
Filtered Time Series Analyses of Student  

Problem-Solving Behaviors in Game-based Learning 
Robert Sawyer Jonathan Rowe 

Department of Computer Science 
North Carolina State University 

Department of Computer Science 
North Carolina State University 

rssawyer@ncsu.edu 
 

jprowe@ncsu.edu 
 

Roger Azevedo 
Department of Psychology 

North Carolina State University 

James Lester 
Department of Computer Science 
North Carolina State University 

razeved@ncsu.edu lester@ncsu.edu 

ABSTRACT 

Student interactions with game-based learning environments 

produce a wide range of in-game problem-solving sequences. 

These sequences can be viewed as trajectories through a game’s 

problem-solving space. In this paper, we present a general 

framework for analyzing students’ problem-solving behavior in 

game-based learning environments by filtering their gameplay 

action sequences into time series representing trajectories through 

the game’s problem-solving space. This framework was 

investigated with data from a laboratory study conducted with 68 

college students tasked with solving the problem scenario in a 

game-based learning environment for microbiology education, 

CRYSTAL ISLAND. Using this representation of student problem 

solving, we derive the slope of the problem-solving trajectories and 

lock-step Euclidean distance to an expert problem-solving 

trajectory. Analyses indicate that the trajectory slope and temporal 

distance to an expert path are both correlated with students’ 

normalized learning gains, as well as a complementary measure of 

in-game problem-solving performance. The results suggest that the 

filtered time series framework for analyzing student problem-

solving behavior shows significant promise for assessing the 

temporal nature of student problem solving during game-based 

learning. 
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1. INTRODUCTION 
Game-based learning has shown considerable promise for 

motivating and engaging students in learning [8]. Game-based 

learning environments engage students by populating game worlds 

with believable characters and narrative-driven learning 

experiences. These environments often feature problem-solving 

scenarios that give students a high degree of agency and freedom. 

While engaging for students, this freedom also allows different 

problem-solving strategies to be pursued to varying degrees of 

effectiveness. Providing adaptive scaffolding to guide students in 

following effective problem-solving processes is key to creating 

effective game-based learning experiences. However, determining 

how to best scaffold student problem solving in game-based 

learning environments remains an open research question. 

Scaffolding effectively requires insight into students’ problem-

solving processes as well as their individual student characteristics. 

In order to devise effective models for adaptive scaffolding in 

game-based learning environments, it is important to consider how 

the scaffolds will influence students. The models not only need to 

account for what support to provide, but also when to provide that 

support. In other words, the dynamic nature of student problem 

solving within game-based learning environments should be 

considered when analyzing the problem-solving behaviors of 

students. Thus, considering the overall sequence of a student’s 

actions in a game-based learning environment is fundamental to 

making effective scaffolding decisions, including what a student 

has done thus far, what their general approach has been, and what 

cognitive and metacognitive strategies they have been using. 

The space of possible problem-solving behaviors within a game-

based learning environment can be vast, as students explore, 

inquire, gather information, and attempt to leverage their 

knowledge and skills to solve the problem scenario over an 

extended interaction. In these open environments, providing an 

exemplar solution path that is known to be effective can serve as a 

useful reference for students. Domain experts solve complex 

problems more efficiently than novices [12], and their solutions can 

serve as valuable points of comparison by students who lack 

relevant problem-solving expertise. The similarity between an 

expert solution path and a student solution path can be used to draw 

inferences regarding the student’s trajectory through the open 

problem-solving space of the game-based learning environment.  

In this paper, we present a general framework for analyzing the 

temporal sequence of student problem-solving behaviors in 

comparison to expert solution paths in game-based learning 

environments. The framework consists of filtering student 

problem-solving actions in a game-based learning environment into 

a time series representing a student’s trajectory through the 

problem-solving space. We investigate the framework with data 

collected from student interactions with CRYSTAL ISLAND, a game-

based learning environment for microbiology education. To 

 

 



evaluate the framework, we compare several key characteristics of 

the time series, including a comparison between student trajectories 

and an expert trajectory, with measures of learning and engagement 

in game-based learning. 

2. RELATED WORK 
A growing research base focuses on analyzing problem-solving 

behaviors of students using summary statistics of student 

interactions with learning environments. Toth and colleagues 

clustered summary statistics of students’ interactions with a 

computer-based educational assessment to discriminate between 

students with different proficiency levels in problem solving [32]. 

Sawyer et al. used rates of emotions and action units during student 

interactions with a game-based learning environment to model 

learning and engagement outcomes [28], while Lalle et al. used 

eye-gaze measures during student trials with ValueChart, an 

interactive visualization for preferential choice, to predict student 

confusion [18]. While successful in using student data to model 

outcomes important for adaptive learning technologies, these 

methods did not leverage the sequential structure inherent in 

student problem solving in advanced learning technologies. 

Modelling sequences of student actions has important implications 

for adaptive learning environments, and it has been approached 

using both supervised and unsupervised learning methods. Kock et 

al. modeled sequences of user activities in an e-learning tutor as 

discrete Markov models, detecting problem-solving styles and 

learning dimensions about learners by clustering on the trained 

parameters of the models [17]. They subsequently investigated how 

these data-driven insights about students can be incorporated into 

an adaptive learning environment by supporting both individual 

users and groups of collaborative users. Hidden Markov models 

(HMMs) have been used widely for sequential student behavior 

modelling [6, 14]. Beal et al. used HMMs to model the actions of 

high school students [4]. After fitting HMM parameters for each 

student, they performed clustering based on the transition matrices 

of individual students to gain insight into differences in behavior 

and achievement of the clusters. Hansen and colleagues modeled 

student session log data by modeling student behaviors as 

distributions of Markov chains [13]. Bayesian knowledge tracing 

models use sequences of observations of student performance to 

create hidden Markov models with binary latent states representing 

student knowledge [9, 15]. All of this work shares the common 

approach of modeling student action sequences in terms of 

probabilistic state transitions. In contrast, our work uses 

characteristics of student problem-solving sequences encoded as 

trajectories within the game-based learning environment to predict 

student learning outcomes measured through pre and post-testing. 

Sequence mining techniques have been used to investigate student 

activity sequences in adaptive learning environments to identify 

frequent behavior patterns and their evolution over time [16]. 

Martinez et al. used sequence mining on logs of a collaborative 

tabletop problem-solving application to examine frequently 

occurring problem-solving strategies in high and low achieving 

groups [21]. Perera et al. used trace logs of a collaborative software 

engineering environment to extract frequent patterns and cluster 

students using k-means clustering [22]. Another widely used 

approach is applying pattern mining techniques to logs of user 

behaviors in web-based learning environments [11, 23]. Our work 

differs from these approaches by analyzing the paths of student 

behaviors over full gameplay episodes rather than specific 

subsequences of behaviors. This approach is taken because a full 

trajectory and segments of the trajectory provide a comprehensive 

view of a student’s problem-solving process, which is composed of 

a very long sequence of problem-solving behaviors taken to solve 

the open-ended game-based learning environment. 

Bauer et al. devised solution tree visualizations of user interactions 

with an open-ended puzzle solving game about protein folding, 

Foldit [3]. They used the visualizations to identify key patterns in 

problem-solving behavior among high and low performers. Others 

have used visual data mining on player behavior states, projecting 

visual representations into a more interpretable visual space [2, 19]. 

Notably, Liu et al. used state features to collapse complex 

visualizations and interpret key moments of player behaviors [19]. 

Our work similarly uses dimensionality reduction to create more 

interpretable visualizations of player behaviors over time. The 

primary focus of our work is quantifying the problem-solving 

trajectories of students in game-based learning environments, and 

the filtering approach we apply to student action sequences 

supports creating useful visualizations of the students’ solution 

paths through the problem-solving space. While the calculated 

slopes and distances are quantities, their geometric interpretation 

with regard to the problem-solving space are also informative. 

Snow et al. used a random walk analysis based on student 

interactions within a game-based system, iSTART-ME, to plot 

student trajectories and slopes [30]. They later extended this work 

through comparisons of student behavior patterns against random 

walks, revealing that students who behaved in a more deterministic 

manner exhibited higher quality self-explanations [31]. Our work 

similarly aims to dynamically analyze student trajectories based on 

interactions within a game-based learning environment, but it 

differs in several key aspects. First, our work creates student 

trajectories of problem-solving behaviors within an open-world 

game-based learning environment, a more complex space, which 

requires filtering through dimensionality reduction. Second, our 

work compares student trajectories to an expert solution path as 

opposed to a random walk. This comparison is particularly useful 

for informing the design of adaptive scaffolding functionalities in 

game-based learning environments. Experts and novices solve 

problems differently [12, 20], and our work provides an automated 

framework for characterizing how expert and novice problem-

solving paths differ from one another.  

3. GAME-BASED LEARNING TESTBED 
In this work, CRYSTAL ISLAND, a game-based learning environment 

for microbiology education, was used as a testbed to explore the 

problem-solving behavior paths of students and an expert. Students 

who participated in the study played CRYSTAL ISLAND and 

completed a pre-test and post-test assessing microbiology content 

knowledge. 

3.1 Crystal Island 
CRYSTAL ISLAND integrates science problem solving in a game-

based learning environment designed for microbiology education. 

Students adopt the role of a medical field agent tasked with 

discovering the source and identity of a mysterious epidemic on a 

remote island. In order to diagnose the illness, students gather 

information through conversing with a cast of non-player 

characters.  Reading scientific books, articles, and posters scattered 

throughout the island provides crucial sources of information about 

microbiology that students need to diagnose the illness. Students 

test their hypotheses for the epidemic’s source by scanning objects 

for contamination in the virtual laboratory. Students record findings 

regarding symptoms and contaminated objects on a diagnosis 

worksheet. The mystery is solved by submitting a completed 

diagnosis worksheet with the correct illness, source, and treatment 



plan to the camp nurse. Throughout solving the mystery, students 

explore an expansive 3D virtual game environment that includes a 

beach, infirmary, laboratory, dining hall, and residences. 

There are many possible solution paths to solving the mystery 

successfully. An expert created an expert playthrough for a solution 

representing a thorough but efficient solution path for the problem-

solving scenario. In a related study, a recording of this expert 

playthrough was used as a No Agency condition [7, 29], where 

students watched the narrated video of the expert solving the 

CRYSTAL ISLAND problem scenario. The expert visited each 

building, interacting with each of the virtual characters and reading 

each of the scientific texts to learn the information needed to solve 

the mystery (Figure 1). Although it is possible for a student to solve 

the mystery more quickly by skipping content in the game, the 

expert playthrough is intended to represent a comprehensive, 

efficient problem-solving path that any student could implement 

regardless of prior knowledge. In this work, we analyze students 

from the Full Agency condition of the study, which allowed 

students to freely explore the game environment after a brief 

tutorial introducing basic game mechanics. The expert playthrough 

is used for a comparison of problem-solving behaviors over the 

course of the gameplay interaction. 

The CRYSTAL ISLAND problem scenario consisted of three phases 

of gameplay: (1) Tutorial, (2) Information Gathering, and 

(3) Diagnosis. In the Tutorial phase, students learned the basic 

game controls and mechanics upon arriving on the island’s beach. 

After completing the tutorial, students moved to the main area of 

the game, beginning the Information Gathering phase. Students 

gather information through books, posters, and conversing with 

non-player characters such as the camp nurse, who initiates the 

game’s problem-solving scenario narrative. Students also converse 

with a range of domain experts and sick patients in the game. 

Students transition into the Diagnosis phase when they perform 

their first test with the virtual laboratory scanning equipment. The 

Diagnosis phase and overall game are solved when students 

successfully submit their diagnosis worksheet to the camp nurse 

with the correct illness, contamination source, and treatment plan. 

Outside of the Tutorial, the phases do not restrict any aspect of a 

student’s experience within the game-based learning environment. 

The phases are used to segment a student’s gameplay for an 

analysis of problem-solving behavior in different intervals of the 

scenario. 

3.2 Study Participants 
The study involved 68 participants from a large mid-Atlantic 

university who played CRYSTAL ISLAND in a lab setting. After 

removing students with corrupted data there was a total of 63 

students (M = 20.1 years old, SD = 1.55) of which 42 (66.7%) were 

female. Prior to interaction with Crystal Island, students completed 

a 21-question multiple choice pre-test assessing microbiology 

knowledge (M = 11.5 (54.8%), SD = 2.7 (13.0%)). Students played 

for a range of 26.4 to 159.8 minutes (M = 68.0 min, SD = 22.4 min) 

while the expert playthrough lasted 91 minutes. After completion 

of the game, students completed the same microbiology assessment 

as a post-test (M = 13.3 (63.5%), SD = 2.7 (13.0%)).  

3.3 Measures of Learning Performance 
A primary goal of CRYSTAL ISLAND is learning relevant 

microbiology content. We measure student learning in CRYSTAL 

ISLAND in terms of normalized learning gain, which is the 

difference between pre and post-test score standardized by the total 

amount of improvement or decline possible from the pre-test. This 

calculation uses percentage of questions correct on the pre-test and 

post-test to calculate learning gain. Students demonstrated positive 

normalized learning gains with an average normalized learning 

gain of 0.19 (SD = 0.26).  

A previously used indicator for in-game student engagement 

assessing progress and efficiency in the problem-solving scenario 

is given by final game score [25]. This measure was designed to 

allot points to students for efficient problem-solving behaviors such 

as talking to key virtual characters and solving the mystery in a 

short duration while subtracting points for inefficient behaviors 

such as scanning incorrect items in the virtual laboratory or 

submitting an incorrect solution. Final game score has been shown 

to be significantly associated with post-test score, independent of 

Figure 1. Overview of CRYSTAL ISLAND with expert solution path in gold. 



pre-test score [25]. Scores varied widely among students with a 

range of -1543 to 1502 and an average of 673.7 (SD = 616). Both 

learning, as measured by normalized learning gain, and in-game 

student engagement, as measured by final game score, are target 

learning objectives of game-based learning environments. We 

therefore investigate how learning and in-game student 

engagement are related to student problem-solving trajectories in 

order to evaluate the utility of the filtered time series analysis 

framework.  

4. TIME SERIES ANALYSIS 
The similarity of two students over their entire gameplay can be 

defined as the distance between their trajectories through the game. 

First, we define student trajectories as filtered cumulative actions 

over time. Then, we define the temporal distance as the average 

Euclidean distance between trajectories over each time step, which 

is known as the lock-step Euclidean distance [10]. Distances 

between students and the expert playthrough are calculated. The 

slope of the trajectory is calculated as the ordinary least squares 

regression line through data points of each student’s time series, 

roughly measuring the problem-solving behavior of a student 

through an adjusted gameplay pace. This distance representing 

student gameplay similarity to the expert path and regression slope 

are compared to established measures of learning performance in 

CRYSTAL ISLAND: normalized learning gain (NLG) and final game 

score [25].  

4.1 Filtering Process 
Students perform several different problem-solving behaviors 

while interacting with CRYSTAL ISLAND. The cumulative counts of 

student in-game actions are recorded during gameplay, including 

conversing with virtual characters, reading books and articles, 

editing the diagnosis worksheet, completing a plot point, 

submitting a worksheet, and scanning an item in the virtual 

laboratory. A dimensionality reduction technique to convert the six 

cumulative counts of actions into a single value describing student 

progress until a particular moment in time reduces noise in distance 

measurements by lowering the dimensions used in calculating 

Euclidean distance. Filtering a multivariate time series to a 

univariate time series is used in sequential distance methods to 

reduce the effect of noise on the distance [5]. 

Due to the correlations between cumulative action counts at 

specific time intervals, principal component analysis is used for 

dimensionality reduction [1]. Specifically, the first principal 

component is used to filter a vector of cumulative action counts at 

a point in time to a single value (Figure 2). The principal 

components are calculated on the final action counts of each student 

(not including the expert counts), and the first principal component 

(variance explained = 37%) projects the cumulative action vectors 

onto a single dimension. The first principal component used to filter 

the cumulative action counts to one dimension is reported in Table 

1, along with the means and standard deviations of the final action 

counts. Table 1 also indicates that the expert solution (“Gold Path”) 

is efficient in terms of the number of in-game actions performed. 

Table 1. Summary statistics of the principal component used 

for filtering student problem-solving behaviors. 

Gameplay 

Action 

First 

Principal 

Component 

Mean (SD) Gold Path 

Conversation 0.334 18.7 (5.9) 13 

Reading 0.554 22.9 (8.0) 21 

Worksheet 0.261 24.3 (12.5) 7 

Plot Point 0.285 18.7 (1.6) 20 

Worksheet 

Submission 
0.444 2.29 (2.6) 1 

Scan 0.484 26.0 (16.6) 3 

 

By using this first principal component for filtering, the projection 

of the cumulative action count vector onto one dimension is 

guaranteed to be positive and nondecreasing because each element 

of the principal component is positive, and cumulative action 

counts are nondecreasing as students play through the game, i.e., as 

time in game progresses. For example, the transformed gold path 

final value would be 25.4, and any earlier time has at most the 

action counts in the final column of Table 1, and would thus have 

a smaller or equal transformed value. More generally, the filtration 

can be viewed as a function, f, converting the multi-dimensional 

action vector to a single value, c, using the first principal 

component, p. This function is shown in Equation 1 for cumulative 

action vector x of student i at time t. 

Figure 3. Trajectories of students’ interactions in CRYSTAL 

ISLAND. 

Figure 2. Filtering process from action sequence to time series. 



𝑓(𝐱𝑖
𝑡) = (𝐱𝑖

𝑡)T𝐩 = 𝑐𝑖
𝑡  (1) 

A student trajectory is the time series of c values, where the time 

intervals represented by the upper index t are flexible. In this work 

they are calculated for every 10 seconds of gameplay. Figure 3 

displays each student trajectory colored by normalized learning 

gain. 

4.2 Trajectory Distance 
Once each sequence of cumulative action vectors has been 

converted to the filtered time series, the lock-step Euclidean 

distance over the full gameplay session can be calculated. Since 

students played the game for varying amounts of time, the lengths 

of each time series may differ. In such cases, when calculating the 

distance between two series of unequal length, the shorter series is 

padded to the length of the longer series by repeating the final 

filtered value. The padding of the shorter sequence prevents 

violations of the triangle inequality from divergences of two longer 

sequences with a shorter sequence after the shorter sequence has 

ended. 

The distance between two students is the average Euclidean 

distance between their filtered time series over all time steps. The 

average is taken to allow the distances to be compared from 

different numbers of time intervals. More specifically, the distance, 

d, between students i and j, can be calculated according to 

Equation 2, where n is the number of time intervals in the longer 

series. Note that while Minkowski distance of any order would 

yield equivalent results in this particular case of one dimension, the 

Euclidean norm is specifically mentioned to generalize to filters 

with multivariate outputs.  

𝑑𝑖𝑗 =
1

𝑛
∑‖𝑐𝑖

𝑡 − 𝑐𝑗
𝑡‖

2

𝑛

𝑡=1

 (2) 

The distance between a student’s trajectory and the golden path can 

be calculated by using the golden path as one of the students in 

Equation 2. The temporal distance calculated by Equation 2 to the 

golden path for student i is denoted gi. To assess the advantage of 

taking the trajectory distance, or the average distance over time, a 

useful comparison is to the final point distance of filtered values, 

i.e. using only the final time step’s filtered value to calculate the 

distance between students and the golden path. This will allow 

comparison between similarity measures that take into account the 

full gameplay over time (Equation 2) and a baseline measure 

(Equation 3) that does not use the full gameplay session, but instead 

uses a summary of gameplay. Figure 4 depicts examples of the 

baseline (a) and temporal distance (b) from one student trajectory 

to the expert solution path. 

𝑏𝑖𝑗 = ‖𝑐𝑖
𝑛 − 𝑐𝑗

𝑛‖
2

 (3) 

4.2.1 Trajectory Distance per Interval 

Since the distance is calculated used a fixed mapping between 

points in time, the measurement is sensitive to misalignments in 

time. In other words, local time shifting, or similar segments that 

are out of place, will not be handled by the distance measure [10]. 

In order to account for similar segments of student trajectories out 

of place within CRYSTAL ISLAND, the distance over each gameplay 

phase is calculated. This procedure matches two students’ time 

series from a specific phase to the same start time interval when 

calculating the distance over that phase, and it uses the same 

padding procedure described for students with differing phase 

lengths. Essentially each phase is treated as a “similar segment” and 

distances are calculated over each phase, matching the start of one 

student’s phase to the start of the other student’s similar phase. 

Figure 4(d) depicts where phases end for two example trajectories, 

which demonstrate the start points that are matched to calculate 

phase-based measures. 

4.3 Slope of Trajectory 
The slope of a trajectory gives important insights regarding the 

style of problem-solving behavior of students over the course of 

their interaction with the game-based learning environment. Since 

the x-axis in this case is time, and the y-axis a filtered measure of 

cumulative actions, the slope represents the change of the filtered 

measure of cumulative actions over time. The student’s slope can 

be viewed as a “pace of problem-solving actions,” where each 

problem-solving action’s contribution to the pace is weighted by 

the principal component used to project the cumulative action 

vector to a single dimension. For example, a student who scans 

many objects over a specific time span will have a steeper slope in 

their trajectory than a student who opens their worksheet the same 

amount of times over that same time interval because scans 

contribute more to the filtered value than worksheet opens. 

A student trajectory’s slope is estimated by fitting a simple linear 

regression with time (in minutes) as the single predictor of filtered 

cumulative action value. This is done by using the pairs of points 

(t, ct) that create each trajectory of Figure 3 to estimate a line of best 

fit per student. When fitting the line of best fit over the entire 

gameplay or Tutorial phase, the intercept is set to 0, since students 

enter the game with no actions taken. In these cases, the line of best 

fit is given by c = β t where c is the filtered cumulative action value, 

t is time in minutes, and β is the slope of the student’s trajectory. In 

the Information Gathering and Diagnosis phase, in which a student 

enters with actions previously taken, the regression line includes an 

intercept term, c = β t + b, but the slope is the quantity of interest, 

which has a semantic interpretation as the pace of problem-solving 

behavior over that time interval. 

5. RESULTS 
This section analyzes key relationships between students’ time 

series and measures from CRYSTAL ISLAND. First, the relationship 

between the slope of a trajectory and learning is demonstrated at 

both a full gameplay level and gameplay phase level. Second, the 

distance between the gold path and students is analyzed and 

compared to learning performance in CRYSTAL ISLAND. Third, an 

analysis of the measures against duration of gameplay is performed 

to evaluate the independence of the time series analysis against the 

length of the series. All reported correlations are Pearson product-

moment correlations. 

5.1 Trajectory Slope Relationship with 

Learning 
A line of best fit through the pairs of time and filtered values were 

fit to each trajectory as described in Section 4.3. In addition to the 

line of best fit over the full trajectory (All), lines of best fit were 

calculated for each gameplay phase (Tutorial, Information 

Gathering, and Diagnosis). Since the filtered action value is 

calculated as a weighted sum of cumulative actions, the slope of the 

line of best fit can be viewed as an estimate of the pace of play of a 

student within the game-based learning environment with certain 

actions counting towards the pace more than others. It is also 

important to note that these slopes are independent of the golden 

path, but could be compared with cosine similarity as a measure 

independent of the duration of play. The slopes are found to be 

marginally significantly correlated with normalized learning gain 



and have a positive cross validation R2 indicating the 

generalizability of the results. The results by gameplay phase are 

reported in Table 2.  

When analyzing the simple linear regression leave one out cross-

validation R2 measures, it is important to consider the difficulty of 

predicting normalized learning gain from in-game actions. More 

concretely, a baseline using a multiple linear regression using each 

cumulative action count with game duration (the features used in 

extracting the trajectory and slope) gives a leave-one-out cross 

validation R2 of -0.089. Note that a negative cross-validation R2 

indicates the model predictions on the held-out points have a higher 

mean squared error than using the variance of the data and are an 

indicator of poor fit. 

Table 2 indicates a relationship between the slope of a trajectory 

and normalized learning gain. The Tutorial phase is a notable 

exception here, which indicates that the pace of actions during the 

Tutorial is not predictive of normalized learning gain. A marginally 

significant negative correlation between Information Gathering, 

Diagnosis and slope over the full gameplay session (All) with 

normalized learning gain demonstrates that as a trajectory slope 

becomes steeper, the normalized learning gain decreases. This 

relationship is further exemplified by the positive cross-validation 

R2 results, especially relative to the baseline using the cumulative 

game actions and duration. Thus, a slower pace (lower slope) of 

students’ problem-solving behaviors measured by the filtered 

cumulative actions in phases beyond the Tutorial are indicative of 

positive learning outcomes in CRYSTAL ISLAND. 

 
 

a. The dark green dashed line represents the padded portion of 

the student’s series to match the length of the golden path. The 

vertical blue line represents the baseline distance. 

 
 

b. Each vertical gray line is averaged to calculate the 

final distance. There is a vertical gray line every 10 

seconds, making this appear as an area between 

trajectories. 

 
 
c. The slopes over the full gameplay episode for a student 

(green) and expert solution (gold).  

 
 

d. Gameplay phase endpoints plotted in grayscale 

along a student’s trajectory (green) and expert 

trajectory (gold), illustrating the potential for local 

time shift issues in calculating distance. 
 

Figure 4. Visual summaries of each time series characteristic calculated for comparison with measures of learning and 

engagement. 



The slope of the expert solution path is the lowest observed slope 

of any trajectory in the dataset (0.27, next lowest = 0.31). The low 

slope indicates a relatively slow pace of play in terms of the number 

of actions taken within the game, which reflects the expert’s 

deliberate and efficient on-task problem-solving path. The 

deliberate play demonstrates positive problem-solving strategies, 

such as reading texts thoroughly and planning the next action. 

Table 2. Summary of the relationship between trajectory 

slopes and normalized learning gain. 

Gameplay 

Phase 

Average 

Slope 

(SD) 

Correlation 

with NLG (p-

value) 

Simple Linear 

Regression 

CV R2 

All 
0.51 

(0.11) 
-0.22 (0.09) 0.0172 

Tutorial 
0.12 

(0.08) 
-0.063 (0.62) -0.0362 

Information 

Gathering 

0.49 

(0.11) 
-0.22 (0.08) 0.0165 

Diagnosis 
0.58 

(0.11) 
-0.24 (0.05) 0.0275 

 

5.2 Golden Path Distance Relationship with 

Learning 
The temporal distance between the expert solution path and student 

trajectories was calculated as in Equation 2. There appears to be a 

relationship between learning, as measured by normalized learning 

gain, and similarity of a student trajectory with the golden path. The 

correlations by gameplay phase between normalized learning gain 

and gold path distance are given in Table 3. The leave-one-out 

cross-validation R2 from a simple linear model using the distance 

as the lone predictor of normalized learning gain is also given for a 

measure of generalization of the correlational relationship.  

Table 3. Summary of temporal distance between students and 

expert with normalized learning gain. 

Gameplay 

Phase 

Average 

Distance 

(SD) 

Correlation 

with NLG (p-

value) 

Simple 

Linear 

Regression 

CV R2 

All 9.98 (4.0) -0.23 (0.07) 0.0202 

Tutorial 0.76 (0.22) 0.0061 (0.96) -0.0781 

Information 

Gathering 
10.5 (4.8) -0.20 (0.11) 0.0021 

Diagnosis 17.3 (12.0) -0.13 (0.42) -0.0206 

 

As seen from Table 3, the negative correlation between distance 

and normalized learning gain indicates that as student trajectories 

become farther from the golden path (the distance over time 

increases), their normalized learning gains decreases. The 

difference between phases is interesting to note, as the Tutorial 

phase and Diagnosis phase are not significantly correlated with 

normalized learning gain, while the Information Gathering phase 

demonstrates a correlation approaching significance and positive 

cross-validation R2 superior to the baseline. The superiority of 

using the full gameplay for the distance calculation in Table 3 

indicates that the time warping problem common among time series 

analysis may not be an issue in game-based learning. This is likely 

due to the freedom that game-based learning environments provide 

students, making recalibration of time intervals difficult to compare 

amongst students’ actions. 

5.2.1 Comparison with Baseline Distance 

While the relationship between the distance measure incorporating 

the full gameplay from the gold path and normalized learning gain 

is encouraging, the necessity of using temporal distance can be 

assessed by comparing the gold path baseline distance from 

Equation 3 with normalized learning gain. No significant 

correlation is observed between the baseline distance from the gold 

path with normalized learning gain (r(61) = -0.153, p = 0.23). A 

baseline comparison using each student’s final filtered cumulative 

action value as a single predictor in an ordinary least squares 

regression evaluated using leave-one-out cross-validation gives an 

R2 of -0.0075. The lack of relationships demonstrated with the 

baseline distance compared to the correlation of the temporal 

distance indicates that using the distance from the expert solution 

over the full gameplay session provides valuable information for 

predicting normalized learning gain. 

5.3 Comparison with Final Game Score 
The final game score is an in-game measure designed by domain 

experts specifically for the CRYSTAL ISLAND game-based learning 

environment to assess student engagement [25]. Thus, comparisons 

with the final game score provide a complementary comparison to 

normalized learning gain from the actions in CRYSTAL ISLAND to 

gauge a student’s experience. First, it should be noted that a 

marginally significant positive correlation was observed between 

normalized learning gain and final game score (r(61) = 0.25, p = 

0.05), indicating that students with a high final game score have 

higher normalized learning gains. The magnitudes of the 

correlations observed with the slope and expert solution distance 

are similar to the correlation observed between final game score 

and normalized learning gain, despite final game score being a 

hand-crafted measure of performance in CRYSTAL ISLAND while the 

trajectories are automatically created from student data. This is also 

seen when comparing the leave-one-out cross-validation R2 of 

using final game score as the sole predictor in a simple linear 

regression model, which yields a 0.0265 value when predicting 

normalized learning gain. 

Table 4. Summary of time series characteristics with final 

game score. 

Condition 
Slope-based Linear 

Regression CV R2 

Distance-based 

Linear Regression 

CV R2 

All 0.0091 0.28 

Tutorial 0.030 0.028 

Information 

Gathering 
0.021 0.28 

Diagnosis 0.064 0.51 

 

The golden path reflects a trajectory with desirable problem-

solving behaviors according to the final game score as the expert 

takes an efficient solution path. For example, the expert uses far 

less scans of irrelevant virtual objects and incorrect worksheet 

submissions than the average student, both of which are penalized 



by the final game score for being indicative of guess-and-check 

behavior. This can be observed by the strong predictive power of 

the temporal distance to the expert solution path over the final game 

score given in Table 4. These results are notably strong when 

compared with the slope of the trajectories, which has weaker 

predictive power over student in-game engagement as measured by 

final game score. The relationship between distance to the expert 

solution and final game score increases as students progress 

through the phases of CRYSTAL ISLAND. This is likely because 

students perform actions that more directly impact the final game 

score (scans and worksheet submissions) during the final Diagnosis 

phase, which is captured by taking the distance over this interval.  

6. DISCUSSION 
In this work, students’ problem-solving behaviors in Crystal Island 

were transformed into time series representing their trajectories 

through the problem-solving space. This section provides 

explanations, considerations, and implications of the results from 

comparing characteristics of these trajectories with learning 

outcomes. 

6.1 Trajectory Slope 
The results suggest that the slope of a student’s problem-solving 

trajectory contains valuable information about their approach to 

problem solving in the game-based learning environment. The 

slope of a student’s problem-solving trajectory was found to be 

marginally predictive of normalized learning gain using the full 

gameplay, Information Gathering phase, and Diagnosis phase. 

Negative slopes were found to be predictive of higher learning 

gains, indicating that students who performed more problem-

solving actions (weighted through the principal component) per 

minute had worse learning outcomes.  

While the slopes were calculated independently of the expert 

solution, it is interesting to note that the expert solution had the 

most gradual slope of any problem-solving trajectory. Therefore, 

the cosine similarity of best fit lines through trajectories would 

yield similar results to the current analysis of the slopes, which is 

independent of the expert solution because steeper slopes would be 

more dissimilar. Thus, the cosine similarity in this particular 

context would be analogous to subtracting a constant from each 

slope, which would not affect the measures used for the analysis in 

this work. Since these slopes are based on univariate time series, 

there is no additional information that an analysis of the cosine 

similarity would provide over an analysis of the slopes themselves. 

However, the current expert path is only one possible problem-

solving solution through this space, and in future work it would be 

informative to conduct an analysis using solution paths that vary by 

problem-solving strategy, including negative solution paths, such 

as a guess-and-check methodology. 

The slope during the Information Gathering phase was negatively 

correlated with learning outcomes. This is an interesting 

observation given the nature of the Information Gathering phase, 

where students do not perform any scans in the virtual laboratory. 

(If they had performed scans, they would be considered to be in the 

Diagnosis phase). While the steeper slopes indicate a problem-

solving strategy more in line with a guess-and-check method, this 

phase by definition does not include guesses through the scanner. 

This indicates that the slope of the trajectory includes additional 

information over identifying potential guess-and-check strategies. 

A more gradual slope in the Information Gathering phase could be 

caused by students who are more deliberate in fully reading and 

comprehending their conversations and reading materials, which 

would contribute to the negative relationship between trajectory 

slope and learning outcomes in this phase. This observation is in 

line with previous research on CRYSTAL ISLAND, which found that 

information gathering prior to hypothesis generation was correlated 

with improved problem-solving efficiency [26]. 

The weak relation between slope trajectory and final game score is 

surprising given the way final game score and the filtered 

cumulative action counts are calculated. Final game score 

penalizes incorrect scans in the virtual laboratory and incorrect 

worksheet submissions, which are both actions weighted heavily in 

the filtered cumulative action count. Thus, one would expect a 

steeper slope to indicate a lower final game score since the steep 

slope indicates problem-solving behaviors likely to have a negative 

impact on final game score being performed at a quicker rate than 

other students. However, this may be offset by the final game score 

rewarding problem-solving efficiency, which would be indicated 

by a steeper slope. 

6.2 Distance from Expert Solution 
The results have important implications regarding the temporal 

distance of a student’s problem-solving trajectory and the expert 

solution problem-solving trajectory. Since this distance represents 

the dissimilarity of the student’s problem-solving path over time 

relative to an expert’s, the negative correlations between 

dissimilarity and learning outcomes are as one would expect: as a 

student’s problem-solving path becomes more similar to the expert 

solution, the student’s learning outcomes are expected to be higher. 

Thus, the results suggest that analyzing a student’s problem-solving 

path in game-based learning with respect to an expert’s problem-

solving path can yield insight into student learning outcomes, 

which are measured outside of the game-based learning 

environment. Interaction with CRYSTAL ISLAND centers on solving 

a complex problem with multiple solution paths, and the expert 

solution represents one of many possible paths. Further work 

should be done in evaluating student solution paths in the context 

of multiple expert solution paths. 

The differences between the temporal distance measure and 

baseline measure indicate that the temporal distance incorporates 

additional information regarding the problem-solving behavior 

path. The baseline distance does not capture information regarding 

intermediate steps of the problem-solving path, which are critical 

to learning. This is analogous to only checking if a student obtained 

the correct answer to a problem without considering the steps the 

student took to solving the problem. In the context of an ill-

structured problem, the temporal distance supports a comparison 

between the steps students took over the course of gameplay with 

an expert solution rather than merely considering the final summary 

statistics of a student. 

6.3 Heteroskedasticity of Trajectories 
The current filtered cumulative action count provides several 

benefits such as its interpretability as a nondecreasing measure of 

weighted problem-solving behaviors performed. However, the 

trajectories become more dispersed as students follow different 

problem-solving paths through the game. The wide dispersion is a 

consequence of the open-ended nature of CRYSTAL ISLAND, which 

has many valid solution paths defined by trajectories. While this 

dispersion of trajectories is important for revealing the divergence 

of problem-solving paths among different students, the dispersion 

as time increases indicates heteroskedasticity in the filtered values, 

or an increase in variance among the filtered cumulative action 

values per time step.  

This can be observed in Table 3, where the standard deviation of 

the distance from the expert solution increases per gameplay phase. 



For example, in the Information Gathering phase, the standard 

deviation of the 63 student trajectory distances from the expert 

solution is 4.8, and this more than doubles to 12.0 in the Diagnosis 

phase. Future work should address whether this heteroskedasticity 

is desired in calculating similarities from distances or whether a 

variance-adjusted distance would be more appropriate to account 

for how the population of trajectories become more dispersed as 

time progresses. For example, the increased variance of distance in 

later phases may be the cause of the expert distance during 

Information Gathering being significantly predictive of normalized 

learning gain while the Diagnosis phase has no predictive ability 

over normalized learning gain. On the other hand, the distance 

between students and the expert path in the Diagnosis phase 

explains more the variance of the final game score than the 

Information Gathering phase, indicating that the wide dispersion of 

filtered values does not have a negative impact on the relationship 

between expert distance and final game score. 

6.4 Implications of Time Series Analysis 
The primary result of this work is that the trajectory of a student 

through the problem-solving space of a game-based learning 

environment has a relationship with the measured learning 

outcomes of normalized learning gain and significant relationship 

with final game score. The framework for creating these 

trajectories is generalizable to game-based learning environments 

tracking cumulative game actions of students as well as a broad 

range of advanced learning technologies that support multiple 

problem-solving paths. Importantly, this includes transforming an 

expert problem-solving solution path into the same problem-

solving space as student paths, and quantifying the similarity of a 

student solution path relative to the expert solution. While this one 

expert path represents only one possible solution path through the 

problem-solving space, this similarity predicts normalized learning 

gain, indicating the potential for evaluating a student’s entire 

problem-solving path in an open-ended game-based learning 

environment. The measures used here were shown to be predictive 

of learning outcomes, but further analysis should be done to 

determine qualitative characteristics related to learning and self-

regulatory processes.  

These observations have important design implications for adaptive 

learning environments. For example, the results suggest that one 

approach to improving student learning would involve an adaptive 

learning environment scaffolding a student’s problem solving to   

increase the probability that the student follows a trajectory more 

closely related to an expert problem-solving path. In the context of 

a reinforcement learning-based tutorial planner [24, 27], 

characteristics of the trajectory defined by the filtered cumulative 

action value could be used as continuous state variables. This work 

has shown the problem-solving trajectory slope and distance to an 

expert solution are related to learning and in-game student 

engagement, suggesting that problem-solving trajectory slope and 

distance to an expert solution are useful variables to include in a 

state representation for a tutorial planner. The impact of decisions 

made by the tutorial planner on the student’s trajectory in terms of 

its slope and distance from an expert solution could thereby be used 

as estimates for the transitions of a decision in a model-based 

reinforcement learning framework.  

These results also have another key implication for the design of 

adaptive learning environments. In a recent study with the CRYSTAL 

ISLAND game-based learning environment, students who followed 

a predetermined path achieved significantly higher normalized 

learning gains than students who had freedom of control [29]. 

These results suggest a possible explanation for the higher observed 

learning gains: students on the predetermined path followed a 

problem-solving trajectory more similar to the expert solution path 

than students who were given freedom to explore. Therefore, the 

effectiveness of an expert solution path could be measured using 

this framework for time series analysis of problem-solving 

behaviors, and the solution path could be considered for a limited 

agency design of a game-based learning environment.  

7. CONCLUSION 
Open-ended game-based learning environments allow a wide range 

of problem-solving behaviors. Analyzing student actions within a 

game-based learning environment can thus provide insight into 

students’ learning processes. Incorporating the sequential nature of 

student actions within the game-based learning environment is 

important because of the complexities of the problem-solving 

process. This work addresses these issues by examining the 

dynamics of problem-solving behavior of students within a game-

based learning environment through a filtered time series analysis. 

A general framework for filtering problem-solving behaviors into 

a gameplay trajectory was presented using a dimensionality 

reduction filter. The slope of this trajectory, representing the pace 

of problem-solving behaviors, was shown to be negatively 

correlated with learning, indicating that students who were more 

deliberate in the rate of problem-solving behaviors achieved higher 

learning gains. The similarity of student problem-solving 

trajectories with an expert solution was shown to be correlated with 

learning, indicating students who took a similar solution path to the 

expert demonstrated higher learning gains. A comparison of 

temporal distance, using the sequential nature of the problem-

solving process, and a baseline distance, using a final summary of 

student problem-solving process, demonstrated the utility of 

incorporating the temporal nature of interactions within a game-

based learning environment. The results demonstrate the value of 

analyzing the characteristics of a student’s path through the 

problem-solving space in the context of an expert path. In future 

work, it will be important to investigate how the results of time 

series analyses can most effectively inform runtime learning 

environment adaptations. 
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