicator for user engagement in the game. Participants completed the Presence 

Questionnaire after using CRYSTAL ISLAND. The presence reward function was 

determined by the student’s total Presence Questionnaire score divided by the 

maximum observed score in the corpus. This normalized the presence reward to be in 

the interval [0,1] for each student.  This objective is important to maximize because 

fostering engagement is a key motivation of game-based learning environments. These 

two reward sources reflect each side of the tradeoff between learning and engagement 

in interactive narrative. 

 The MOMDPs, one for each AES in CRYSTAL ISLAND, were implemented with a 

reinforcement learning library written in Python by the first two authors.  Policies were 

induced using a discount rate of 0.9. To encode multiple reward sources for MORL, a 

vector containing each of the two reward sources was utilized.  

 

 

4 Multi-Objective Reinforcement Learning for Tutorial Planning 
 
Several multi-objective policies were induced for each AES from the corpus of student 

interaction data using both the NLG and Presence reward sources. A certainty-

equivalence model of the environment was created from the state-action transition 

counts and observed rewards in the training corpus.  This is done with the maximum 

likelihood model of the MOMDP as in [12].   

 We derive multiple policies per MOMDP using Convex Hull Value Iteration [2]. 

This method learns the set of all optimal policies for an MOMDP given a model of the 

environment through operations on convex hulls similar to the classical dynamic 

programming method of value iteration [11].  In Convex Hull Value Iteration, each Q-

value is replaced with a set of possible expected reward vectors. If this set is a convex 

hull, then each possible vector is optimal under some set of preferences over the reward 

sources, defined as a weight preference vector where the components sum to one. Given 

a weight preference vector, the best linear scalarized reward Q can be extracted 

according to the following equation: 

 

𝑄𝑤⃗⃗ (𝑠, 𝑎) = max
𝑞⃗  ∈ 𝑄̇(𝑠,𝑎)

𝑤⃗⃗  ∙ 𝑞    

 

where 𝑤⃗⃗  represents the weight preference vector, 𝑄̇(𝑠, 𝑎) is the convex set of optimal 

reward vectors for a state-action pair, and  𝑄𝑤⃗⃗ (𝑠, 𝑎) is the resulting linear scalarized Q-

value.  Once the Q-values have been scalarized by a weight preference vector, a policy 

can be obtained greedily by selecting the best action per state, because Q-values take 

expected discounted future rewards into account.  The weight vector is constrained to 

consist of positive real numbers that sum to one. 

Since CRYSTAL ISLAND can be used in many different educational settings (e.g. 

classrooms, home, after-school clubs), the tutorial planner requires a weight preference 

vector defined at run-time, which is contingent on the particular educational priorities 



 

 

of the deployment setting.  This results in the need for a multi-policy approach that can 

learn all optimal policies regardless of the preference weight vector that will be utilized 

at run-time. 

In order to evaluate the policies derived from Convex Hull Value Iteration, we used 

the extraction method from Equation 1 to generate all distinct policies for each 

MOMDP. This was performed by generating the convex sets of Q-values for each 

MOMDP, running a grid search over weight preference vectors to extract their 

corresponding Q-values, and utilizing greedy selection to derive distinct policies for 

each MOMDP. Multiple policies were derived for each MOMDP because optimal 

mappings between states and actions may be dependent on the weight preference 

vector.  Every policy induced with this method is optimal under some subset of the 

possible weight preference vectors. In the case of tutorial planning in CRYSTAL ISLAND, 

we considered two reward sources—NLG and Presence—that together sum to 1. In 

other words, if NLG is the primary reward source, then the secondary objective 

Presence is assigned a weight of 1 – NLG in the weight preference vector. 

 

 

5 Evaluation 

 
The multi-objective RL framework yields multiple policies for each AES because a 

weight preference vector is not specified prior to training the model.  Thus, for different 

specifications of the weight preference vector, different optimal policies can be 

obtained. The number of distinct policies generated for a single AES from the multi-

objective RL procedure varied from a minimum of 3 (Mystery Solution AES) to a 

maximum of 11 (Reflection Prompt AES), with a median of 7 distinct policies per AES.   

In order to evaluate the quality of the policies induced using multi-objective RL, we 

conducted an analysis of the policies’ expected cumulative rewards for each reward 

component. Expected cumulative reward (ECR) is a measure of the average anticipated 

reward produced by a policy across all possible gameplay episodes and start states [11]. 

ECR is calculated by taking the product of the expected discounted reward for each 

start state with the probability of starting in that state. We compare ECR results 

calculated by each reward source between each set of induced policies.  The convex 

hull of the MOMDP can be visualized by plotting the expected cumulative reward 

vector for each distinct policy induced for that MOMDP.   

Due to space constraints, we focus on presenting results from 3 of the 12 AES convex 

hulls in this section. These 3 AESs were chosen as representative examples of each of 

the three AES categories: Scaffolding, Information Availability, and Problem 

Specification. They serve as two examples of recurring AESs and one example of an 

AES that occurs once per episode. The Knowledge Quiz AES, a recurring, scaffolding 

AES, specifies whether to provide a student with an in-game microbiology quiz or not 

at several specific points in the problem scenario. The Test Count AES, a single-

occurrence problem specification AES, determines whether the student is allotted three, 

five, or ten initial “scans” with the hypothesis testing equipment in the game’s virtual 

laboratory. The Teresa Symptoms AES, a recurring information availability AES, 

determines whether a particular non-player character will provide minimum, moderate, 



 

 

or maximum detail regarding her symptoms during a branching conversation with the 

student. 

Figure 2 shows the ECR vectors of distinct policies induced by the multi-objective 

RL framework for the three selected AESs. The x-axis denotes the NLG ECR value of 

a policy, and the y-axis denotes the Presence ECR value. A qualitative analysis of 

policies for each AES reveals how changing the weight preference vector affects action 

choices for the tutorial planner.   

In the Knowledge Quiz AES, as the NLG weight decreases, the induced policies 

tend to give fewer quizzes to students who have read a higher number of books and 

have higher prior content knowledge. Because this change of policy comes from 

decreasing the NLG weight (and therefore increasing the Presence weight), this 

Fig 2. Scatter plot of ECR vectors for select AESs.  X-axis denotes NLG reward values, and y-

axis denotes Presence reward values. 

 



 

 

indicates that presenting the knowledge quizzes may reduce engagement in students 

who are already familiar with microbiology content, or who are now more 

knowledgeable from reading the virtual microbiology books. Conversely, this indicates 

that in-game quizzes may help learning but diminish engagement; it is plausible that 

quizzes disrupt the flow of gameplay and reduce perceptions of presence in the virtual 

environment.  

In the Test Count AES, the policies induced by weight preference vectors that de-

prioritize NLG tend to allot more initial “scans” to students with high number of books 

read. This indicates that letting students that have already gathered information from 

reading perform more tests may help engage the students at the cost of decreased 

learning gains. This may be a way of keeping students engaged by allowing students 

who have spent time gathering information to form hypotheses continue the problem-

solving process by thoroughly testing their hypotheses. 

In the Teresa Symptoms AES, policies induced with weight preference vectors that 

prioritize Presence tended to provide fewer details when students had high prior content 

knowledge and more detail when students had high prior gameplay experience. This 

indicates that giving less information to students with high prior content knowledge 

may help keep them engaged, and it may have also helped engage students who were 

performing a high number of scans. The lack of information given to a student with 

high prior content knowledge effectively increases the scenario’s difficulty, which may 

lead to a more appropriate challenge level for a high knowledge student. 

In summary, tutorial planning policies are noticeably influenced by the weight 

assignments in the multi-objective preference vector. In general, increased weight for 

the NLG reward source corresponds to increased learning support from the tutorial 

planner. This trend can be observed for both the Knowledge Quiz AES (i.e., more 

quizzes are given) and Teresa Symptoms AES (i.e., more detailed information is given) 

with higher NLG weights. The Test Count AES is an exception, where allotting an 

increased number of tests—an indirect form of learning support—corresponds to a 

reduction in NLG weight. However, students “earn” additional tests by completing in-

game quizzes, so it may be the case that students with fewer allotted tests complete 

more remedial quizzes, which could be associated with higher learning gains. It should 
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be noted that this trend is only observed for students with a strong tendency toward 

book reading. This would be consistent with a tutorial planner that seeks to limit 

guessing behavior to encourage learning among students that have already read the 

relevant content. 

As noted above, each of the policies induced is optimal over some subset of possible 

weight preference vectors. In Figure 3, the subsets of weight preference vectors 

associated with each optimal policy (from the three AESs shown in Figure 2) are 

visually represented.  The policy numbers corresponding to the hulls from Figure 2 are 

centered on the ranges of NLG weights that make those policies optimal. For example, 

Policy 1 in each AES is the policy that favors NLG most and Presence least. In the Test 

Count AES, this policy is optimal under all weight preference vectors from NLG = 0.58 

to NLG = 1.0 (with the corresponding Presence = 0.42 to Presence = 0.0).  This image 

also shows that Policy 2 for Test Count, Policy 5 for Teresa Symptoms, and Policy 5 

for Knowledge Quiz are optimal under a weight preference vector that gives even 

preference to NLG and Presence, i.e. NLG = Presence = 0.5. 

Next, we statistically compared policies induced for different weight preference 

vectors using the multi-objective RL framework. To perform this comparison, we 

conducted a series of paired t-tests, where each pair consisted of the reward-specific 

ECR values for two different policies associated with a single AES. Each weight 

preference vector corresponds to a set of policies from the convex hull; the set is 

comprised of one policy for each AES. Thus, for two distinct weight preference vectors, 

there are 12 pairs of policies. We calculate the 12 differences between policy ECRs and 

average (and take the standard deviation of) these ECR differences to compare two 

distinct preference weight vectors. These tests investigated whether the ECR value for 

a particular reward source was statistically different across policies induced by two 

distinct weight preference vectors.  

For example, consider the Teresa Symptoms AES and its induced policies: Policy 1 

(induced by w = [1.0, 0.0] ) and Policy 2 (induced by w = [0.75, 0.25]). We want to 

compare NLG ECR values between the two policies.  From the data in Figure 2, we see 

that NLG ECR of Policy 1 is 0.122 and the NLG ECR of Policy 2 is 0.121, yielding a 

pairwise NLG difference of 0.001. This difference is averaged with differences between 

other AESs, providing the mean NLG ECR difference between policies induced by two 

weight preference vectors. 

Table 2. Paired t-tests comparing policies from different weight preference vectors with 

differences averaged across all AESs. 

 



 

 

It should be noted that policies induced using linear scalarization with weights [1.0, 

0.0] and [0.0, 1.0] are equivalent to single-objective policies, enabling a statistical 

comparison between single-objective and multi-objective policies. The results from 

these paired t-tests are shown in Table 2. 

Table 2 indicates that policies induced with different weight preference vectors have 

significant differences in ECR across both reward sources when paired by AES.  A 

negative Mean Difference represents the case when policies induced by Weight Vector 

Two are greater than the policies induced by Weight Vector One for that reward source.  

Results show that the equal-preference policy given by w = [0.5, 0.5] outperforms 

single-objective policies in the secondary objective, but it does not perform as well on 

the primary objective. 

 
 
6 Conclusion 
 
Dynamically balancing between multiple objectives is a key functionality of tutorial 

planners for a broad range of interactive learning environments ranging from intelligent 

tutoring systems to game-based learning environments. We have presented a multi-

objective reinforcement learning framework for tutorial planning in game-based 

learning environments that addresses the problem of incorporating multiple reward 

sources, such as learning and engagement, into a data-driven framework for tutorial 

planning. Our multi-objective RL framework has been investigated in the context of a 

game-based learning environment for middle school microbiology education, and it 

was trained using a corpus of student interaction data from classroom studies involving 

over 400 participants. Multiple reward sources (i.e., content learning, engagement) 

were used to define an MOMDP for the game-based tutorial planner. These reward 

sources were chosen because they typify the educational objectives often discussed in 

the design of game-based learning environments. An analysis of different tutorial 

planning policies induced using multi-objective RL indicated that tutorial planners 

utilizing these policies provide a more balanced expected cumulative reward on 

multiple objectives compared to single-objective policies. We generated an 

approximate convex hull of optimal policies for several AESs, yielding sets of tutorial 

planning policies that optimize multiple dimensions of students’ game-based learning 

experiences. These policies can be selected at deployment time by specifying a 

weighted preference vector tailored to a particular educational setting. 

 In future work, it will be important to investigate alternate representations for multi-

objective policies using complementary evaluation methods, such as importance 

sampling. In addition, we plan to explore techniques for incorporating multi-objective 

tutorial planners into the run-time decision cycles of a range of learning 

environments, investigating how best to dynamically create personalized learning 

experiences that are simultaneously effective for learning and engagement. In this 

work, we have utilized ECR as a preliminary evaluation metric to assess multi-

objective tutorial policies. This lays the foundation for conducting follow on studies 

with human subjects to investigate multi-object tutorial planning in laboratory and 

classroom settings. 
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